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Abstract

Helianthus annuus, the common sunflower, produces a complex array of secondary compounds that are secreted into
glandular trichomes, specialized structures found on leaf surfaces and anther appendages of flowers. The primary
components of these trichome secretions are sesquiterpene lactones (STL), a diverse class of compounds produced
abundantly by the plant family Compositae and believed to contribute to plant defense against herbivory. We treated wild
and cultivated H. annuus accessions with exogenous methyl jasmonate, a plant hormone that mediates plant defense
against insect herbivores and certain classes of fungal pathogens. The wild sunflower produced a higher density of
glandular trichomes on its leaves than the cultivar. Comparison of the profiles of glandular trichome extracts obtained by
liquid chromatography–mass spectroscopy (LC-MS) showed that wild and cultivated H. annuus were qualitatively similar in
surface chemistry, although differing in the relative size and proportion of various compounds detected. Despite observing
consistent transcriptional responses to methyl jasmonate treatment, we detected no significant effect on glandular
trichome density or LC-MS profile in cultivated or wild sunflower, with wild sunflower exhibiting a declining trend in overall
STL production and foliar glandular trichome density of jasmonate-treated plants. These results suggest that glandular
trichomes and associated compounds may act as constitutive defenses or require greater levels of stimulus for induction
than the observed transcriptional responses to exogenous jasmonate. Reduced defense investment in domesticated lines is
consistent with predicted tradeoffs caused by selection for increased yield; future research will focus on the development of
genetic resources to explicitly test the ecological roles of glandular trichomes and associated effects on plant growth and
fitness.
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Introduction

Plants possess a variety of constitutive and induced defenses

against herbivores and pathogens [1]. Constitutive defenses are, in

ideal terms, pre-formed defenses that are produced by a plant

regardless of external stimuli. Induced defenses are chemical or

physical alterations in the plant, following an initial attack or

stimulus, that affect subsequent herbivore or pathogen activity.

Constitutive defenses are expected to be most important when pest

pressure is high and fairly constant, while induced defenses are

predicted to play a larger role when pest populations are variable

and the costs of resistance are high [2–4].

Comparisons of domesticated plants with their wild relatives can

be used to evaluate these predictions. Domesticated species have

originated rapidly and recently and often exhibit a reduction in

physical and chemical defenses [5]. The decline in resistance is

thought to result from a growth-defense trade-off, in which

constitutive investments in defense are lost in favor of growth and

reproduction [6]. However, distinguishing between constitutive

and induced defenses can be difficult, as many defense traits are

both constitutive and inducible, to an extent that is influenced by

both the timing and strength of the induction stimulus. Also,

modern improvement programs attempt to re-introduce resistance

to specific pests, which may mask growth-defense trade-offs

initially associated with domestication.

Sunflower, Helianthus annuus, exhibits a typical domestication

syndrome [7]. The domesticated sunflower is interfertile with its

wild progenitor, also H. annuus, and appears to have been

domesticated in eastern North America circa 4000 years ago

[8,9]. Comparisons of cultivated and wild sunflower germplasm

indicate that the former have increased susceptibility to disease

and insect pressures, although genetic background and environ-

mental factors contribute significant variation [6,10–12].

Resistance to insect herbivores in sunflowers is mediated in part

by glandular trichomes, which possess a hair-like stalk that

terminates in a secretory head that can accumulate secondary

compounds. Glandular trichomes occur broadly throughout

dicotyledenous plants, but their contents vary among and within

taxonomic groups. Defensive plant secondary metabolites (e.g.,

terpenoids, alkaloids, and phenylpropanoids) are commonly

sequestered in specialized structures, such as glandular trichomes,

laticifers, and resin ducts, presumably to avoid autotoxic effects.

Additional or alternate functions for glandular trichomes in

maintaining water balance and protection from UV damage have
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been proposed [13–16]. Various mechanisms of defense mediated

by glandular trichome secretions have been demonstrated,

including paralysis of insects by alkaloids produced by tobacco,

inhibition of insect movement and chewing by acyl sugars

produced by some varieties of tomato, and deterrence of insect

feeding by menthol derivatives produced by mints [17–21].

Specification of trichomes, as understood from studies of trichome

development in the model plant Arabidopsis thaliana, occurs in the

protodermis, and is influenced by phytohormones including

jasmonates, cytokinins, and gibberellins [22]. Trichomes are often

described as constitutive defenses, as their relatively early

developmental origins mean that they cannot be produced rapidly

on a mature plant organ in response to an attack. In various

plants, glandular trichomes have been shown to be inducible over

a longer time scale by external stimuli, including treatment with

exognenous methyl jasmonate, mechanical or insect damage, or

osmotic stress [14,23–25]. In these cases, increased density of

trichomes is observed only on new leaves that emerge after

treatment.

Glandular trichomes of Helianthus species primarily contain

sesquiterpene lactones (STL) and flavonoids [26]. STL are a

structurally-diverse class of secondary compounds derived from

the isoprenoid biosynthetic pathway. Production of these com-

pounds is not exclusive to the plant family Compositae, but STL

have been reported in the greatest abundance and diversity of

structures in this family [27]. STL contain a basic backbone of 15

carbon atoms derived from joining of three 5-carbon isoprene

units, but may vary considerably in arrangement of the basic

skeleton (linear vs. cyclic, size of the lactone ring) and composition

of side chains.

STL are generally bitter-tasting compounds, and many

structures show cytotoxicity in experimental settings [28]. Partially

because of the relative physiological expense of producing STL,

these compounds are presumed to serve valuable anti-herbivore

and anti-microbial defense functions in natural environments [29].

Laboratory assays using purified STL from several Helianthus

species have demonstrated either feeding deterrence or growth

reduction effects of these compounds on specialist and generalist

insect herbivores, including sunflower moth (Homeosoma electellum),

Southern armyworm (Spodoptera eridania), and migratory grasshop-

per (Melanoplus sanguinipes) [30,31]. Within the family Compositae,

STL have been proposed as a useful taxonomic tool for elucidating

relationships among closely-related taxa [32,33]. Within the

species Helianthus annuus, structures of at least a dozen STL have

been elucidated. These reports have generally focused on single H.

annuus varieties [26,34–36], although a comparison of 3 H. annuus

cultivars reports similar total STL contents [37]. A study of STL

from a wild H. annuus population in Texas also reports similar

structures from a pooled sample [38].

Here we compare glandular trichome density and contents from

an H. annuus elite oilseed cultivar (HA89) and a wild population

(ANN1238). Additionally, both accessions were treated with

exogenous methyl jasmonate (MeJA) to induce stress responses

related to herbivore attack. We specifically ask whether (1) the

cultivated line HA89 exhibits a reduction in the glandular

trichome density and STL concentration relative to the wild line,

ANN1238; and (2) reductions in these defensive structures and

compounds represent a loss of constitutive defenses as predicted by

evolutionary theory.

Methods

Plant Growth and Treatment
H. annuus HA89 is a highly inbred elite oilseed cultivar

developed in Texas and released by the USDA and the Texas

Agricultural Experiment Station in 1971. ANN1238 was collected

at the University of Nebraska’s Cedar Point Biological Research

Station and donated to the USDA germplasm collection in 2009.

Twenty seeds each of H. annuus ANN1238 and HA89 (USDA

accessions: PI 659440, PI 599773) were scarified and incubated in

darkness at room temperature on moist filter paper. Seeds were

checked daily for germination, determined as protrusion of the

radicle by at least 2 mm. Seed coats were manually removed from

imbibed or germinated seeds to reduce fungal infection. At 3 days

post-scarification, 12 seedlings per group were transferred to

Promix B soil in 32-cell flats (approximately 100 cm3 soil volume/

cell) and placed in a controlled environment chamber at 26uC,

50% RH, and 14 h day length. Seedlings were sub-irrigated every

other day with tap water.

At two weeks post-germination, seedlings were transplanted to

1-gallon (3.78L) pots containing a 7.4:4: 1 mixture of peat: perlite:

calcined clay, with addition of dolomite 65AG (0.12% volume),

Micromax micronutrient mix (0.06% volume), AquaGro 2000

wetting agent (0.01% volume), and Nutricote18-6-8 fertilizer

(0.3% volume). Plants were grown in a greenhouse with

supplemental lighting for 12 h per day. Plants in different

treatment groups were spatially separated on a single greenhouse

bench (approximately 5 m separation, with non-treated buffer

plants occupying the intervening space). Plants were rotated

between bench ends twice-weekly to diminish positional effects due

to spatial variation in temperature or lighting.

One of the second pair of fully-expanded true leaves was

removed from each plant prior to treatment to evaluate baseline

variance within and between groups. This leaf was then

photographed, sampled for later RNA extraction, and the density

of glandular trichomes estimated (see below). One of the 5th pair of

true leaves was sampled from all plants following their third

experimental treatment and analyzed similarly to evaluate

differences in glandular trichome density, chemical profile, and

mRNA transcript accumulation attributable to methyl jasmonate

treatment.

Whole plants were treated with a foliar spray of 100 mM methyl

jasmonate (MeJA) in 0.01% EtOH or a control solution of 0.01%

EtOH. MeJA solution was prepared by mixing 100 mmoles of

methyl jasmonate (Sigma-Aldrich Inc., Ontario CAN) with 100 ml

EtOH to improve solubility in H2O, followed by dilution in 1 L

filtered H2O. Plants were removed from the greenhouse for

treatment to avoid contamination of control plants by volatile

MeJA, and returned approximately 1 hour after spraying. A

timeline of plant treatments and sampling is provided as Figure 1.

In a separate experiment, seedlings of both accessions were

germinated and transplanted to soil as described above. One week

following transplant to soil, seedlings were treated with 1 mM

MeJA in 0.01% EtOH or control treatment (0.01% EtOH), also as

previously described. Plants were placed in clear plastic bags for

treatment and two hours following, then the bags were removed.

The plants were allowed to dry for an additional hour before

returning to the greenhouse bench. This treatment was repeated

the following week, prior to transplanting 2 week-old plants into 1-

gallon pots. At 4 weeks post-germination, one of the second pair of

true leaves was removed from each plant for estimation of

glandular trichome density and leaf area. At the same time, plant

height (from base of soil, in cm) was measured.

Sunflower Defenses and Jasmonate Response
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Foliar Glandular Trichome Density
Density of glandular trichomes on the abaxial leaf surface was

determined by counting the number of glandular trichomes

contained in a 3 mm63 mm ocular grid, observed at 256mag-

nification, for three regions of the leaf, roughly delineated as leaf

tip, leaf edge, and leaf center proximal to midvein. Although we

attempted to harvest only fully-expanded leaves, the average

number of glandular trichomes per cm2 was multiplied by the leaf

area to diminish the effect of any variation in leaf expansion. The

fate of cells destined to become glandular trichomes is determined

early in development, thus the number of trichomes per leaf

should remain constant even as the leaf area increases through

expansion. Analyses of variance using generalized linear models in

R tested the explanatory value of parameters ‘ACCESSION’

(‘‘HA89’’, ‘‘ANN1238’’), TREATMENT (‘‘control’’, ‘‘MeJA’’),

and their interaction to explain observed variation in trichome

counts.

Extraction of Glandular Trichome Contents
Following determination of glandular trichome density, leaves

were rinsed in HPLC-grade dichloromethane (Fisher Scientific) for

15 seconds. This extract was dried under air, resolved in 100%

MeOH, and stored at 280uC until analysis. Flowers were

collected from each plant when the first flower was fully open

(ray flowers fully-expanded) and the anther appendages of the

outside ring of disk flowers were extended past the corolla

(Figure 1). Approximately 150 glandular trichomes were removed

from the anther appendages with a flat-tipped needle and collected

into a 1.5 ml centrifuge tube containing 0.5 ml HPLC-grade

methanol. These samples were dried in a vacuum-centrifuge and

stored at 280uC until analysis.

Analysis of Glandular Trichome Profiles by Liquid
Chromatography-Mass Spectroscopy (LC-MS)

LC-MS analysis was performed using an Agilent 1200 Rapid

Resolution LC (RRLC) system coupled with Agilent 6410 MS.

Two mL of samples were separated through a Zorbax Eclipse plus

C18 (2.1650 mm, 1.8 mm) column at 40uC. Solvents used were

water (with 1% acetic acid) and acetonitrile (100%). The

acetonitrile composition was increased from 10% to 80% over

20 min with a 30 sec holding time at the start (a total of 20.5 min

run time). Electrospray ionization method was used, and signals

for both positive and negative ions were collected to infer the

masses of eluted STL. Qualitative analysis was performed using

Agilent MassHunter Workstation Software (Version B.02.00).).

Using a chromatogram showing total mass counts, peaks with

retention times between 4–12 minutes were manually integrated

and mass spectra were extracted for these peaks. Peaks sharing

similar retention time and mass spectra were grouped for

comparative analysis of peak area via linear modeling in R

(Table 1). Both raw peak areas and values standardized by the

estimated number of trichomes sampled ( = estimated glandular

trichomes/leaf; mean of glandular trichome density (trichomes/

cm2) x leaf surface area (cm2) were compared. Linear models

tested the explanatory value of parameters ‘ACCESSION’

(‘‘HA89’’, ‘‘ANN1238’’), TREATMENT (‘‘control’’, ‘‘MeJA’’),

and their interaction to explain observed variation in peak area.

Transcriptional Response to Jasmonate Treatment
Tissue for RNA extraction was sampled from leaves from leaf

pairs 2 (pre-treatment) and 5 (post-treatment). Leaf 2 was sampled

immediately following excision from the plant and prior to

assessment of glandular trichome density. Leaf 5 was sampled 24

hours after treatment with MeJA; plants had received three MeJA

treatments at this point (Figure 1). Eight leaf discs of approx-

imately 6 mm in diameter (,50 mg fresh weight) were removed

from each leaf immediately following excision of the leaf from the

plant and flash-frozen in a 1.5 ml tube in liquid nitrogen. Tissue

was stored at 280uC until extraction of total RNA using Trizol

(Invitrogen) as described [39].

Further sample preparation and whole transcriptome shotgun

sequencing of cDNA derived from these samples was performed at

the Michael Smith Genome Sciences Centre in Vancouver, British

Columbia, Canada (http://www.bcgsc.ca/services). Unaligned

sequence files in BAM format were converted to fastq format

using bam2fastq (www.hudsonalpha.org/gsl/software/bam2fastq.

php). Reads passing the quality control threshold imposed by

Illumina pipeline defaults (chastity .0.6) were aligned to a

transcriptome reference compiled from 93428 EST sequences

from several H. annuus accessions [40,41], containing 16312

unique contigs. Alignments were performed using the Burrows-

Wheeler Aligner (BWA) tools ‘aln’ and ‘sampe’ [42]. Aligned BAM

files were sorted and PCR duplicates removed using SAMtools

utilities ‘sort’ and ‘rmdup’ [43]. Reads per contig were counted for

each sample using coverageBed [44]. Read counts were analyzed

in R using the DESeq package to compare within-transcript read

counts [45]. Specific pairwise comparisons between timepoints

(pre-treatment and post-treatment) for treated samples and

between treatments (control and MeJA) for post-treatment samples

were conducted within each accession. Contigs showing significant

Figure 1. Timeline of H. annuus plant growth and treatment.
doi:10.1371/journal.pone.0037191.g001
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differences (FDR-adjusted p-value ,0.01) in transcript accumu-

lation in multiple independent comparisons were used as queries

to search the NCBI non-redundant nucleotide database for similar

sequences via the BLASTN (version 2.2.26+) discontinuous

megablast algorithm [46].

Results

ANN1238 Produced a Higher Density of Foliar Glandular
Trichomes than HA89 Across All Leaf Positions, Time
Points, and Treatments Assessed (Figure 2)

Glandular trichome density was estimated at 3 positions on the

leaf: leaf tip, mid-leaf, and lower edge. Both accessions produced

the highest estimated density of glandular trichomes at the lower

leaf edge. For ANN1238, however, mid-leaf glandular trichome

density estimates were similar to those from the lower leaf edge,

while estimates from the mid-leaf of HA89 were lower than

glandular trichome density estimates from the leaf tip. Within

accession, mean foliar glandular trichome density did not

significantly differ between the second and fifth leaves. HA89

leaves from both collection times had significantly larger surface

area and were more circular in shape than ANN1238 leaves.

No Significant Effect of Exogenous MeJA Treatment on
Density of Foliar Glandular Trichomes on the Fifth Leaf
was Observed (Figure 2)

Plants assigned to the MeJA treatment were sprayed with

100 mM MeJA following removal of one of the second leaf pair for

estimation of initial glandular trichome density (Figure 1). After 2

weeks and two additional applications of MeJA, one of the 5th pair

of true leaves was removed for estimation of glandular trichome

density. Analysis of variance revealed no significant difference in

glandular trichome counts between treated and untreated plants at

any position (Figure 2). A marginally significant effect of the

interaction between H. annuus accession and treatment is explained

by lower glandular trichome counts on the leaf edge observed in

jasmonate-treated ANN1238 (p = 0.09). Leaves from jasmonate-

treated plants from both accessions had similar surface area to

controls.

Plants of both accessions showed strong inhibition of growth in

response to a 1 mM MeJA treatment applied for two weeks to one

and two week-old plants (Figure S1). The second true leaf of plants

subjected to this high dosage of MeJA had significantly higher

density of glandular trichomes, but this was entirely explained by

the dramatically reduced surface area of the leaf in comparison to

the second true leaf from control group plants. When leaf surface

area was multiplied by trichome density to estimate glandular

trichomes per leaf, MeJA-treated and control group leaves of both

accessions displayed no significant difference in glandular

trichome content, as observed for lower dosage MeJA treatments

described above.

Little Variation in STL Profiles was Detected within
Accessions

Eleven peaks were identified in all leaf wash samples analyzed

(Table 1, Figure 3). These peaks accounted for 88–97% of

analyzed peak area per sample. Wild accession ANN1238,

although expected to possess higher genetic and phenotypic

variability than the highly inbred HA89, showed no qualitative

variation in peaks detected and proportional contributions within

glandular trichome profiles among the 10 individuals analyzed.

ANN1238 samples did, as a group, have higher standard deviation

in areas of several peaks, notably peaks G and J, however this

pattern may be attributable to higher variation in glandular

trichome density, as HA89 actually showed higher variance in

standardized peak areas.

Flower-derived Glandular Trichome Profiles were Similar
to those Derived from Leaf Washes (Figure 4)

Glandular trichomes were manually removed from anther

appendages of HA89 and ANN1238 florets at the stage where the

anther tube had extended from the corolla but the anthers had not yet

Table 1. Peaks detected in extracts of H. annuus glandular trichomes.

PERCENT OF SAMPLEc

LABEL RTa massb compoundsb HA89 ANN1238

A 4.1 266 unknown 0.6–1.2 1.6–2.7

B 6.0 394 Niveusin A 8.1–12.6 6.5–10.6

C 6.4 396 4,5-dihydroniveusin A 4.9–11.3 6.1–10.8

D 6.7 380 Argophyllin B 3.2–9.3 10.6–19.6

E 7.0 378 1,2-anhydro-4,5-dihydro-niveusin A 1.9–5.6 1.6–3.4

F 7.3 380 unknown STL 2.0–3.6 0.3–1.1

G 7.5 376 15-hydroxy-3-dehydrodesoxytifruticin 22.4–30.6 20.6–29.1

H 8.1 410 1-methoxy-4,5-dihydroniveusin A 4.7–11.3 6.3–12.2

I 8.7 378 Niveusin B or C 4.8–12.7 2.3–4.4

JT- 9.1 408/410 Methoxy derivatives of two STL 12.1–16.1 15.3–18.3

K 9.6 360 unknown 1.7–3.4 2.3–7.2

aRetention time (minutes)
bmasses of compounds inferred from (+/2)-LC-MS data. The mass to charge ratio (m/z) for [M2H]-, [M + Cl]-, or [M + acetic acid]- ions were detected in (2)-LC-MS,
whereas the m/z for [M+H]+, [M+Na]+, or [M+K]+ ions were detected in (+)-LC-MS. When the compounds were named, the masses and the eluting patterns in a C18
column (i.e., hydrophobicity of STLs) were considered. The separation pattern detected in a (2)-LC-MS was given as a reference in Figure 3. Published papers [35,36]
were used to guide these chemical identifications.
crange of values (n = 6 samples/accession) for the percent contribution of this sample peak to total peak area measured per sample.
T-Indicates peaks containing two high-abundance m/z values, suggesting multiple co-eluting compounds.
doi:10.1371/journal.pone.0037191.t001
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emerged. These samples were extracted directly with 100% MeOH,

in contrast to leaf samples, which were washed with CH2Cl2, dried,

and re-suspended in MeOH. Despite this difference in extraction

methods, as well as a substantial difference in the volume of material

extracted (,150 glandular trichomes/floral sample vs. 1–56104

estimated glandular trichomes/leaf abaxial surface), LC-MS profiles

of glandular trichome samples derived from leaves and flowers were

qualitatively similar. All peaks listed in Table 1 were observed in LC-

Figure 2. Glandular trichome count per 3 mm63 mm grid of H. annuus abaxial leaf surface. ‘LEAF2’ was removed from the plant prior to
the first methyl jasmonate treatment; ‘LEAF5’ was removed two weeks later, after two treatments with 0.1 mM methyl jasmonate (MeJA) or control
spray spaced at one-week intervals. Accession is indicated by marker shape (m = ANN1238, N = HA89) and treatment is indicated by filled (control)
versus open (MeJA) markers. Data points represent the mean value from 6 plants; error bars show one standard deviation. Where data points from
both treatments are not clearly visible (e.g. HA89 EDGE), they are overlapping.
doi:10.1371/journal.pone.0037191.g002
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MSprofilesof floralglandular trichomeextracts,withtheexceptionof

Peak K. Comparison of the relative proportion of glandular trichome

extract profile accounted for by individual peaks showed that the

relative proportions of peaks D and F differed between floral and leaf

samples, with D accounting for a relatively smaller portion of floral

extracts (Figure 4).

Likely STL Identities
The chemical identities of the STL from ANN1238 and HA89

were inferred by comparing the mass data from LC-MS to the

previously published structural data [35,36] (Table 1). The major

STL identified were niveusin A (peak B), 4,5-dihydroniveusin A

(peak C), argophyllin B (peak D), 15-hydroxy-3-dehydrodesoxyti-

fruticin (peak G), and Niveusin B/C (peak I). Differences in

retention time among peaks sharing the same mass is likely to

reflect structural rearrangement. Peaks A and K are unknown

compounds that do not match the mass or elution patterns of any

described STL. As peak K is not observed in the floral-derived

glandular trichome profiles, it seems likely that this peak represents

a compound washed from the leaf surface, rather than glandular

trichome contents.

Significant Differences were Detected in the Relative
Peak Areas of Compounds Produced by Both ANN1238
and HA89 (Table 1)

While absolute quantification is not feasible without reference

standards, the mass counts of matching peaks can becompared

among samples. Area of each peak analyzed was standardized by

the estimated number of glandular trichomes sampled; for leaf

washes, this was approximated as the number of glandular

trichomes on the total washed leaf surface (average glandular

trichomes/cm2 * cm2 leaf area). Total peak area of the 11

compounds chosen for analysis was significantly greater for

ANN1238 samples than HA89. Within the analyzed profile, peaks

A, D, H, J, K were represented by significantly greater peak areas

in ANN1238 samples, with only peak F significantly larger in

HA89 samples. Because the observed density of glandular

trichomes is greater on ANN1238 leaves than HA89 leaves, the

Figure 3. Representative chromatograms of methylene chloride extracts from the leaf surfaces of H. annuus accessions ANN1238
and HA89. The horizontal axis displays retention time in minutes. Vertical axes are scaled identically and display total mass counts. Labeled peaks A-
K were selected for further analysis and comparison between accessions, and correspond to similarly-labeled peaks in Table 1 and Figures 4 and 5.
doi:10.1371/journal.pone.0037191.g003

Figure 4. Relative percentages of LC-MS peak area accounted
for by 10 peaks shared between glandular trichome extract
profiles derived from floral (anther appendage) versus leaf
(abaxial surface) samples. Relative peak percentage is determined
as (peak area)/(sum of areas for peaks A-J). Statistical significance of
differences among sample sources are marked in the legend:
* = p,0.05, x = p,0.1. Peaks are marked in Figure 3; retention time
and neutral mass for each peak are given in Table 1.
doi:10.1371/journal.pone.0037191.g004

Sunflower Defenses and Jasmonate Response
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difference in actual production of STL by these accessions is likely

greater than implied by Figure 5. Within accessions, averaged

profiles of HA89 were nearly identical between control and MeJA-

treated plants. ANN1238 samples showed a non-significant

decrease in peak areas observed in extracts from MeJA-treated

plants.

Both H. annuus Accessions showed Transcript
Accumulation Responses to MeJA Treatment

Consistent differences in transcript abundance were observed

between jasmonate-treated and control plants (Figure 6). Sets of

transcripts were identified as significantly different after adjust-

ment for multiple testing in six pairwise comparisons (within-

accession HA89 or ANN1238: control pre-treatment vs. jasmonate

pre-treatment, jasmonate pre-treatment vs. jasmonate post-treat-

ment, and control post-treatment vs. jasmonate post-treatment).

Transcripts identified as significantly differing between control

pre-treatment and jasmonate pre-treatment samples were consid-

ered to represent an empirical estimate of false positive results due

to uncontrolled biological differences among plants assigned to

differing treatment groups, and were removed from the final

transcript set. Comparison of the transcript lists generated by the

remaining four comparisons revealed 66 transcripts consistently

significantly differing in accumulated mapped sequence reads

(Table S1). Of these, 48 transcripts were significantly more

abundant in jasmonate-treated samples (Figure 6). FastA-format-

ted reference sequence for these transcripts is provided as

Supplemental Data (Data S1). This set included several transcripts

with highly-significant sequence similarity to transcribed genes

whose functional annotations are directly or indirectly related to

jasmonate or defense responses, including 2 lipoxygenases, an

ethylene response factor, 2 pathogenesis-related proteins and 3

WRKY transcription factors [47]. In addition, samples from

MeJA-treated plants showed significantly greater accumulation of

Figure 5. Comparison of common peaks from H. annuus foliar glandular trichome LC-MS profiles. Samples are grouped by accession
(ANN1238, HA89) and treatment (C = control, J = 100 mM MeJA) along the horizontal axis. The vertical axis shows the peak area (mass counts)
standardized by the estimated number of glandular trichomes extracted per sample (cm2 leaf area *average glandular trichomes/cm2). Each colored
section within the columns corresponds to a specific peak, indicated in the legend and corresponding to Table 1. Values shown represent the mean
peak area for 5 samples per accession x treatment; statistically significant differences between HA89 and ANN1238-derived samples are marked in the
legend: * = p,0.05, ** = p,0.01, *** = p,0.001).
doi:10.1371/journal.pone.0037191.g005

Figure 6. Heatmap showing normalized transcript accumula-
tion of putative jasmonate-responsive transcripts in H. annuus
samples: ‘H’ = HA89, ‘A’ = ANN1238, ‘J’ = MeJA treatment
group, ‘C’ = control group, ‘pre’ = pre-treatment, ‘post’ =
post-treatment. Fifty H. annuus transcripts showing significant
positive response to exogenous MeJA across multiple comparisons
are arrayed in columns with color intensity indicating transcript
abundance. A list of transcripts and associated annotation by best
blast hit is provided in Table S1. The dendrogram on the left indicates
clustering by similarity of transcript patterns among samples.
doi:10.1371/journal.pone.0037191.g006
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several transcripts similar to published gene sequences from

terpene and flavonol biosynthetic pathways (Table S1).

Discussion

The partitioning of finite resources in biological systems should

result in trade-offs between allocation to different aspects of

organismal life history, such as growth and defense. Strong

selection for increased yield imposed during plant domestication is

predicted to result in reduced plant allocation to defense, either

through trade-offs in resource allocation or reduced selection to

maintain defenses in relatively benign agricultural environments

[5,48]. This prediction has received empirical support from several

studies, including comparison of insect performance on teosintes

versus maize and insect performance and glucosinolate production

in wild, feral, and cultivated Brassica species, in which domesti-

cated plants show significantly lower levels of defense [49,50].

Within H. annuus, domesticated accessions have been shown to

be more susceptible to the fungal pathogen Botrytis cinerea and more

palatable to insect herbivores than wild accessions [6]. Weedy H.

annuus occupying agricultural habitats have shown transcriptional

downregulation of genes associated with defense or biotic stress

tolerance when compared to wild populations [51]. The specific

accessions used in this study, HA89 and ANN1238, have been

used to generate structured mapping populations employed in field

studies of herbivory. For 6 of 7 QTL associated with leaf or head

herbivory detected in field experiments using a population of

recombinant inbred lines generated from HA89 x ANN1238, the

ANN1238 allele conferred reduced levels of herbivory [52].

In this study, we find that cultivated H. annuus HA89 possesses a

lower density of foliar glandular trichomes than wild accession

ANN1238 (Figure 2). Comparison of glandular trichome extracts

from these accessions indicates that similar structures are produced

in both accessions, yet qualitative differences in the relative

proportions of some compounds produced were observed

(Figure 5). In particular, higher production of Argophyllin B in

glandular trichome extracts of ANN1238 versus HA89 may

indicate polymorphism between these accessions in a regulatory

factor influencing STL production. HA89 samples possessed lower

per-trichome estimates of peak areas for 5 of 6 compounds found

to significantly differ in amount produced between HA89 and

ANN1238, supporting an overall reduction in investment in STL

as a constitutive defense in this accession.

Surprising Consistency of Glandular Trichome Profiles
STL exhibit high levels of structural variation across species or

genera, to an extent that they have been proposed as useful

taxonomic characters. To date, no formal intraspecific comparisons

of STL profiles have been published for sunflowers. In this study, little

variation in chemical profiles of glandular trichome contents was

observed within or between accessions. For HA89, a highly inbred

elite cultivar, it may be proposed that the uniformity of chemical

profiles is explained by the lack of genetic variation within this

accession. ANN1238, however, contains high levels of polymorphism

and heterozygosity typical of wild H. annuus populations [53,54]. Yet

we observed little variation in chemical profiles of glandular trichome

contents among individuals of this accession. While current data do

not allow us to determine levels of quantitative variation in the overall

levels of STL and flavonoids produced, all individuals of ANN1238

assessed showed strong qualitative similarity in the profile peaks

produced and relative peak proportions within the LC-MS profiles of

glandular trichome extracts.

Intraspecific structural variation in chemical defenses has been

thoroughly documented in Arabidopsis species, where structural

variation in glucosinolate production has been empirically linked

to fluctuating herbivore community composition [55–57]. The

consistency of glandular trichome STL profiles within and

between the H. annuus accessions observed in this study is

surprising since chemical defences have frequently been shown

to be under balancing selection in other systems such as

Arabidopsis [58].

Glandular Trichomes: A Constitutive Defense?
Glandular trichomes are generally proposed to function as

defenses against or deterrents to herbivory. The contents of

sunflower glandular trichomes are produced via specialized

metabolic pathways (i.e., cannot rationally be considered as

‘‘waste products’’) and have demonstrated cytotoxicity [28,59].

Various STL extracted from wild Helianthus species have been

demonstrated to inhibit insect feeding or growth, including the

compound Argophyllin B, produced by H. annuus as well as H.

argophyllus [30,31]. H. annuus STL are also reported to have

inhibitory effects on western corn rootworm feeding, and

neurotoxic effects when injected into caterpillars [60].

In a spectrum of plant defense responses, trichomes are

generally considered to be a constitutive structural defense. Due

to their early specification during leaf development, glandular

trichomes cannot be rapidly induced. Observation of trichome

induction in various plants requires formation of new leaves

following the initial stimulus [61,62]. Treatment effects on

glandular trichome density may also be confounded with

phenological changes. While phenology of glandular trichome

density has not been explored in H. annuus, here we observed no

significant change in glandular trichome density between the 2nd

and 5th leaves of either accession (Figure 2). It may be predicted

that leaves produced closer to flowering might show greater

investment in chemical defense. Similar reasoning would predict

greater investment in chemical defenses on floral structures, only

qualitative comparison of floral and leaf investment in glandular

trichomes and their contents was feasible in this study (Figure 4).

Treatment of plants with synthetic hormones can provide

valuable information about plant signaling pathways and regula-

tion of responses to the environment, particularly in species lacking

isogenic lines with identified mutations in hormone-mediated

signaling or hormone biosynthetic pathways. Responses to these

treatments often vary among or within plant species, and

phenotypes may not respond linearly to increased hormone

dosage. We observed consistent transcriptional differences be-

tween MeJA-treated and control plants, both within the same

plant (comparing pre-treatment and post-treatment samples) and

between treated and control plants sampled at the same time

(Figure 6, Table S1). Strong sequence similarity of these

consistently MeJA-responsive transcripts to described jasmonate-

response and defense-related genes affirms that both H. annuus

accessions respond to exogenous methyl jasmonate in a manner at

least partially predictable from studies of model plant systems such

as Arabidopsis thaliana.

No increase in the density of foliar glandular trichomes or

significant alteration in their chemical profile was observed on the

5th true leaf of H. annuus treated with 0.1 mM methyl jasmonate

(Figures 2 and 5). In fact, wild H. annuus accession ANN1238

showed a non-significant trend toward decreased density of foliar

glandular trichomes and relative decreases in STL content in

MeJA-treated plants versus controls. It is possible that the dosage

of MeJA was insufficient to induce increases in glandular trichome

density or alterations in chemical profiles. This would imply that

H. annuus is less sensitive to exogenous MeJA treatment than

Arabidopsis thaliana or Artemisia annua [63,64]. Increasing the dosage
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of MeJA to 1 mM led to strong reduction in plant growth for both

accessions observed (Figure S1). Observed increases in trichome

density in these plants corresponded with 61 and 74 percent

reduction in mean leaf surface area for HA89 and ANN1238

respectively; when leaf area is taken into account the total

estimated production of foliar glandular trichomes does not

significantly differ among treatments, as observed with the

100 uM MeJA treatments. It would be interesting to test whether

increased density of glandular trichomes achieved via reduction in

leaf size may affect the ability of insect herbivores to avoid contact

with plant defenses.

H. annuus glandular trichomes and associated STL might act

primarily as constitutive defenses, with other, more rapidly

mobilized defenses that respond to MeJA. This hypothesis is

consistent with findings from Eucalyptus species, where MeJA

treatment had no observable effects on foliar terpene content [65].

Intriguingly, several transcripts with strong sequence similarity to

terpene synthases were significantly more abundant in MeJA

treated plants (Table S1). These transcripts do not encode terpene

synthases linked to STL biosynthesis in sunflower trichomes and are

not listed in the sunflower trichome-specific EST database (767

unigenes) [66,67]. As the specific biosynthetic functions of these

genes are currently unknown, it is likely that these transcripts

contribute to production of MeJA-induced terpenes that are not

secreted into glandular trichomes or are rapidly volatilized from the

leaf surface. Thus, in sunflower, STL in trichomes may serve as

constitutive defenses while other types of terpenes are responsive to

external stimuli as part of an induced defense mechanism. Further

experiments using increased concentrations of MeJA or greater

frequency of treatments may determine whether higher dosage or

more frequent MeJA treatments can significantly alter STL profiles,

although growth repression or toxic effects in the plant caused by

high dosages of MeJA may reduce the value of such studies for

predicting ecologically-relevant effects [68,69] (Figure S1).

Several studies observing glandular trichome induction over a

period of plant growth reported a saturation of induction, i.e. a

time point where the maximum glandular trichome density is

observed, with subsequently produced leaves showing similar or

lower glandular trichome densities [23,24]. Therefore, an addi-

tional explanation of the results observed in this study is that both

H. annuus accessions had reached a threshold of glandular

trichome production induced by common environmental factors.

Future
The accessions examined in this study, HA89 and ANN1238,

are also the parents of an established population of recombinant

inbred lines that has served as a valuable resource for identification

of regions of the H. annuus genome correlated with agriculturally-

important phenotypes. Observations of large, genetically con-

trolled differences in production of glandular trichomes between

these accessions suggest the future possibilities of using this

population to identify genomic regions responsible for these

differences and develop nearly isogenic lines as a resource to test

the effects of glandular trichome density on plant stress responses.

Supporting Information

Figure S1 Response of H. annuus accessions HA89 and
ANN1238 to 1 mM MeJA. A) Growth inhibition by MeJA

treatment is indicated by the reduced stature of MeJA-treated

plants compared to control. Plants shown are 4 weeks old,

following treatment with 1 mM MeJA or control solution at 1 and

2 weeks post-germination. Treatments and accessions are as

labeled in the photo. B) Significant differences in plant height, leaf

area, and density of glandular trichomes, but not in estimates of

total number production of foliar glandular trichomes were

observed in response to MeJA treatment. Values provided are

‘mean (standard deviation)’ for 6 plants per (treatment x

accession). The last 3 columns indicate statistical significance of

the terms ‘ACCESSION’ (ANN1238 vs. HA89), ‘TREATMENT’

(control vs. MeJA), and ‘INTERACTION’ (TREATMENT 6
ACCESSION) within an analysis of variance model: ‘*’p,0.05,

‘***’p,0.001.

(PDF)

Table S1 List of transcripts showing consistent statis-
tically-significant differences in accumulation among
four sample comparisons: ANN1238 post treatment
MeJA vs. CTRL, HA89 post treatment MeJA vs. CTRL,
ANN1238 pre-treatment vs. post-treatment (MeJA),
HA89 pre-treatment vs. post-treatment (MeJA). ‘‘reference

contig’’ identifies the reference sequence provided as Data S1

(Reference Transcripts). ‘‘set’’ identifies transcript groups as ‘‘JA

induced’’ (higher accumulation in MeJA-treated plant samples),

‘‘JA repressed’’ (lower accumulation in MeJA-treated plant

samples), or ‘‘bias’’ (showing statistically significant differences in

accumulation between plants assigned to CTRL vs. MeJA groups

prior to experimental treatment). ‘‘AJ-AC(post)’’, ‘‘HJ-HC(post)’’,

‘‘AJ(po-pre)’’, ‘‘HJ(po-pre)’’ provide the mean difference in

transcript accumulation for each comparison. ‘‘best BLAST hit’’

provides the GenBank identifier for the most similar sequence in

the NCBI nucleotide database as of January 2012. ‘‘blasthit_sum-

mary’’ sumarizes the available annotation for the top 10 BLAST

hits for this transcript. ‘‘evalue’’ estimates the significance of the

top BLAST hit; this table is also color-coded to indicate transcript

levels in MeJA samples (blue = lower, green = higher), with

depth of color indicating confidence in similarity to annotated

sequence (lighter = higher evalue and lower BLAST score).

(PDF)

Data S1 FastA-formatted reference sequence for H.
annuus methyl jasmonate responsive transcripts listed
in Table S1.

(TXT)
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