\\\\“V// AMERICAN ACADEMY
////“\\\ OF OPHTHALMOLOGY © Che .

Use of Machine Learning to Assess Cataract
Surgery SKkill Level With Tool Detection
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Purpose: To develop a method for objective analysis of the reproducible steps in routine cataract surgery.

Design: Prospective study; machine learning.

Participants: Deidentified faculty and trainee surgical videos.

Methods: Consecutive cataract surgeries performed by a faculty or trainee surgeon in an ophthalmology
residency program over 6 months were collected and labeled according to degrees of difficulty. An existing image
classification network, ResNet 152, was fine-tuned for tool detection in cataract surgery to allow for automatic
identification of each unique surgical instrument. Individual microscope video frame windows were subsequently
encoded as a vector. The relation between vector encodings and perceived skill using k-fold user-out cross-
validation was examined. Algorithms were evaluated using area under the receiver operating characteristic curve
(AUC) and the classification accuracy.

Main Outcome Measures: Accuracy of tool detection and skill assessment.

Results: In total, 391 consecutive cataract procedures with 209 routine cases were used. Our model ach-
ieved an AUC ranging from 0.933 to 0.998 for tool detection. For skill classification, AUC was 0.550 (95%
confidence interval [Cl], 0.547—0.553) with an accuracy of 54.3% (95% CI, 53.9%—54.7%) for a single snippet,
AUC was 0.570 (0.565—0.575) with an accuracy of 57.8% (56.8%—58.7%) for a single surgery, and AUC was
0.692 (0.659—0.758) with an accuracy of 63.3% (56.8%—69.8%) for a single user given all their trials.

Conclusions: Our research shows that machine learning can accurately and independently identify distinct
cataract surgery tools in videos, which is crucial for comparing the use of the tool in a step. However, it is more
challenging for machine learning to accurately differentiate overall and specific step skill to assess the level of
training or expertise.

Financial Disclosure(s): The author(s) have no proprietary or commercial interest in any materials discussed
in this article. Ophthalmology Science 2023;3:100235 © 2022 by the American Academy of Ophthalmology. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Surgical competence is a fundamental component of
ophthalmology training programs. Cataract surgery is one of
the most fundamental procedures residents are taught and
expected to competently execute. Nonetheless, cataract
surgery is technically challenging, especially for trainees, so
assessment optimization is essential to ensure future clinical
safety. With the shift to competency by design training,
expanding valid and reliable quantitative methods to teach
and evaluate learners are required. Currently, trainees are
learning the procedure by self-directed reading, didactic
lectures, videos, simulation lab practice, and surgical stim-
ulators, as well as through step-by-step instruction during
surgeries.' " Surgical simulators and simulation labs have
gained significant interest within residency programs.
However, these simulations often lack improvement-
centered feedback from the program itself. A resident may
practice steps in the surgery, but if this is done incorrectly
without feedback and appropriate supervision, the resident
may develop poor surgical techniques.’

Research using deep neural networks has garnered
increased publicity in the field of ophthalmology. At pre-
sent, most applications of deep learning algorithms in
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ophthalmology mainly exist in detection and diagnostic
modalities, including digital photographs, OCT, and visual
fields.® Several disease processes are being assessed through
automated image analysis, especially diabetic retinopathy,
age- related macular degeneration, glaucoma, and cataract
grading.” Emerging artificial intelligence platforms are
currently being applied to other diseases such as retinopathy
of prematurity, corneal ectasia, choroidal neo-
vascularization, macular edema, drusen, geographic atro-
phy, epiretinal membrane, vitreomacular traction, macular
hole, and central serous retinopathy.g"2

However, there have been few published studies
demonstrating the efficacy of computer-based machine
learning as an ophthalmology surgical training tool.
Recently, there have been 2 studies from the Wilmer Eye
Institute, Johns Hopkins University, Baltimore, Maryland in
2019 that have looked at this concept.'>'* Yu et al describe
a cross-sectional study investigating deep learning tech-
niques for automatic identification of pre-segmented phases
in videos of cataract surgery. One hundred cataract surgery
videos performed by faculty and trainee surgeons were used
and examined in 10 designated phases. Deep learning
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algorithms accurately detected unique phases of cataract
surgery through recognition of the surgical instruments.'”
Kim et al examined deep learning techniques for
automated objective assessment of technical skills in
capsulorrhexis. One expert surgeon first annotated 99
videos of capsulorrhexis as expert or novice performance
through 2 capsulorrhexis indices in a standard structured
rating scale, and then deep neural networks were used to
model intraoperative surgical tool movement to identify
technical skill level. They conclude that algorithms were
able to effectively predict binary (expert or novice)
capsulorrhexis technical skill classes."* However, pre-
segmenting and pre-annotating videos prior to computer-
based analysis may inherently introduce human bias into
the objective analysis process. For our study, we refer to
pre-segmentation as splicing of videos prior to computer
analysis, and pre-annotation as specifying the ground-truth
skill level prior to computer analysis.

The aim of our study is to investigate whether a deep
neural network can correctly identify different surgical tools
within cataract surgery without requiring pre-segmentation
in an unsupervised approach, and secondly, to distinguish
between expert and trainee surgical movements without pre-
annotation via appointment status.

Methods

Institutional Review Board/Ethics Committee approval was ob-
tained through the Health Sciences and Affiliated Teaching Hos-
pitals Research Ethics Board at Queen’s University, Kingston,
Ontario, Canada. All research adhered to the tenets of the Decla-
ration of Helsinki.

Consecutive cataract surgeries performed by a staff, trainee
surgeon, or both at Hotel Dieu Hospital, Kingston Health Sciences
Centre, Queen’s University, Kingston, Ontario, Canada, between
October 2018 and March 2019 were video recorded. Videos were
recorded at 30 frames per second with a resolution of 1920 x 1080.
At our institution, only trainee surgeons in their last (fifth) or
second last (fourth) year of residency perform cataract surgery
under direct supervision of faculty surgeons. None of the trainees
at our institution had completed ophthalmology training elsewhere
or in other countries. All patients provided informed consent for
cataract surgery and intraocular lens implantation with the possi-
bility of trainee involvement. Prior to participation in the study,
informed consent for video recording was obtained from all staff
and trainee surgeons involved in the cataract surgeries. Microscope
video recording had no patient identifying features.

Following each surgical case, the responsible resident collected
identifying data by completing a tracking form noting the surgeons
(resident and faculty) and complexity of each case in order to ensure
accurate annotation during data analysis. Cases were identified as
either straightforward or complex. Complex cases consisted of the
following: toric intraocular lens implant, hypermature cataract
requiring VisionBlue, Malyugin ring, iris hooks, capsular tension
ring insertion, posterior capsular rupture, and suturing of the cornea.

All videos were individually reviewed to ensure video quality
and complete recordings. Videos of poor quality or incomplete
cases were excluded from the dataset. Each included video was
then appropriately annotated with the skill level of the surgeon(s)
involved in the surgery, surgical techniques, and case specifics.
Skill level consisted of either expert or trainee, or both expert and
trainee. This was based only on appointment status, as this does not
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introduce human bias into the labels. Surgical techniques per-
formed during surgery and those visible in the videos were labeled.
The steps included the following: clear corneal incisions/Wong
incision, dilating cocktail used, continuous curvilinear capsulor-
rhexis, nuclear disassembly, cortex removal, lens insertion, and
manipulation and wound hydration.

Video analysis was conducted using deep neural networks
involving 3 major components: (1) encoding each frame individually as
a vector, (2) encoding video snippets as a vector using an unsupervised
approach, and (3) classifying the skill level of each snippet (see Fig 1).

First, each microscope video frame was individually encoded as
a vector (called “frame-level encodings”). This video frame
encoding is intended to capture information about the entire frame,
with emphasis on tool presence and location. To this end, we used
the ResNet 152 network pretrained on ImageNet and fine-tuned it
on the Cataracts Grand Challenge dataset for tool detection in
cataract surgery.'> We used the output of the second last layer of
the network as an encoding of the frame (2048 element vector).
The encoding is expected to contain information about
instrument presence and pose. Prior work has validated this tool
detection network on the Cataracts Grand Challenge dataset'’;
we validate our implementation on the same dataset using hold-
out cross-validation with 3 surgeries held out for testing.

Second, video snippets were encoded in an unsupervised way
(called “snippet-level encodings”). This snippet encoding is
intended to capture temporal information about changes to the
surgical scene with emphasis on tool motion, which is not
discernable from a single video frame encoding. To this end, we
cut each video into overlapping snippets of 100 frames in length
(overlapping by up to 99 frames). We trained a long short-term
memory autoencoder using the length 100 sequence of frame-
level encodings to learn an encoding of video snippets. Subse-
quently, the encoder component was used to create snippet-level
encodings of each video snippet (64 element vector).

Third, we trained a classifier to assess skill from video snippet-
level encodings. We used a random forest classifier on the snippet
encodings with 100 trees and balanced subsampling. The classifier
was trained to predict binary skill label (novice versus expert)
independently for each snippet.

We validated our skills assessment pipeline using a fivefold
user-out cross-validation. The user-out cross-validation protocol
ensures that whenever data from a given user appears in the testing
set, data from that user never appears in the training or validation
sets. The hyperparameters of the random forest classifier were
manually tuned using the validation folds. Performance is reported
on the test folds.

To measure performance of our methods for skill classification,
we used area under the receiver operating characteristic curve
(AUC) and the classification accuracy, which was trained with a
balanced dataset. Confidence intervals (CIs) for performance
measures are computed using a normal approximation, assuming
each test fold is an independent sample. These measures of per-
formance were computed for 3 different evaluation scenarios as
follows: a) snippetwise, given a single snippet of video from one
surgery, how well can we classify the skill level of the operator
performing in that clip?; b) trialwise, given the entire video from
one surgery, how well can we classify the skill level of the operator
performing in that video?; and c) userwise, given all videos of
surgeries completed by a single user, how well can we classify the
skill level of the operator performing in those videos? The random
forest classifier computes the probability that the input snippet
encoding is from each of the novice and expert classes. To compute
the trialwise skill of an operator, we computed the mean over all
snippets within a trial of the novice and expert class probabilities.
To compute the userwise skill of an operator, we computed the
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Figure 1. Components of skill classification model: frame-level encoding (top), snippet-level encoding (middle), skill level assessment (bottom). Each

component is trained separately. LSTM = long short-term memory.

mean over all snippets performed by a user of the novice and
expert class probabilities. We take the larger of the novice or expert
probability as the most likely class.

Results

In total, 391 consecutive cases were recorded. Of these, 310
cases were classified as straightforward (79%) and 81 cases
as complex (21%) (see Fig 2). Seven faculty surgeons
(ranging from 1—14 years of practice after a 5 year
resident program) and 5 trainee surgeons were involved in
the surgeries, with the primary operating surgeon varying
by case. As per our method criteria, we included
straightforward cases performed by expert or trainee alone
resulting in the inclusion of 209 cataract surgeries. All
cases were done under topical anesthesia.

A few representative frames from our dataset and an
illustration of their corresponding frame-level encodings
from the tool detection network are demonstrated in

Figure 3. Our model achieved an AUC ranging from 0.933
to 0.998 for 11 distinct tool detections on the Cataracts
Grand Challenges dataset and their corresponding step of
surgery'” (see Table 1).

For skill classification of a single snippet (snippetwise),
the AUC was 0.550 (95% CI, 0.547—0.553) and accuracy
was 54.3% (95% CI, 53.9%—54.7%). For skill classification
of a single surgery (trialwise), AUC was 0.570 (95% CI,
0.565—0.575) and accuracy was 57.8% (95% CI, 56.8%—
58.7%). For skill classification of a single user given all of
their trials (userwise), the AUC was 0.692 (0.659—0.758)
and accuracy was 63.3% (56.8%—69.8%).

Discussion

Teaching tools such as didactic teaching, access to surgical
simulation labs, and operating room teaching provide
trainees with theoretical and practical training in cataract
surgery. Surgical simulators can offer quantitative
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Figure 2. Breakdown of the consecutive cataract surgery cases.

information, allowing trainees to compare their skills rela-
tive to averages. However, a simulator’s ability to provide
direct feedback on how to improve in an operating room
scenario is limited. Our research aims to provide an objec-
tive method whereby individual trainee’s intraoperative
cataract surgery steps can be analyzed and compared to
expert norms.

We elected to use a “late supervision” approach to train
our network. That is, we trained the first 2 components of
our skills assessment network to encode video snippets
without ground-truth skill labels. We only use the ground-
truth skill labels in the final component of the approach.
We conjecture that the snippet-level encodings will contain
information about the surgeon’s skill level that is robust to
the particular criteria used to generate the ground-truth skill
labels. While this “late supervision” approach may reduce
performance for our particular task, it makes our model
widely applicable across different cataract surgery centers,
as only the final component must be retrained to new
ground-truth skill labels. This reduces time, technical
expertise, compute resources, and data requirements when
deploying the model within various training curriculum or
different cataract centers. This also removes the need for
expert structured rating scales with the inherent variability
and biases associated with human-based grades.

Our model achieved high accuracy in tool detection and
the corresponding surgical step, being able to identify
whether or not a tool was in the video frame. This indicates
that the video frame encodings contain information about
tool usage and position, which is an important indicator of
skill. As for skill classification, using our “late supervision”
approach, there was low accuracy in all 3 scenarios. How-
ever, there was some evidence that our model was able to
classify operators by skill level. The skill level of the
operating surgeon was most accurately classified when
given all videos of surgeries that were completed by a single
user (userwise), followed by when given the entire video
from one surgery (trialwise), and then finally when given a

4
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single small clip of videos from one surgery (framewise).
This suggests that in order to accurately classify an opera-
tor’s skill level, videos of many of their trials may be needed
for analysis; a small sample of frames may be insufficient.
This is consistent with the competency by design training
approach, that a small sample of evaluations is often
insufficient, and multiple observations are required for
proper assessment.

While our skill classification approach outperforms the
zero-rule classifier, it has lower AUCs for skill classification
in comparison to tool detection. This may be explained by
the difference in training of the 2 networks. The tool
detection network was trained to explicitly detect tools used
in the surgery. However, the snippet encoding network was
not explicitly trained to assess skills for our study as we
used a “late supervision” approach. This network was
trained to produce a representation that may be indicative of
skill level (using an unsupervised approach), accounting for
the lower AUCs. This is a trade-off for the added flexibility
of the “late supervision” approach. A future study exam-
ining skill classification by using a network that is explicitly
trained to assess skills may be warranted (similar to the
work of Kim et al”). Furthermore, video classification
methods have not been as well developed as methods for
object detection in images. Lastly, machine learning for
skill classification poses greater difficulty than tool
detection. As opposed to the relatively straightforward
process of determining whether a particular tool is present
or absent in an image, the training it takes to understand
the nuances of skill in surgery is lengthy and complex.

The large number of surgical videos collected was a
strength of our study. Previous studies that examine the use
of computer-based machine learning as an ophthalmology
surgical training tool employ a total of approximately 100
videos.'>'* Having a vast databank of multiple expert
surgeons’ techniques, including variation in instruments
and their use in different phases across surgeons, allows
for heterogeneity in data across settings to be captured.
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Figure 3. Representative cataract surgery video frames and their corresponding encodings from the neural networks. The shaded bars are visual repre-

sentations of encodings of the frames from the videos (i.e. darkness is proportional to the magnitude of the element in the vector encoding): A, Creation of a

main corneal incision with a keratome; B, Splitting a nucleus during phacoemulsification; C, Emulsification of a nuclear quadrant during phacoemulsifi-
cation; D, Aspiration of viscoelastic with an irrigation and aspiration handpiece.

The algorithms for skill assessment are not influenced by
surgeon-specific style.

Table 1. AUC Values for Tool Detection on the Cataracts Grand
Challenge Dataset by Surgical Step

Tool Corresponding Surgical Step AUC
Paracentesis Blade Side Incision 0.998
Viscoelastic Cannula Viscoelastic 0.940
Keratome Blade Main Incision 0.981

Capsurlorrhexis Creation 0.933
Capsurlorrhexis Completion ~ 0.968

Cystotome
Utrata Forceps

Hydrodissection Cannula Hydrodissection 0.979
Phacoemulsification Probe Phacoemulsification 0.991
Irrigation-Aspiration Handpiece Cortical Removal 0.990
Intraocular Lens Injector Lens Insertion 0.982
Sinskey Hook* Lens Manipulation 0.984
Hydration Cannula Corneal Hydration 0.990

AUC = area under the receiver operating characteristic curve.
*A Lester Hook was used at our institution.

A limitation of our study was the lack of use of a structured
rating scale to assess surgical skill, in conjunction with the
machine learning analysis. The reasoning for our approach
was due to the potential layer of bias by having an expert
assess another expert’s skills. Staff surgeons who are oper-
ating without supervision are assumed to be experts in their
field and may be using different techniques that lead to
identical surgical outcomes. In addition, although established
cataract surgical skill assessment tools have shifted from
subjective towards largely objective standardized measures,
currently validated evaluation tools still involve the evalua-
tors’ subjective opinion.'® Also to note, we chose to group
trainees versus experts since there would not be enough
video points for a continuous spectrum of expertise.
Another limitation of our study was the large range of tools
from several manufacturers used in the surgeries. The tool
detection component of our model was trained to recognize
tools on the Cataracts Grand Challenge dataset'”; however,
our dataset used tools from different manufacturers.
Furthermore, our model needed to recognize numerous
tools, some of which have similar appearance. Nevertheless,
tool detection accuracy was high in our study.
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The ultimate goal of creating an objective computer-
based analysis system for cataract surgery is to provide
valuable feedback to trainees based on intraoperative cases.
Further research is required to determine the best network to
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