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The inverse relationship of plasma bilirubin levels with liver fat accumulation has prompted
the possibility of bilirubin as a therapeutic for non-alcoholic fatty liver disease. Here, we
used diet-induced obese mice with non-alcoholic fatty liver disease treated with pegylated
bilirubin (bilirubin nanoparticles) or vehicle control to determine the impact on hepatic lipid
accumulation. The bilirubin nanoparticles significantly reduced hepatic fat, triglyceride
accumulation, de novo lipogenesis, and serum levels of liver dysfunction marker aspartate
transaminase and ApoB100 containing very-low-density lipoprotein. The bilirubin
nanoparticles improved liver function and activated the hepatic β-oxidation pathway by
increasing PPARα and acyl-coenzyme A oxidase 1. The bilirubin nanoparticles also
significantly elevated plasma levels of the ketone β-hydroxybutyrate and lowered liver
fat accumulation. This study demonstrates that bilirubin nanoparticles induce hepatic fat
utilization, raise plasma ketones, and reduce hepatic steatosis, opening new therapeutic
avenues for NAFLD.

Keywords: obesity, non-alcoholic fatty liver disease, ketone, ketosis, apolipoprotein, heme oxygenase, HO-1

INTRODUCTION

Obesity is at an all-time high, and this is prevalent worldwide. The tissue overload from lipids in
the obese may cause other comorbidities such as non-alcoholic fatty liver disease (NAFLD),
insulin-resistant diabetes, cardiovascular disease, and some cancers (John et al., 2016; Lega and
Lipscombe, 2020). Therapeutic inventions for reducing obesity are limited, and most increase
blood pressure and may further complicate the cardiovascular outcomes. We and others have
previously shown that the heme metabolite, bilirubin, reduce fat accumulation and blood glucose
levels in obese mice (Dong et al., 2014; Hinds et al., 2014; Liu et al., 2015; Gordon et al., 2016;
Hinds et al., 2016; Stec et al., 2016; Hinds et al., 2017; Takei et al., 2019; Stec et al., 2020). Bilirubin
offers a promising therapeutic approach as it benefits the cardiovascular system (Hinds and Stec,
2018; Hinds and Stec, 2019) by preventing hypertension (Vera et al., 2009) and improving blood
flow (Vera and Stec, 2010). Bilirubin’s actions to reduce lipid accumulation have been attributed
to the recent findings that it has a hormonal function by binding directly to the nuclear receptor
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peroxisome proliferator-activated receptor α (PPARα), which
induces gene transcription that promotes fat burning (Gordon
et al., 2016; Stec et al., 2016; Gordon et al., 2019).

Not surprisingly, mice with a hepatocyte-specific deletion
of PPARα develop hepatic steatosis and NAFLD that is
worsened on a high-fat diet (Stec et al., 2019). PPARα
induces genes for β-oxidation and fat utilization, which
reduces hepatic fat and NAFLD (Burri et al., 2010;
Grabacka et al., 2016). During this process, PPARα regulates
processes that mediate ketone body production from fatty acid
oxidation that increases serum levels of the ketone
β-hydroxybutyrate (BOHB) (Kersten et al., 1999; Grabacka
et al., 2016). The BOHB is excreted by the liver to the blood and
serves as a fuel source for the body other than glucose
(Newman and Verdin, 2014a; Newman and Verdin, 2014b).
Fat accumulation in the liver suppresses β-oxidation and
reduces ketone production lowering plasma BOHB. Mey
et al. found that BOHB levels are reduced in humans with
obesity-related NAFLD (Mey et al., 2020). While it was not a
major conclusion in the paper, they also found that bilirubin
levels were lower in patients with NAFLD. Others have shown
that plasma bilirubin levels are negatively associated with
NAFLD (Hjelkrem et al., 2012; Puri et al., 2013; Salomone
et al., 2013). While patients exhibiting mildly elevated
bilirubin levels had significantly less NAFLD indicating an
inverse relationship (Kwak et al., 2012). These studies suggest
that bilirubin and BOHB may be positively correlated;
however, no studies have shown that when bilirubin is
elevated that BOHB is also higher.

While large-scale population studies have associated the
protective effects of plasma bilirubin levels on NAFLD
development, translating these findings into therapies to
patients has been complicated. One of the main reasons for
this difficulty is the lack of formulations of bilirubin that
could be administered to human patient populations.
Bilirubin is a very hydrophobic molecule and does not
dissolve in aqueous solutions easily. This property limits
its use in patients because solvents are customarily required
to get bilirubin into solutions such as saline and others
used. One resolution to this problem is to covalently attach
a polyethylene glycol compound to bilirubin to form
pegylated bilirubin (PEG-BR) and promote the formation
of highly water-soluble bilirubin nanoparticles (Zheng
et al., 2019). PEG-BR has been an effective anti-
inflammatory and anti-oxidant in several in vivo models
(Lee et al., 2016; Kim M. J. et al., 2017). However, its
effectiveness as a potential therapeutic for NAFLD has
not been evaluated.

Here, we wanted to determine bilirubin’s functionality on
obesity-induced hepatic steatosis and NAFLD and determine
whether it activates β-oxidation, fat utilization, and BOHB
production using bilirubin nanoparticles. We found that
hepatic PPARα induced and liver fat content was lower, which
correlated with higher plasma BOHB levels and lower serum
triglycerides. Our results demonstrate a possible role for bilirubin
nanoparticles in the protection against obesity-induced fatty liver
disease.

MATERIALS AND METHODS

Animals. The experimental procedures and protocols of this
study conformed to the National Institutes of Health Guide
for the Care and Use of Laboratory Animals and approved by
the Institutional Animal Care and Use Committee of the
University of Mississippi Medical Center. C57BL/6J mice were
purchased from Jackson Labs (Bar Harbor, ME, United States)
and placed on a 60% high-fat diet (diet #D12492, Research Diets,
Inc., New Brunswick, NJ, United States) for 24 weeks with full
access to tap water. After this time, mice were randomly assigned
to either a treatment group consisting of pegylated bilirubin
nanoparticles (30 mg/kg every other day, i.p.) or vehicle
(saline) for 4 weeks while continuing on the high-fat diet.

Pegylated bilirubin synthesis. The synthesis of PEG-BR was
done at the Research Institute of Pharmaceutical Sciences at the
University of Mississippi (Oxford, MS, United States). The PEG-
BR was prepared from bilirubin-IX-alpha (Frontier Scientific,
Logan, UT, United States) and mPEG2000-NH2 (Sigma-Aldrich,
St. Louis, MO, United States) as previously described (Gordon
et al., 2016; Lee et al., 2016; Kim M. J. et al., 2017). The size and
morphology of PEG-BR were analyzed by transmission electron
microscopy (TEM) using a model JEM-2100 (JEOL Ltd., Tokyo,
Japan). Purity of the PEG-BR was found to be 95%. PEG-BR was
resuspended in saline with slight sonication to dissolve and stored
at −20°C in the dark.

Liver composition. Liver composition was measured at the end
of the study using magnetic resonance imaging (EchoMRI-
900TM, Echo Medical System, Houston, TX, United States).
MRI measurements were performed on whole livers placed in
a thin-walled plastic cylinder. Liver fat and lean mass were
obtained and expressed as a percent of total liver weight.

Liver triglyceride measurement. Triglycrides were measured
from 100 mg of liver tissue homogenized in 1 ml of 5% NP-40 in
water. Homogenized tissues were then heated to 95°C for 5 min
and then centrifuged (13,000 × g) for 2 min. Tissue triglyceride
levels were measured using a colorimetric assay kit according to
manufactures’ guidelines (Triglyceride Quantification
Colorimetric/Fluorometric Kit, BioVision, Milpitas, CA,
United States). Tissue triglyceride are expressed as mM.
Samples from individual mice were run in duplicate and
averaged, and the averages used to obtain group averages.

Liver histology. To determine hepatic differences of the
pegylated bilirubin and vehicle treated mice, livers were
mounted and frozen in Tissue-Tek O.C.T and sectioned at
10 µm. Hematoxylin and Eosin (H&E) staining were performed
as previously described (Hinds et al., 2016; Hinds et al., 2017; Stec
et al., 2019). The Oil Red O (CAS Number 1320-06-5, Sigma-
Aldrich, St. Louis, MI, United States) staining was performed on
10 µm thick formalin-fixed livers. The livers were stained with
freshly prepared Oil Red O working solution 15min, rinsed with
60% isopropanol, and nuclei stained with alum hematoxylin. Then,
slides were rinsed with distilled water and mounted in aqueous
mountant and prepared for imaging. The degree of Oil Red O
staining was determined at 20× magnification using a color video
camera attached to an Olympus VS120 slide scanning microscope
(Olympus Corporation, Center Valley, PA, United States). Images
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were analyzed using the Olympus OlyVIA software. Image J (NIH)
was used to quantitate the lipid droplets. Data are presented as the
±SEM of the Oil Red O staining for each group.

AST/ALT measurements. Plasma alanine transaminase (ALT)
and aspartate transaminase (AST) were measured using a Vet
Axcel serum chemistry analyzer (AlfaWassermann, West
Caldwell, NJ, United States) from 30 μL of plasma. Samples
were measured in duplicate with standards supplied by the
manufacturer. Data are presented as Units (U)/L.

Quantitative Real-Time PCR Analysis. Total RNA was
harvested from the animals by lysing livers using a Qiagen
Tissue Lyser LT (Qiagen Inc., Germantown, MD, United States)
and then extraction by 5-Prime PerfectPure RNA Tissue Kit
(Thermo Fisher Scientific, Wilmington, DE, United States).
Total RNA was read on a NanoDrop 2,000 spectrophotometer
(Thermo Fisher Scientific, Wilmington, DE, United States) and
cDNA was synthesized using High Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, Foster City, CA,
United States). PCR amplification of the cDNA was performed
by quantitative real-time PCR using TrueAmp SYBR Green qPCR
SuperMix (Alkali Scientific, Fort Lauderdale, FL, United States) for
gene-specific primers as previously described (Hinds et al., 2011;
Hinds et al., 2014; Hinds et al., 2016; Marino et al., 2016; Stec et al.,
2016; Hinds et al., 2017). The thermocycling protocol consisted of
5 min at 95°C, 40 cycles of 15 s at 95°C, and 30 s at 60°C, finished
with amelting curve ranging from 60 to 95°C to allow distinction of
specific products. Normalization was performed in separate
reactions with primers to GAPDH.

Gel Electrophoresis and Western Blotting—Mouse tissues
were flash frozen in liquid nitrogen during harvesting and
stored at −80°C. For gel electrophoresis, 50–100 mg of cut
tissue was then resuspended in three volumes of CelLytic
Buffer (Sigma-Aldrich, St. Louis, MO, United States, Cat No.
C3228) plus 10% protease inhibitor cocktail (Sigma-Aldrich, St.
Louis, MO, United States, Cat No. P2714-1BTL) and Halt
phosphatase inhibitor cocktail (Thermo Fisher Scientific,
Wilmington, DE, United States, Cat No. PI78420), and then
incubated on ice for 30 min. The livers were lyzed using a
Qiagen Tissue Lyser LT (Qiagen Inc., Germantown, MD,
United States) and then centrifuged at 100,000 × g at 4°C.
Protein samples were resolved by SDS polyacrylamide gel
electrophoresis and electrophoretically transferred to
Immobilon-FL membranes. Membranes were blocked at
room temperature for 2 h in TBS (10 mM Tris-HCl (pH 7.4)
and 150 mM NaCl) containing 3% BSA. Subsequently, the
membranes were incubated overnight at 4°C with the
following antibodies: ACOX1 (Santa Cruz Biotechnology,
Santa Cruz, CA, sc-98499), fatty acid synthase (FAS) (Cell
Signaling Technology, Danvers, MA, United States, Cat No.
3180S), SCD1(Cell Signaling Technology, Danvers, MA,
United States, Cat No. 2794S), or heat shock protein 90
(HSP90) (Santa Cruz, sc-13119). After three washes in TBS
+ 0.1% Tween 20, the membrane was incubated with an
infrared anti-rabbit (IRDye 800, green) or anti-mouse
(IRDye 680, red) secondary antibody labeled with IRDye
infrared dye (LI-COR Biosciences) (1:10,000 dilution in
TBS) for 2 h at 4°C. Immunoreactivity was visualized and

quantified by infrared scanning in the Odyssey system (LI-
COR Biosciences).

Analysis of plasma lipids and metabolites. Plasma lipids and
metabolites were measured in mice following an 8 h fast by
nuclear magnetic resonance (NMR) spectroscopy as part of
the Bruker IVDr platform (Bruker Scientific LLC, Billerica,
MA, United States), as previously described (Stec et al., 2019).
Plasma samples (50 μL) were combined with 150 μL of buffer
supplied by Bruker Biospin specifically for the IVDr protocol and
were analyzed according to the Bruker In-Vitro Diagnostics
research (IVDr) protocol. Lipoprotein subclass analysis was
performed using regression analysis of the NMR data as
previously described (Stec et al., 2019).

Statistics. All bar graph data are presented as mean ± S.E.M.
Box and whisker plots display whiskers from the minimum or
maximum, with a vertical line in the box to indicate the median.
Differences between treatment groups were determined using
student t-test or one-way analysis of variance with a post hoc test
(Dunnett’s). A p < 0.05 was considered to be significant. All
analyses were performed with GraphPad Prism eight software
(GraphPad Software, Inc., San Diego, CA).

RESULTS

Bilirubin has almost exclusively been correlated with liver
dysfunction. The recent findings that bilirubin is inversely
associated with NAFLD (Jang, 2012; Kwak et al., 2012) and that
a mouse model of Gilbert’s syndrome with hyperbilirubinemia
were resistant to hepatic steatosis (Hinds et al., 2017), has provided
new insights into its function. We wanted to determine if bilirubin
nanoparticles (pegylated bilirubin) that we and others have
recently described (Gordon et al., 2016; Lee et al., 2016; Kim
et al., 2017a; Kim M. J. et al., 2017; Lee et al., 2019) could improve
hepatic steatosis in an obese mouse model. As previously described
(Gordon et al., 2016), we put mice on a high-fat diet (HFD) for
24 weeks and then treated for 4-weeks with PEG-BR or vehicle
while maintaining them on a HFD. The obese mice’s body weights
at the 24-weeks point were comparable, with the starting weight of
the mice over 50 g for each group (55.7 ± 4.1 g Vehicle vs. 53.4 ±
2.6 PEG-BR treated) (p � 0.2823). After the 4-weeks treatment, the
plasma bilirubin levels were increased in the PEG-BR treated
(0.45 ± 0.08 mg/dl) compared to the vehicle (0.13 ± 0.05 mg/dl)
(p< 0.0001). After the 4-weeks PEG-BR and vehicle treatments, the
percent body weight change was greater in the vehicle but not the
PEG-BR (103.4% ± 2.5 for vehicle and 96.3% ± 2.7 for PEG-BR)
(p � 0.0058). The PEG-BR group had a 7% reduction in body
weight gain compared to the vehicle treated animals. There was no
difference between the groups for the liver weight (Figure 1A). The
liver to body weight ratio was 0.056 ± 0.004 vs. 0.055 ± 0.004 g/g
Vehicle vs. PEG-BR treated. However, percent liver fat measured
by echoMRI, liver triglycerides, and lipid Oil Red O staining all
showed less fat accumulation in the PEG-BR treated animals
compared to vehicle (Figures 1B–D).

To better understand how the bilirubin nanoparticles impact
hepatic function, the livers from both groups of mice were
analyzed by hematoxylin and eosin (H&E) staining for
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observable differences in treated animals and hepatic dysfunction
biomarkers. The H&E staining revealed that the VEH treated
animals possibly had inflammation, which were found to be lower
in the PEG-BR treated group (Figure 2A). This was paralleled
with pro-inflammatory gene Tnfa, in that PEG-BR significantly
(p < 0.01) reduced expression compared to VEH (Figure 2B). We
measured plasma levels of hepatic dysfunction markers alanine
transaminase (ALT) and aspartate transaminase (AST) before
(pre-treatment) treatment and after the study was completed
(post-treatment). There were no differences in AST or ALT levels

at the beginning of the study (Figure 2C). However, post-
treatment, the AST levels were significantly (p < 0.001)
reduced with PEG-BR compared to VEH groups. The ALT
level was also reduced with PEG-BR was not reduced but
showed a trend toward reduction that did not reach statistical
significance. Overall, these data demonstrate that PEG-BR
improved hepatic function and reduced inflammation.

Next, we determined how PEG-BR treatments affect plasma
metabolites of amino acids by NMR spectroscopy using the
Bruker IVDr platform. We found no significant differences in

FIGURE 1 | Bilirubin nanoparticles reduce hepatic fat content. Liver weight (g) (A), percent liver fat as determined by EchoMRI (B), hepatic triglycerides (mM) (C),
and hepatic Oil Red O staining (D) in vehicle (VEH) and pegylated bilirubin (PEG-BR) treated mice. White scale bar � 100 μm. * � p < 0.05 vs. VEH; ** � p < 0.01 vs. VEH;
(VEH, n � 5 and PEG-BR, n � 6).

FIGURE 2 | Bilirubin nanoparticles improve hepatic function and inflammation in obese mice. Hematoxylin and eosin (H&E) staining in vehicle (VEH) and pegylated
bilirubin (PEG-BR) treated mice (A). Real-time PCR expression of hepatic tumor necrosis factor alpha (Tnfa) (B); ** � p < 0.001 vs. VEH; (VEH, n � 4 and PEG-BR, n � 4).
Liver dysfunction markers alanine transaminase (ALT) and aspartate transaminase (AST) plasma levels were measured at the beginning (pre-treatment) of the study and
after the 4-weeks treatment was completed (post-treatment); ** � p < 0.01 vs. VEH; (VEH, n � 5 and PEG-BR, n � 6).
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amino acids measured in the plasma of the PEG-BR or vehicle-
treated groups (Figure 3A). Exercise and fat burning metabolites
lactic acid, acetic acid, formic acid, and β-hydroxybutyrate (3-
hydroxybutyric acid) were measured in the two groups. Analysis
showed that only elevated plasma BOHB levels had a significant (p <
0.05) difference for PEG-BR treated compared to the vehicle groups
(Figure 3B). There were no differences between the lactic acid,
formic acid, citric acid, and acetic acid between the groups. The
PEG-BR reduces hepatic lipids possibly by inducing β-oxidation,
which provide metabolites for ketone production. Therefore, we
measured knownmediators that regulate fatty acid β-oxidation, such
as PPARα and target genes. PPARα (Ppara) mRNA expression was
increased in the PEG-BR treated animals compared to the vehicle
group (Figure 4A). Huang et al. showed that sustained activation of
PPARα by endogenous ligands in obese mice increases the rate-
limiting mediator of β-oxidation, Acox1 (Vluggens et al., 2010), and
p450 Cyp4a pathways (Hirai et al., 2007; Huang et al., 2012). Here,
we also found that Acox1 and cytochrome P450 Cyp4a12 (Figures
4B,C) were significantly (p < 0.05) higher in the PEG-BR compared
to vehicle-treated animals. Also, the PPARα-target genes for long-
chain fatty acid transporters FATP1 (gene Slc27a1) and FATP2
(gene Slc27a2) (Hirai et al., 2007), were significantly increased in the
PEG-BR treated mice compared to vehicle (Figures 4D,E). The
lipogenesis gene, Scd1, was significantly (p < 0.01) reduced with
PEG-BR (Figure 4F). Immunoblotting of ACOX1 showed that the
protein was significantly (p � 0.0137) higher in the PEG-BR treated
animals compared to the vehicle (Figure 4G). The de novo
lipogenesis proteins fatty acid synthase (FAS) and stearoyl-
Coenzyme A desaturase 1 (SCD1) were significantly (p < 0.05
and p < 0.0001, respectively) reduced with PEG-BR compared to
vehicle treatments. These indicate that PEG-BR enhances fatty acid
uptake and lipid utilization for hepatic β-oxidation increasing plasma
BOHB and inhibits de novo lipogenesis, improving fatty liver.

We have previously shown that mice with a hepatocyte-
specific deletion of PPARα (PparaHepKO) had worsened hepatic
steatosis on a HFD that also caused significantly higher plasma
triglycerides and ApoB100 levels (Stec et al., 2019). PEG-BR did
not change in plasma total ApoB100 levels (Figure 5A). However,
PEG-BR significantly reduced the ApoB100 containing very-low-
density lipoproteins (VLDL) but not ApoB100 containing low-
density lipoproteins (LDL) particles (Figures 5B,C). We had
shown in the PparaHepKO on HFD that had higher ApoB100 in
plasma than floxed control, and that this was also correlated with
reduced hepatic microsomal triglyceride transfer protein (Mttp)
expression (Stec et al., 2019). ApoB100 and theMttp are essential
for excretion of the VLDL molecule from the liver (Chen et al.,
2008). Here, we found that PEG-BR inducedMttp expression but
not ApoB (Figure 5D). The serum ApoB-VLDL, triglycerides,
and VLDL cholesterol were significantly (p < 0.05) lower in the
PEG-BR compared to vehicle treated animals (Figures 6A,B).
The triglyceride distribution panel for VLTG, IDTG, LDTG, and
HDTG showed no sigificant differences, and this was also
observed for the VLDL, LDL, and HDL triglyceride
subfractions (Supplementary Figure S1). There was no
change in total cholesterol, HDL cholesterol, or LDL
cholesterol levels (Figures 6C–E). This was also observed in
the cholesterol and free cholesterol distribution and HDL,
LDL, and VLDL cholesterol subfractions (Supplementary
Figures S2, S3). Also, lipoproteins ApoA1 and ApoA2 that
remove cholesterol from peripheral tissues had no difference
between the treated groups (Figures 7A,B). This was also
observed in the ApoA1 and ApoA2 distribution profiles
(Supplementary Figure S4). Overall, treatment of PEG-BR in
obese mice improved the hepatic steatosis potentially by utilizing
fat for β-oxidation, increasing fatty acid uptake, reducing plasma
ApoB-VLDL and triglycerides (Figure 8).

FIGURE 3 | Plasma metabolites in bilirubin nanoparticles and vehicle treated obese mice. Pie chart and bar graphs of plasma amino acids in vehicle and pegylated
bilirubin treatedmice (A). Pie chart and bar graphs of plasma carboxylic and keto acids in vehicle and pegylated bilirubin treatedmice (B). * � p < 0.05 vs. VEH; (VEH, n � 3
and PEG-BR, n � 4–5).
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DISCUSSION

The novel finding in our studies is that PEG-BR (bilirubin
nanoparticles) improved NAFLD, which is potentially due to fat-
burning mechanisms, as demonstrated by reduced hepatic
triglyceride content, changes in gene expression in line with
increased fat utilization and β-oxidation, and increased plasma
levels of BHOB. Based on our current data and previous studies
clearly demonstrating the induction of PPARα by bilirubin and
bilirubin nanoparticles, it is likely that the effects on hepatic steatosis
are at least in partmediated via PPARα regulatedmechanisms. These
are the first findings that PEG-BR increases plasma concentrations
of BHOB.We have previously shown that bilirubin binds directly to

PPARα (Gordon et al., 2016; Stec et al., 2016; Gordon et al., 2019),
which is a known regulator of fatty acid β-oxidation (Hirai et al.,
2007; Huang et al., 2012; Stec et al., 2019) that supplies the substrates
for BOHB production (Kersten et al., 1999; Grabacka et al., 2016).
Patients with NAFLD have lower plasma levels of BHOB (Mey et al.,
2020), which is likely due to the activation of lipogenic pathways
such as FAS or Scd1 that transcribes the stearoyl-CoA desaturase-1
(SCD1) enzyme that forms fatty acids and lipid synthesis (Sampath
et al., 2007; Flowers and Ntambi, 2009). A deficiency in SCD1 in
mice protects against weight gain and adiposity (Ntambi et al., 2002).
Activation of these pathways induces de novo lipogenesis for the
synthesis of fat, causing the accumulation of lipids shutting down the
β-oxidation fat burning mechanisms.

FIGURE 5 | Apolipoprotein B levels in bilirubin nanoparticle and vehicle treated obesemice. Plasma apolipoprotein B levels in vehicle and pegylated bilirubin treated
mice (A). Plasma apolipoprotein B-Very-low-density lipoprotein (ApoB-VLDL) (B). Plasma apolipoprotein B-low-density lipoprotein (ApoB-LDL) (C); * � p < 0.05 vs. VEH;
(VEH, n � 4 and PEG-BR, n � 5). (D) Real time PCR of hepatic apolipoprotein B (Apob) and Microsomal Triglyceride Transfer Protein (Mttp) mRNA in vehicle and
pegylated bilirubin treated mice. * � p < 0.05; **�<0.01 vs. VEH; (VEH, n � 5 and PEG-BR, n � 6).

FIGURE 4 | Hepatic PPARα and target gene expression in bilirubin nanoparticle and vehicle treated obese mice. Real-time PCR expression of hepatic PPARα
(Ppara) (A) and target genes, acyl-Coenzyme A oxidase 1 (Acox1) (B); cytochrome P450, family 4, subfamily a, polypeptide 12a (Cyp4a12) (C); FATP1, solute carrier
family 27 member 1 (Slc27a1) (D); and, FATP2, solute carrier family 27 member 2 (Slc27a2) (E); stearoyl-Coenzyme A desaturase 1 (Scd1) (F) in vehicle and pegylated
bilirubin treated mice. * � p < 0.05 vs. VEH; ** � p < 0.001 vs. VEH. (VEH, n � 5 and PEG-BR, n � 6). (G) Immunoblotting of acyl-Coenzyme A oxidase 1 (ACOX1),
fatty acid synthase (FAS), stearoyl-Coenzyme A desaturase 1 (SCD1), and heat shock protein 90 (HSP90) in vehicle and pegylated bilirubin treated mice. * � p < 0.05;
****�<0.0001 vs. VEH; (VEH, n � 5 and PEG-BR, n � 5).
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We had previously shown that mice with the Gilbert’s
mutation UGT1A1*28 and hyperbilirubinemia were resistant
to high-fat diet-induced hepatic steatosis by inhibiting de novo
lipogenesis and activation of β-oxidation (Hinds et al., 2017). We
have also shown that exercise elevated plasma bilirubin by
suppressing hepatic UGT1A1 and increasing biliverdin
reductase-A (BVRA) (Hinds et al., 2020), the enzyme that
generates bilirubin (Adeosun et al., 2018; O’Brien et al., 2015),
which improved hepatic glycogen storage and PPARα target genes
(Hinds et al., 2020). Here, we found that PEG-BR reduced SCD1
and FAS while activating PPARα and ACOX1, improving hepatic
steatosis in obese mice. We have also previously demonstrated
that mice with a hepatocyte-specific loss of BVRA had worsened
hepatic steatosis on a HFD compared to floxed control due to
lower hepatic bilirubin levels (Hinds et al., 2016). We found that
these mice had higher hepatic de novo lipogenesis and reduced
β-oxidation via lessor bilirubin-PPARα activity. Later, a similar
observation was made using murine hepatocyte cell culture with
CRISPR/Cas9 deletion of BVRA (Gordon et al., 2019). Mildly
elevated plasma bilirubin in obese patients may improve fatty
liver and related adverse metabolic parameters such as high
cholesterol or triglycerides. In line with a study by Wallner
et al. that found humans with hyperbilirubinemia due to
Gilbert syndrome have reduced serum cholesterol and
triglycerides, we also showed that PEG-BR reduced VLDL
cholesterol but not triglycerides (Wallner et al., 2013).

Weight gain and obesity are associated with increased plasma
ApoB100 and triglyceride levels partly due to an greater in hepatic
VLDL release (Chen et al., 2008; Fabbrini et al., 2016; Vine et al.,
2017). PEG-BR treatment in the obese mice reduced plasma
triglycerides and VLDL cholesterol, but no effect on total
cholesterol levels or HDL and LDL was observed. However,
the total cholesterol was slightly lower and HDL higher. The
PEG-BR had a similar impact on ApoA-1 and ApoA-2 plasma
levels with no changes, but a trend to increase ApoA-1 was
observed. We previously showed that mice with a hepatocyte-
specific deletion of PPARα (PparaHepKO) on a HFD had no
changes in serum cholesterol, HDL, LDL, or ApoA proteins
(Stec et al., 2019). However, the PparaHepKO mice on a HFD
did have higher plasma triglycerides and ApoB100 levels
compared to floxed animals (Stec et al., 2019). The PEG-BR
activation of PPARα in obese mice reduced ApoB100 containing
VLDL particles in serum, but no effect was observed on Apob
mRNA expression in the liver. We showed that PPARα in the liver
had no impact on Apob expression as the hepatic loss in the
PparaHepKO mice on normal chow diet (NFD) or HFD showed no
differences (Stec et al., 2019). The hepatic microsomal triglyceride
transfer protein (Mttp) assists ApoB100 for excretion of the
VLDL molecule from the liver (Chen et al., 2008). PEG-BR
treated animals had higher Mttp levels compared to control.
We also found that Mttp levels were low in PparaHepKO mice,
suggesting that Mttp is regulated via PPARα (Stec et al., 2019).

FIGURE 6 | Plasma triglyceride and cholesterol levels in bilirubin nanoparticle and vehicle treated obese mice. Plasma triglycerides (A), very-low-density lipoprotein
(VLDL) cholesterol (B), total cholesterol (C), high-density lipoprotein (HDL) cholesterol (D), low-density lipoprotein (LDL) cholesterol (E) in vehicle and pegylated bilirubin
treated mice. * � p < 0.05 vs. VEH; (VEH, n � 4 and PEG-BR, n � 5).

FIGURE 7 | Apolipoprotein A levels in bilirubin nanoparticle and vehicle treated obese mice. Plasma apolipoprotein A1 (ApoA1) (A) and apolipoprotein A2 (ApoA2)
(B) levels in vehicle and pegylated bilirubin treated mice. (VEH, n � 4 and PEG-BR, n � 5).
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Previous studies have shown a negative correlation between
serum total bilirubin levels and blood triglyceride levels (Zhong
et al., 2017; Petelin et al., 2020). Interestingly, in obese patients with
low serum total bilirubin and higher triglycerides than lean control
with bariatric surgery increased plasma bilirubin by two-fold and
reduced triglycerides by 50% (Bawahab et al., 2017), illustrating the
potential role of bilirubin in triglyceride metabolism. However, these
are yet to be tested. Ligands for PPARα effectively reduce plasma
triglyceride levels (Srivastava et al., 2006), and plasma ApoB100
containing VLDL (Linden et al., 2002). The bilirubin nanoparticles
may be a useful therapy for patients with hypertriglyceridemia. Part
of the action of the PEG-BRmay be in the reduction of SCD1, which
is important for de novo production of saturated fatty acids that are
contained in ApoB100 VLDL particles (Miyazaki et al., 2000;
Flowers and Ntambi, 2009). ApoB100 is a critical component of
the VLDL particle that is essential for excretion from the liver (Chen
et al., 2008), which carries mostly triglycerides and some cholesterol
out of the liver to the blood. The PEG-BR decreased de novo
lipogenesis and increased fat-burning β-oxidation, the latter
which provides metabolites for ketone production and secretion
of BOHB (Newman and Verdin, 2014b). These findings show a
possible role of the bilirubin-PPARα interaction in ketosis, but this
has yet to be determined. We have previously used the obesity-
induced model with PEG-BR treatments and observed effects on
whole-body metabolism (lower plasma glucose and percent fat
mass), which could be interrelated to the effects observed in the
liver (Gordon et al., 2016).

There is an intriguing accord for BOHB, PPARα, and bilirubin,
as they seem to have a metabolic axis that works in concert to

control hepatic fat accumulation. The finding that bilirubin may
induce the PPARα pathway and increase BHOB production to
control hepatic steatosis needs validated by clinical studies. Also, the
bilirubin nanoparticles should be used in PPARα knockout mice,
preferably tissue-specific KOs, to further validate their mechanisms.
Bilirubin is a well-known and highly studied molecule that has been
known for centuries as a toxic bile substance, as observed in cases
with extremely elevated plasma bilirubin, especially in its
unconjugated form, such as that seen with Crigler-Najjar
syndrome. Our investigation here posits that bilirubin and the
PEG-BR nanoparticle may improve metabolic action and liver
function, primarily by reducing liver fat accumulation and
NAFLD. We have previously shown that PEG-BR reduced white
adipocyte size in obese mice by stimulating PPARα transcriptional
activity via regulating its’ coregulator protein interaction (Gordon
et al., 2016). Others have shown that the bilirubin nanoparticles
protect against hepatic ischemia-reperfusion injury (Kim et al.,
2017a), inflammatory lung disease (Kim D. E. et al., 2017),
colitis and gut microbiome (Lee et al., 2019), and pancreatic islet
xenotransplantation (Kim M. J. et al., 2017). There is promise in
bilirubin nanoparticles as a therapeutic, and bilirubin is protective of
the cardiovascular system (Hinds and Stec, 2018; Hinds and Stec,
2019) by improving blood pressure (Vera et al., 2009) and renal
blood flow (Vera and Stec, 2010). Total bilirubin serum levels were
negatively associated with cerebral atherosclerosis, and higher levels
had less incidence of extracranial arterial stenosis (ECAS) and
intracranial arterial stenosis (ICAS) (Kim et al., 2017b). The
protective action of bilirubin may be related to its ability to
lower plasma triglycerides, increase fat utilization, promote liver

FIGURE 8 | Schematic diagram of the proposed pathway by which bilirubin reduces hepatic steatosis. Bilirubin serves as a ligand to the peroxisome proliferator-
activated receptor-alpha (PPARα), which increases transcription of genes for β-oxidation of fatty acids (acyl-Coenzyme A oxidase 1, ACOX1) resulting in metabolites that
elevate hepatic production of the ketone β-hydroxybutyrate (BOHB), which is secreted to blood increasing levels. Bilirubin activated PPARα also stimulates hepatic fatty
acid transport protein (FATP) that imports lipids to reduce blood levels and inhibits stearoyl-Coenzyme A desaturase 1 (SCD1) and fatty acid synthase (FAS) to
inhibit de novo lipogenesis. Together, the bilirubin-PPARα controlled pathways decrease the hepatic secretion of apolipoprotein B100 (ApoB100) containing very-low-
density lipoproteins (VLDL) that increase blood triglyceride levels.

Frontiers in Pharmacology | www.frontiersin.org December 2020 | Volume 11 | Article 5945748

Hinds et al. Bilirubin Stimulates Fat-burning Producing Ketones

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


function, and enhance the production of ketones. More studies are
required to fully understand the use of bilirubin and bilirubin
nanoparticles as a therapeutic for NAFLD and metabolic and
cardiovascular disorders.
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