
fphys-12-724046 September 27, 2021 Time: 15:53 # 1

ORIGINAL RESEARCH
published: 01 October 2021

doi: 10.3389/fphys.2021.724046

Edited by:
Walter Araujo Zin,

Federal University of Rio de Janeiro,
Brazil

Reviewed by:
Norihiro Shinozuka,

Chibaken Saiseikai Narashino
Hospital, Japan

Carmen Silvia Valente Barbas,
University of São Paulo, Brazil

*Correspondence:
Deepak K. Agrawal

agwal.deepak@gmail.com
David J. Albers

David.Albers@cuanschutz.edu

Specialty section:
This article was submitted to

Respiratory Physiology,
a section of the journal
Frontiers in Physiology

Received: 11 June 2021
Accepted: 01 September 2021

Published: 01 October 2021

Citation:
Agrawal DK, Smith BJ, Sottile PD

and Albers DJ (2021) A
Damaged-Informed Lung Ventilator

Model for Ventilator Waveforms.
Front. Physiol. 12:724046.

doi: 10.3389/fphys.2021.724046

A Damaged-Informed Lung Ventilator
Model for Ventilator Waveforms
Deepak K. Agrawal1,2* , Bradford J. Smith1,3, Peter D. Sottile4 and David J. Albers1,2,5*

1 Department of Bioengineering, University of Colorado Denver|Anschutz Medical Campus, Aurora, CO, United States,
2 Section of Informatics and Data Science, Department of Pediatrics, School of Medicine, University of Colorado Anschutz
Medical Campus, Aurora, CO, United States, 3 Section of Pulmonary and Sleep Medicine, Department of Pediatrics,
University of Colorado Anschutz Medical Campus, Aurora, CO, United States, 4 Division of Pulmonary Sciences and Critical
Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States,
5 Department of Biomedical Informatics, Columbia University, New York, NY, United States

Motivated by a desire to understand pulmonary physiology, scientists have developed
physiological lung models of varying complexity. However, pathophysiology and
interactions between human lungs and ventilators, e.g., ventilator-induced lung injury
(VILI), present challenges for modeling efforts. This is because the real-world pressure
and volume signals may be too complex for simple models to capture, and while
complex models tend not to be estimable with clinical data, limiting clinical utility. To
address this gap, in this manuscript we developed a new damaged-informed lung
ventilator (DILV) model. This approach relies on mathematizing ventilator pressure
and volume waveforms, including lung physiology, mechanical ventilation, and their
interaction. The model begins with nominal waveforms and adds limited, clinically
relevant, hypothesis-driven features to the waveform corresponding to pulmonary
pathophysiology, patient-ventilator interaction, and ventilator settings. The DILV model
parameters uniquely and reliably recapitulate these features while having enough
flexibility to reproduce commonly observed variability in clinical (human) and laboratory
(mouse) waveform data. We evaluate the proof-in-principle capabilities of our modeling
approach by estimating 399 breaths collected for differently damaged lungs for tightly
controlled measurements in mice and uncontrolled human intensive care unit data in
the absence and presence of ventilator dyssynchrony. The cumulative value of mean
squares error for the DILV model is, on average, ≈12 times less than the single
compartment lung model for all the waveforms considered. Moreover, changes in the
estimated parameters correctly correlate with known measures of lung physiology,
including lung compliance as a baseline evaluation. Our long-term goal is to use the DILV
model for clinical monitoring and research studies by providing high fidelity estimates of
lung state and sources of VILI with an end goal of improving management of VILI and
acute respiratory distress syndrome.

Keywords: ventilator-induced lung injury, ventilator waveform, mathematical model, acute respiratory distress
syndrome, statistical inference
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INTRODUCTION

Mechanical ventilation is a life-saving therapy for patients who
are unable to perform gas exchange by breathing on their
own. When used incorrectly, mechanical ventilation has the
potential to worsen lung injury through barotrauma, volutrauma,
and atelectrauma that are collectively referred to as ventilator-
induced lung injury (VILI). Furthermore, while the patient
and ventilator always interact, when the patient and ventilator
are dyssynchronous—known as ventilator dyssynchrony (VD)—
the timing and delivery of a mechanical breath in response
to a patient effort may lead VILI and poor outcomes (Sottile
et al., 2018a). There are conditions or syndrome such as
acute respiratory distress syndrome (ARDS) that carry a high
mortality rate and may be exacerbated, or even caused, by
VILI (Ware and Matthay, 2000; Phua et al., 2009; Force et al.,
2012; Amato et al., 2015). Therefore, identifying lung-protective
ventilation to reduce VILI is both important and challenging
because the oxygenation needs are often in opposition to
safe ventilation, leading to a complex interplay between the
underlying pulmonary pathophysiology, ventilator mechanics,
and patient-ventilator interactions (Chiumello et al., 2008;
Gilstrap and MacIntyre, 2013; Blanch et al., 2015; Yoshida
et al., 2017). The current standard of care dictates a formulaic
application of low tidal volumes to reduce overdistension and
positive end-expiratory pressure to maintain patency. This
approach reduces VILI but does not prevent it in all cases and
is not personalized (Network, 2000; Grasso et al., 2007; Khemani
et al., 2018). While such protocols have provided measurable
improvements in outcomes, the formulaic approach could
potentially be improved through personalization of individual
respiratory mechanics and VD (Bein et al., 2013).

Modern mechanical ventilators produce data in the form
of time-dependent pressure, volume, and flow waveforms that
contain a wealth of information about pulmonary physiology,
patient-ventilator interactions, and ventilator settings. These data
can be used to troubleshoot and optimize mechanical ventilation
(Corona and Aumann, 2011; Mellema, 2013). However,
ventilator waveforms are typically analyzed heuristically by
visual inspection and, therefore, the outcome of such an analysis
is limited by individual expertise and experience (Corona and
Aumann, 2011; Mellema, 2013). A quantitative interpretation
of these complex signals could increase diagnostic accuracy and
repeatability while facilitating the application of personalized
lung-protective ventilation. One simple example of waveform
quantification that is currently used in clinical care is the driving
pressure, which serves as a readout of both patient condition
and ventilator settings (Amato et al., 2015). In the current study,
we seek to develop a model that can systematically mathematize
the pathophysiologic knowledge clinicians use to interpret lung
conditions from ventilator waveform data as well as knowledge
about the processes governed by the ventilator.

The analysis we present herein is a departure from traditional
modeling methods that link measured pressures and flows
through physiologically-based parameters, such as the well-
recognized single-compartment model that lumps the spatially
heterogeneous lung mechanical properties into single values of

resistance and compliance (Chiew et al., 2011; Hamlington et al.,
2016; Mori, 2016; Mellenthin et al., 2019). In the traditional
models, the entirety of the pressure and volume dynamics emerge
from the hypothesized physiological mechanics. Due to this
straightforward formulation, the single-compartment model is
computationally efficient but often not be able to reproduce
all of the features in waveform data, such as patient-ventilator
interaction. This is because the model lacks the complexity to
allow such complex dynamics to emerge. Given the complexity
of patient-ventilator interactions and pathophysiology present in
real human ventilator data, it is unlikely that a two-parameter
model that does not incorporate ventilator information will be
capable of representing the information that a clinician may
want about lung state and pathophysiology. On the other hand,
more complicated formulations, including multi-compartment
models, use many states and redundant parameters that cannot
be uniquely estimated, causing identifiability problems where
there is no unique solution, or more often no convergent solution
for parameter values. As such, those models require expensive
data to estimate that are not currently available for human
subjects, and require substantial computational resources. Even
then, complex multi-compartment models might not produce
all the relevant features present in the pressure and volume
waveform data (Rees et al., 2006; Bates, 2009; Reynolds et al.,
2010; Molkov et al., 2014, 2017; Roth et al., 2017; Nguyen et al.,
2014; Serov et al., 2016; Ellwein Fix et al., 2018). Because of these
limitations, both types of models might have a limited use in
clinical settings, as the model needs to be useful for a clinician
and estimable in real time.

Our approach offers the potential to overcome these
limitations and provides both identifiability and fidelity by
using mathematical models with interpretable parameters to
recapitulate pressure and volume signals. This high fidelity is
due, in part, to the limited dependence between the pressure
and volume models. The relationship between components of the
pressure and volume waveforms are then used to define specific
physiologic features, just as the quasi-static compliance is defined
from the observed ratio of tidal volume and driving pressure.

Human ventilator waveform data represent several generating
processes, lung physiology, ventilator mechanics, interventions,
patient-ventilator interactions, and health care process model
effects (Hripcsak and Albers, 2013b; Rossetti et al., 2021). In
general, physiological models alone might be missing substantial
contributing sources within the data. There are many potential
approaches to manage this problem. One approach would be
to include models for the lungs and the ventilator to capture
the mechanics of the ventilator, the lungs, and their coupled
interaction. Here, instead, we are incorporating both lung and
health care process model (ventilator) effects into a single unified
model with targeted features captured by lumped parameters.
Our model is not a mechanistic model but it is not built arbitrarily
either. It is built constructively starting with a lung waveform
without pathophysiology or health care processes effects (e.g.,
the ventilator). We added in limited, e.g., compared to a neural
network or other nonlinear regression model, flexibility to the
model according to features that the team deemed connected to
pathophysiology or health care process model effects. The model
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parameters are not like Fourier components that are active during
the entire breath, but rather are time-limited breath deformations
that are hypothesized to relate to particular types of damage,
damage inducing phenomena, and ventilator interactions and
effects. It is in this way that the model is constructively anchored
to physiology and health care process effects.

Therefore, in this manuscript, our objective is to build a
model that takes as baseline “healthy” breaths, and then adds
terms that correspond to deviations from healthy breaths whose
hypothesized sources include VILI, VD, and pathophysiological
features of ventilator waveforms. By estimating the model, we
identify the presence and severity of deviations from normal in
a way that has a physiologically-based hypothesis attached to
it. In essence, this is a proof-in-principle model development
manuscript with underlying constraints such that the model
could potentially be of use with real clinical data. In future
studies, we will tie these phenotypes to lung injury severity, VD,
and the pathogenesis of VILI. We anticipate that this approach
will eventually find applications in real-time clinical readouts
of ventilation safety, long-term monitoring to detect changes in
patient condition, and as a quantitative outcome measure for
clinical trials.

In the current proof-in-principle study, our team identifies
clinically important features in typical volume and pressure
waveform data. We then define the models for volume and
pressure waveforms as the sum of a set of terms through which
we modularly capture physiologically relevant features. The
pressure and volume models are coupled via the respiratory rate.
This approach allows independent modeling of the waveform
components so that clinical, physiologic, and ventilator-based
knowledge can be used to constrain the model. We named
this model the damage-informed lung-ventilator (DILV) as
it contains information about both lung physiology and
ventilator dynamics. To demonstrate the model’s flexibility,
the volume and pressure models are qualitatively validated in
a simulation study where we show various relevant features
that are commonly observed in health and disease. We then
identify the parameters that may correspond to interpretable
pathophysiology by using the DILV model to generate pressure-
volume data and qualitatively assessing the effects of parameter
changes. Finally, in a quantitative verification, we demonstrate
that the model can accurately and uniquely represent laboratory
and clinical ventilator data, which includes mouse model
and human-intensive care unit (ICU) ventilator data in the
absence and presence of VD (Sottile et al., 2018a,b). Through
a comprehensive comparison between the DILV model and
the single-compartment model, we demonstrate that our
approach can accurately determine lung compliance as a baseline
evaluation. Temporal changes in the model parameters are
compared to other assessments of injury severity and qualitative
features of the pressure and volume waveforms.

MATERIALS AND METHODS

Mechanical ventilation is characterized by three measured state
variables which vary over time: volume, pressure and flow.

These time-dependent signals have diverse features arising from
pulmonary physiology, the ventilator, and health care process
effects such as clinical interventions, and patient-ventilator
interaction (Albers and Hripcsak, 2010; Hripcsak and Albers,
2013a,b). The flow is the time-derivative of volume and so
the volume variable contains the same information about the
underlying lung mechanics but in a different representation
(Bates, 2009). In this study, we focused on two state variables,
volume and pressure.

In the simplest ventilation modes, one variable is primarily
controlled by the ventilator, e.g., pressure or volume, while the
other variable, e.g., volume or pressure, is free to vary, referred
to as pressure-controlled ventilation (PCV) or volume-controlled
(VCV), respectively. In this case, only the “free” variable contains
direct information about the respiratory mechanics of the patient
(Tobin, 2001; Bates, 2009). Moreover, in some models there
is a rigid coupling between the controlled and free states that
often limits the model flexibility, precluding the model from
reproducing some features that are present in the clinical data.
For example, the single-compartment model performs a linear
transformation between pressure and volume variables due to the
fixed coupling defined as the sum of linear resistive and elastic
contributions (Bates, 2009; Smith et al., 2015; Hamlington et al.,
2016). We, therefore, do not explicitly couple the controlled (also
known as an independent) and free (also known as a dependent)
variables such that the volume and pressure models will be
independent of one another. Modern clinical ventilators also have
an expansive set of other modes, the most notable of which are the
patient-triggered modes where the ventilator’s action is triggered
by patients such as inspiratory effort. These modes can be very
lung-protective, but they can also lead to complex forms of VD
that are difficult to model. Patient-triggered modes are the most
commonly used modes for humans unless the human is given
neuromuscular blockades (Sottile et al., 2018b).

Identifying Important Features in the
Volume and Pressure Waveform
The volume waveform can have two characteristic features as
shown schematically in Figure 1A. These features might reflect
lung condition when volume is the free variable such as in
PCV, otherwise these may be controlled via ventilator (Corona
and Aumann, 2011; Mellema, 2013). The first feature is the
inspiration, denoted as A in Figure 1A, which continues until
the amount of gas delivered in that breath is reached (the tidal
volume). The pressure and lung elastic recoil are at equilibrium.
The second feature is expiration, denoted as B in Figure 1A.
Depending on the ventilator settings and lung condition, the
gradient of the rising and falling signals can vary across patients
and in the same patient over time. Therefore, the model must be
able to represent these features independently. Accordingly, the
gradients of inspiration and expiration of volume are features that
are variable and estimable in the volume model.

The characteristic shape of the pressure waveform can vary
more dramatically than the volume waveform as shown in the
hand drawn Figure 1B. When pressure is a free variable, such
as in VCV, the pressure waveform has several important features
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FIGURE 1 | Graphical representation of theoretical volume and pressure waveforms. (A) The volume signal generally has two distinct features. The rising and falling
of the volume signal during inspiration and expiration, respectively, are denoted as features A and B. (B) The pressure signal can typically have multiple features in the
waveform that contain useful information. The gradient of the rising signal in which pressure continues to increase during inspiration can have two distinct features,
denoted as features A1 and A2. These two features define the gradient of the rising signal before and after the inflection point such that there may be abrupt
increases (breath 1) or decreases (breath 2) in the signal gradient. The shape of the plateau pressure is captured using features B1 and B2 such that there may be a
peak at the beginning (B1-breath 2) and/or at the end (B2-breath 2) of the plateau. Finally, the gradient of the falling signal is captured using feature C that represents
the expiration process. The baseline pressure is known as positive end-expiratory pressure (PEEP), and often used in ARDS patients to maintain an open lung
(Cavalcanti et al., 2017). Note that the breaths were drawn to highlight the features which might contain useful information about lung condition and ventilator-patient
interaction when the respective variable is free. If the variable is controlled, e.g., volume during VCV, the waveform features represent ventilator settings.

that convey information about lung condition and ventilator-
patient interaction. Based on observation of a large number
of recorded breaths, we identified five important features in
the pressure waveform. Features A1 and A2 in Figure 1B
determine the gradient of the inspiration. The time-varying graph
of inspiration can have two distinct modes where the gradient
of the signal may increase (Figure 1B, breath 1) or decrease
(Figure 1B, breath 2) during inspiration. These features are
hypothesized to correspond to the volume-dependent decrease
in lung compliance (breath 1) or an increase in compliance due
to recruitment (breath 2) (Smith et al., 2015; Hamlington et al.,
2016). Note that this interpretation is only valid if the flow rate is
constant during inspiration (Grasso et al., 2004).

Features B1 and B2 (Figure 1B) are related to the shape of the
waveform at the start and end of the plateau pressure, which is a
period of constant pressure. There may be peaks at the beginning
(B1) and/or at the end (B2) of the plateau pressure, which are
hypothesized to correspond to inspiratory flow resistance and
patient effort, respectively (Bates, 2009; Mellema, 2013). Feature
C in Figure 1B corresponds to the gradient of expiration. We
also model the constant baseline pressure, known as the positive
end-expiratory pressure (PEEP), because it is a key independent
variable in ARDS management (Guerin, 2011; Cavalcanti et al.,
2017). Note that in hybrid ventilation modes, there may be
scenarios where both pressure and volume variables are partially
controlled and so, in those cases, both the waveforms can be
confounded in additionally complex ways and would require
more nuanced interpretation.

Constructing the Damage-Informed
Lung Ventilator Model
Once we define the physiological and ventilation-related relevant
features in the waveform data, we formulate the model for
volume and pressure signals. During this process, we have chosen

minimal number of parameters while ensuring that the model
should have the ability to address the deep complexity present in
the waveform data due to complex pathophysiology and patient-
ventilator interactions. Additionally, the parameters have little
overlap as they are not active at the same time within a given
breath, and many of the parameters control only specific aspects
of a given deformation such as a peak value. In this way, while we
add parameters, they act locally along a breath and are tied to a
deformation shape and timing that is hypothesized to be related
to pathophysiology.

Construction of the Volume Model
Irrespective of the state variable, the models have periodic
dynamics with a frequency defined by the respiratory rate
(breaths/min) that should be the same in pressure and volume
waveform models. In addition to this constraint, the volume
model has two additional features, the rate of inspiration and
expiration (A and B in Figure 1A, respectively). Volume model
development begins by modeling the respiratory rate with a
sinusoidal function (fs1):

fs1 = sin (2πθt − φ1)− b1. (1)

Here, the respiratory frequency (breaths/s) is set by θ and t
represents time in seconds while parameter φ1 allows to control
the starting point in the respiratory cycle. To control the rate of
inspiration or expiration while maintaining the periodicity, we
create a periodic rectangular waveform function fb1 by combining
the sinusoidal function with hyperbolic tangent function:

fb1 =
1
2

{
tanh

(
a1fs1

)
+ 1

}
. (2)

To control the smoothness of the rectangular waveform, we
added a smoothing parameter a1. The other terms (1/2, +1)
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are added to generate a rectangular waveform that has a zero-
base value and unit amplitude. To control the duty cycle of the
rectangular waveform that sets inspiratory:expiratory (I:E) ratio,
we used parameter b1 such that the zero value of b1 corresponds
to 1:1 I:E ratio. Figure 1A shows additional model features: the
rate of inspiration (A) and expiration (B). To represent these rates
independently, we define the volume (V) using the rectangular
waveform as a base waveform:

V = Av
(
fv1 + fv2

)
, (3)

where fv1 term produces the inspiration part of the volume signal
(feature A):

fv1 (i+ 1) =
{

1
β1

fb1 (i+ 1)+
(

1−
1
β1

)
fv1 (i)

}
; i = 1 : n,

fv1 =
[
fv1 (1) fv1 (2) . . . fv1 (i) . . . fv1 (n)

] fb1

max(fv1)
, (4)

and fv2 term produces the expiration part of the volume signal
(feature B):

fv2 (i+ 1) =
{

1
β2

fb1 (i+ 1)+
(

1−
1
β2

)
fv2 (i)

}
; i = 1 : n,

fv2 =
[
fv2 (1) fv2 (2) . . . fv2 (i) . . . fv2 (n)

] fb1

max(fv2)
. (5)

Here, β1 and β2 control the gradient of the inspiration and
expiration, respectively, while Av controls the amplitude of the
volume waveform. Figure 2A shows the volume waveform (top
plot) and the constitutive terms added through with Eqs 1–5.
Note that the expiration part of the breath (feature B) is generally
spontaneous and could be model using a logarithmic function.
We have opted for the current form of the model so that it can be
converted into the ordinary differential equations-based model
relatively easily in future studies where we plan to use Bayesian
interference schemes (Gelman et al., 2013).

Construction of the Pressure Model
The pressure model has five explicit features that might be used to
understand lung health and ventilator settings. These features are

FIGURE 2 | Simulated response of various terms that make up the damage-informed volume (V ) and pressure model (P). (A) A periodic rectangular waveform fb1 is
used to create terms fv1 and fv2 through which the gradient of the rising (feature A) and falling (feature B) signals in the volume waveform are controlled, respectively.
Equations 1–5 were used to simulate the response within each term with parameter values θ = 0.3, a1 = 200, b1 = 0.7, φ1 = 0, β1 = 30, β2 = 10, and Av = 1. (B) A
periodic rectangular waveform (fb2) serves as a basis of the pressure model. The overall shape of the pressure waveform, which defines the gradient of the
inspiration and expiration signals, is formed using fp13 comprised of the rising signal of fp11 (A2) and falling signal of fp12 (C). The shape of the plateau pressure is
defined by fp24, where the output of fb2 is processed via fp21, fp22, and fp23 to produce peaks at the beginning (B1) and end (B2) of the plateau pressure. The shape
of the rising signal at low volume (A1) is defined by fp33, where a short pulse is produced via fp31 and reshaped via fp32. Note that the amplitude terms Ap1, Ap2, and
Ap3 control the amplitude of fp13, fp24, and fp33, respectively. Equations 6–18 were used to simulate the response of each term with parameter values θ = 0.3,
a2 = 200, b2 = 0.7, φ2 = 0, a3 = 10, b3 = 0.9, φ3 = –0.6, β3 = β4 = 5, β5 = 1.001, β6 = 1.1111, Ap1 = 1, Ap2 = 0.5, Ap3 = 0.5, and Ap4 = 0. Note that the model
variability shown here is independent of the ventilator mode.
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depicted in Figure 1B. Features A1 and A2 capture the gradient
of the rising signal during inspiration at low (A1) and high (A2)
volume and might be correlated with lung compliance. Features
B1 and B2 capture the shape of the peaks at the beginning (B1)
and end (B2) of the plateau pressure and might reflect changes in
inspiratory flow resistance and patient effort, respectively. Finally,
feature C captures the rate of change of the pressure during
expiration. To build a model that can capture all these features
and be able to estimate parameters reliably and uniquely, we used
a modular approach to build the components of the pressure
model where each component is controlled by set parameters that
form those components.

The pressure model construction begins like the volume
model, with a sinusoid. Because volume and pressure are
coupled through their period (respiratory rate), we enforce
this constraint by requiring that both models have the same
respiratory frequency (θ) in their base periodic sinusoid:

fs2 = sin (2πθt − φ2)− b2. (6)

Because the pressure may lag or lead the volume depending
on the ventilator mode, we include a phase shift term, φ2 in
the sinusoid. To account for variations in the duty cycle of the
rectangular waveform, we added the parameter b2 that defines the
I:E ratio. We then create a rectangular waveform fb2 as we did for
the volume model using the hyperbolic tangent:

fb2 =
1
2

{
tanh

(
a2fs2

)
+ 1

}
. (7)

The smoothness of the rectangular waveform is controlled via the
parameter a2. The five key features in pressure are represented
with three additional terms: (i) fp13 defines the rates of pressure
change during inspiration and expiration, (ii) fp24 determines
the peaks at the beginning and end of the pressure plateau, and
(iii) fp33 specifies the gradient of the initial rising signal during
inspiration, leaving us with the full the pressure model (P):

P = fp13 + fp24 + fp33 + Ap4. (8)

The constant parameter Ap4 corresponds to the baseline pressure
value (PEEP). The rates of pressure change during inspiration
and expiration (see A2 and C in Figure 1B, respectively) are:

fp13 = Ap1
(
fp11 + fp12

)
, (9)

where fp11 term produces the rising part of the pressure signal:

fp11 (i+ 1) =
{

1
β3

fb2 (i+ 1)+
(

1−
1
β3

)
fp11 (i)

}
; i = 1 : n,

fp11 =
[
fp11 (1) fp11 (2) . . . fp11 (i) . . . fp11 (n)

] fb2

max(fp11)
,

(10)
and fp12 term produces the falling part of the pressure signal:

fp12 (i+ 1) =
{

1
β4

fb2 (i+ 1)+
(

1−
1
β4

)
fp12 (i)

}
; i = 1 : n,

fp12 =
[
fp12 (1) fp12 (2) . . . fp12 (i) . . . fp12 (n)

] fb2

max(fp12)
.

(11)
Here, β3 and β4 control the gradient during inspiration and
expiration, respectively. The next set of features, the peaks at the
beginning and end of plateau pressure (B1 and B2 in Figure 1B),
are represented by:

fp24 = Ap2
fp23

max(fp23)
, (12)

where fp21 and fp22 terms create the initial shape of peaks at the
plateau pressure:

fp21 (i+ 1) =
1
β5

{
fp21 (i)+

{
fb2 (i+ 1)− fb2 (i)

}}
; i = 1 : n,

fp21 =
[
fp21 (1) fp21 (2) . . . fp21 (i) . . . fp21 (n)

]
, (13)

fp22 = fp21 fb2, (14)

and fp23 term further reshapes both the peaks:

fp23 (i+ 1) =
1
β6

{
fp23 (i)+

{
fp22 (i+ 1)− fp22 (i)

}}
; i = 1 : n,

fp23 = abs
([

fp23 (1) fp23 (2) . . . fp23 (i) . . . fp23 (n)
])
. (15)

The parameters β5 and β6 control the shape of both the peaks,
which are present at the plateau pressure. Finally, the gradient of
the initial rate of inspiration (Figure 1B, A1) is modeled by:

fp33 = Ap3
fp32

{
1−

(
fp11 + fp12

)}
max

[
fp32

{
1−

(
fp11 + fp12

)}] , (16)

where a short pulse is produced via fp31:

fp31 = sin (2πθt − φ3)− b3, (17)

and reshaped via fp32 term:

fp32 =
1
2

{
tanh

(
a3fp31

)
+ 1

}
. (18)

The position, shape and gradient of the rising signal, produced
by fp33 term are controlled using the parameters φ3, b3 and
a3, respectively. Figure 2B shows the pressure waveform and
the constitutive terms added through Eqs 6–18. The pressure
waveform (top plot) composed of the three terms fp13, fp24,
and fp33 that capture the gradient of the inspiration (A2) and
expiration signals (C), the shape of the plateau pressure (B1
and B2), and the shape of the rising signal at low volume
(A1), respectively.
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Mouse Mechanical Ventilation
Experiments
Three 8 to 10-week-old female BALB/c mice (Jackson
Laboratories, Bar Harbor, ME, United States) were studied under
University of Colorado, Anschutz Medical Campus Institutional
Animal Care and used Committee (IACUC)-approved protocol
(#00230). The mice weighed 18.6, 19.1, and 19.9 g. Anesthesia
was induced with an intraperitoneal (IP) injection of 100 mg/kg
Ketamine and 16 mg/kg Xylazine, a tracheostomy was performed
with a blunted 18 ga metal cannula, and ventilation was started
on the flexiVent small animal ventilator (SCIREQ, Montreal, QC,
Canada). Anesthesia was maintained with 50 mg/kg Ketamine or
50 mg/kg Ketamine with 8 mg/kg Xylazine at 30 min intervals
along with 50 µL IP 5% dextrose lactated Ringer’s solution. Heart
rate was monitored via electrocardiogram.

Baseline ventilation, consisting of a tidal volume
(Vt) = 6 ml/kg, PEEP = 3 cmH2O, and respiratory rate
(RR) = 250 breaths/min, was applied for a 10 min stabilization
period with recruitment maneuvers at 3 min intervals. Pressure
and volume were recorded with a custom flowmeter based
on our previously published design (Jawde et al., 2018). Four
types of ventilation were recorded for analysis: (1) VCV-PEEP0,
consisting the baseline ventilation with PEEP = 0 cmH2O,
(2) VCV-PEEP12 that was the baseline ventilation with
PEEP = 12 cmH2O, (3) HighPressure-PEEP0 that consisted of a
inspiratory pressure (Pplat) = 35 cmH2O and PEEP = 0 cmH2O
with RR = 60 breaths/min, and (4) PCV-PEEP0 with Pplat = 10
and PEEP = 0 cmH2O with RR = 70 breaths/min. After the
initial measurements of the healthy lung, lung injury was
induced with a 0.15 ml lavage with warm saline (Mellenthin
et al., 2019). This fluid was pushed into the lung with an
additional 0.3 ml air, and suction was applied to the tracheal
cannula with an approximate return of 0.05 ml. The mouse
was then ventilated for 10 mins with the HighPressure-PEEP0
settings. The sequence of four measurement ventilation patterns
(above) was repeated, then the mouse received 0.8 mg/kg IP
pancuronium bromide to suppress respiratory efforts, and the
measurements were repeated again.

Human Data Collection
Between June 2014 and January 2017, 140 adult patients admitted
to the University of Colorado Hospital medical intensive care
unit (MICU) at risk for or with ARDS and requiring mechanical
ventilation were enrolled within 12 h of intubation (Wheeler and
Bernard, 2007). At risk patients were defined as intubated patients
with hypoxemia and a mechanism of lung injury known to cause
ARDS, who had not yet met chest X-ray or oxygenation criteria
for ARDS. To facilitate the capture of continuous ventilator
data, only patients ventilated with a Hamilton G5 ventilator
were included. Patients requiring mechanical ventilation only for
asthma, COPD, heart failure, or airway protection were excluded.
Additionally, patients less than 18 years of age, pregnant, or
imprisoned were excluded. The University of Colorado Hospital
utilizes a ventilator protocol that incorporated the ARDS network
low tidal volume protocol with the low PEEP titration table.
The Colorado Multiple Institutional Review Board approved this
study and waived the need for informed consent.

Baseline patient information including age, gender, height,
and initial P/F ratio were collected. Human patient data shown
in Figures 6A–C belong to a 62 years old female with an initial
P/F 70, height 165 cm, and weight 127 kg. The data shown in
Figures 6D–F belongs to a 47 years old male, initial P/F 230,
height 177 cm, and weight 96.9 kg. Continuous ventilator data
were collected using a laptop connected to the ventilator and
using Hamilton Data Logger software (Hamilton, v5.0, 2011) to
obtain pressure, flow, and volume measurements. Additionally,
the DataLogger software allowed collection of ventilator mode
and ventilator settings based on mode [i.e.: set tidal, respiratory
rate, PEEP, and fraction inspired oxygen (FiO2)]. Data were
collected until extubation or for up to 7 days per patient.

Parameter Estimation Methodology
The damage-informed lung ventilator model is a complex
model and we estimate its parameters for mouse and human
clinical ventilator data. In clinical situations, the patient data
are variable and often nonstationary because of interventions,
patient-ventilator interactions, changes in health, etc., leading to
complex parameter estimation issues. Moreover, the model we
develop here is not likely to be structurally identifiable (Westwick
and Kearney, 2003; Schoukens et al., 2016; Albers et al., 2019c).
However, formally computing identifiability properties here is
subtle because many parameters in the model functionally
affect only part of the breath. This feature helps facilitate the
convergence of parameter estimates and potentially leads to the
uniqueness of those estimates, although because the DILV model
is neither linear nor convex, there is no guarantee of unique
global optima and no way of guaranteeing that the optimal
solution we compute is a, or the, global optimum. Nevertheless,
this feature—parameters being active at different times during a
breath—also makes formal structural identifiability calculations
complex to compute. These complexities force us to address
four issues, (1) computational estimation methodology, (2)
management of parameter identifiability issues and parameter
selection methods, (3) uncertainty quantification, and (4)
estimation evaluation methodology.

Computational Estimation Methodology
Our needs require an estimation methodology that allows us
to estimate states and parameters of the model effectively and
the respective uncertainties in the estimated parameters. While
stochastic methods, e.g., Markov Chain Monte Carlo (MCMC)
(Gelman et al., 2013), might guarantee to find global minima
and quantifying uncertainty in the estimated parameters values,
they are generally quite slow. On the other hand, deterministic
methods, e.g., Nelder-Mead optimization (Nelder and Mead,
1965), are substantially faster and by choosing many initial
conditions, we are still able to quantify the uncertainty of a
solution. In particular, here we infer parameters with a standard
class of deterministic, multivariate, constrained nonlinear
optimization methods, interior-point methods (Bertsimas and
Tsitsiklis, 1997; Nocedal, 2006), a choice that is not critical among
constrained, nonlinear optimization algorithms. As such, we
focus on a smoothing task that employs deterministic nonlinear
optimization methods that work well with careful parameter
selection and constraints and can be used to quantify uncertainty.
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Management of Parameter Identifiability and
Parameter Selection Methods
Irrespective of the estimation methodology, identifiability
failure—non-uniqueness of non-convergence of solutions—can
occur. In particular, the DILV model is likely not identifiable.
To mitigate this problem, we use three different approaches
to minimize impacts of identifiability failures while estimating
parameters for a given waveform data. First, the model was
constructed such that each parameter in the model contributes
to the specific feature in the volume and pressure curves, allowing
the parameter to be estimated relative to the specific, time-limited
feature by definition. Second, we constrain the ranges of all
parameters to lie within physically possible values. And third, we
do not estimate every parameter in all circumstances but rather
limit parameters estimated to those relevant for a given setting
and fix many low-impact, low-sensitivity parameters (Law et al.,
2015; Asch et al., 2016; Albers et al., 2019b).

In more detail, the DILV model includes two state variables,
volume and pressure with one overlapping parameter, the
frequency of the breath (θ). The volume model has six parameters
(a1, b1, φ1, β1, β2, and Av). The pressure model has fourteen
parameters (a2, b2, φ2, a3, b3, φ3, β3, β4, β5, β6, Ap1, Ap2,
Ap3, and Ap4). Many of these parameters can effectively be
uniquely estimated because they operate on a particular part of
the waveform, e.g., parameters that control the gradient of the
rising signal (β1, β3) and falling signal (β2, β4) and amplitudes
of the waveforms (Av, Ap1). Nevertheless, there are parameters
that are not necessarily uniquely estimable, e.g., parameters that
control feature A1 (a3, b3, φ3, and Ap3) and features B1 and B2
(β5, β6, and Ap2).

Uncertainty Quantification
Because we use deterministic optimization methods whose final
solution depends on the initialization, we quantify uncertainty
by randomly sampling a set optimization initialization for the
parameters we estimate from a uniform distribution within a
bounded interval (upper and lower bounds) centered around
initial values (Smith, 2013; Albers et al., 2019a). The boundaries
of the intervals were chosen to exclude parameter variation that
was unrealistic. The upper and lower boundaries of the intervals
were chosen by computing parameters that provide a qualitative
agreement between the model and the measured response. The
optimal parameter estimate is then represented as a probability
density in a similar way as is created using MCMC, allowing
us to understand how informative, unique, and uncertain a
given parameter solution set is. Additionally, we have uncertainty
for individual breaths—we estimate every breath many times
computing an uncertainty in by-breath parameter estimation—
and uncertainty due to variation in many breaths over time. This
allows us to both resolve and quantify single-breath features, and
how those features vary over time, for different breaths, and even
between individuals.

Estimation Evaluation Methodology
The output of this computational method is a distribution of
optimal solutions. Through this distribution, we understand
the robustness of the solution and the uncertainty of the

solution. If the distribution of solutions has multiple modes
with similar error then we can conclude that there are multiple
plausible solutions. Similarly, if the distribution of solutions
is narrow or wide with similar errors, we can conclude that
the model either does or does not depend highly on a given
parameter. And finally, it is the distribution of parameter
solutions that define the phenotype computed by the model in the
sense that the distribution of parameters explains the by-breath
characterization of the patient. We verify a model’s ability to
represent data by computing the mean squared error between
the model computed with parameter values taken as the medians
of the optimally computed solution and the data. There is
uncertainty in these MSE values too, and if one model has a
lower MSE value than another with non-overlapping uncertainty
in MSE, we conclude that the model with the lower median MSE
more accurately represents the data.

RESULTS

In this section, we qualitative and quantitative validate the
DILV model using numerical simulations and measured
data, respectively.

Qualitative Model Validation, Parametric
Descriptions, and Simulated Model
Variability
The first step in model validation is the qualitative validation
(Jolliffe and Stephenson, 2012) that involves demonstrating the
model has enough flexibility to recapitulate the key features
that are often seen in clinically collected volume and pressure
waveform data. We then identify the parameters that correspond
to hypothesized lung physiology by analyzing simulated pressure
and volume waveforms.

Volume Model Flexibility
The volume model flexibility is demonstrated in Figure 3 where
we vary the rates of inspiration (feature A) and expiration
(feature B) through the terms fv1 and fv2, which are controlled
by parameters β1 and β2 (Figures 3A,B), respectively. The full
variability of terms fv1 and fv2 is shown in Supplementary
Figure 1. Additionally, the amplitude of the volume waveform
is controlled by Av (Figure 3C), variations in respiratory rate
are controlled by θ (Figure 3D). Finally, the I:E ratio, the
starting point of the breath in the breathing cycle and the
smoothness of the waveform are set by b1, φ1, and a1 as shown
in Supplementary Figure 2, respectively.

Pressure Model Flexibility
The pressure model flexibility is demonstrated in Figure 4 where
we vary the five features of the pressure waveform via respective
parameters: variation in the rate of change of the pressure before
(A1 in Figure 1B) and after (A2 in Figure 1B) the inflection point
during inspiration; the shape of the peaks at the beginning (B1 in
Figure 1B) and end (B2 in Figure 1B) of the plateau pressure; and
variation in the rate of change of the pressure during expiration
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FIGURE 3 | Demonstrating the volume model flexibility by varying parameters that alter characteristic features of the volume waveform. The gradient of the rising and
falling signals can be altered using the (A) β1 and (B) β2 parameters, respectively. Increased values of these parameters increase the transient time for the signal to
reach the same volume level. (C) The amplitude of the waveform can be altered using the parameter Av. (D) Changes in the respiratory frequency (θ) change the
period of the breath. The output of the model (V ) was calculated using Eqs 1–5 while considering θ = 0.3, a1 = 200, b1 = 0.7, φ1 = 0, β1 = 30, β2 = 10, and Av = 1.
The respective variation in the functions that make the volume model is shown in Supplementary Figure 1 for each case. Note that the model variability shown
here is independent of the ventilator mode.

(C in Figure 1B). In brief, these features are controlled by the
following parameters.

The initial gradient of the pressure during inspiration (A1)
is controlled by the a3 parameter such that higher values of a3
result in a slower rising signal (Figure 4A). The full variation that
these terms are capable of is shown in Supplementary Figure 3.
The shape of the initial gradient signal (A1) before the inflection
point can be altered using the b3 parameter (Supplementary
Figure 4A) and the amplitude of the initial gradient alteration
is controlled by the Ap3 parameter (Supplementary Figure 4B).
By setting Ap3 parameter to zero, feature A1 can be removed
from the pressure waveforms. The rate of inspiratory pressure
after the inflection point (A2) is specified by β3 such that higher
values of β3 result in a slower rising signal (Figure 4B). The
shapes of the peaks at the beginning (B1) and end (B2) of
the plateau pressure are controlled by several parameters. The
overall shape of the peaks is controlled by the β5 (Figure 4C)
and the sharpness of these peaks can be further altered by
β6 (Supplementary Figure 4C). The amplitude of the peaks

is controlled by Ap2 (Supplementary Figure 4D). By setting
Ap2 parameter to zero, features B1 and B2 can be turned
off. Additional control of features B1 and B2 can be achieved
in combination with parameter β3 shown in Supplementary
Figures 4E,F. The rate of pressure decrease during expiration
(C) is specified by β4 such that higher values of β4 result in
a slower falling signal (Figure 4D). Finally, the amplitude of
the plateau pressure can be altered using the Ap1 parameter
(Supplementary Figure 4G). The I:E ratio is defined by the b2
parameter in the same way that parameter b1 controls the I:E ratio
in the volume model (Supplementary Figure 2A). A summary of
model parameters is provided in Table 1.

Qualitatively Relating the Model
Parameters With the Lung Function
Parameters
In order to be able to use the DILV model parameters to infer
lung health, it is required that we set up the initial framework
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FIGURE 4 | Demonstrating the pressure model flexibility by altering relevant features in the pressure waveform. The initial gradient of the pressure signal during
inspiration at low volume (feature A1) is controlled by (A) the a3 parameter. (B) The gradient of the rising signal after the inflection point (feature A2), is controlled by
the β3 parameter. (C) The shapes of the peaks at the beginning (feature B1) and at the end (feature B2) of the plateau are regulated by the β5 parameter when
Ap4 = 0.5. (D) The gradient of the falling signal (feature C) during expiration can be modified by the β4 parameter. Equations 6–18 were used to simulate the
response of the pressure model while considering θ = 0.3, a2 = 200, b2 = 0.7, φ2 = 0, a3 = 10, b3 = 0.9, φ3 = –0.6, β3 = β4 = 5, β5 = 1.001, β6 = 1.1111, Ap1 = 1,
Ap2 = 0.5, Ap3 = 0.5, and Ap4 = 0. The respective variations in the terms that make the pressure model are shown in the Supplementary Figure 3 for each case.
Note that the model variability shown here is independent of the ventilator mode.

to correlate the model parameter with the lung condition, given
the model parameters are not physiological parameters but
rather chosen to control specific features in the waveform data.
On this account, the DILV model is anchored to physiology
through variations or deviations from nominal breath waveforms
that are hypothesized to relate to lung conditions observed in
mechanical ventilation data collected in lab and clinical settings.
Throughout the manuscript, we list the proposed physiological
interpretations of the parameters – a short description of how
the model parameters contribute to the model is provided in
Table 1 – but here we will go into interpretative depth regarding
the qualitative correlation between model parameters and the
fundamental characteristics of the lung such as compliance and
resistance. In this qualitative interpretation, we consider only one
variable (volume in PCV and pressure in VCV) while assuming
the other waveform does not change breath-to-breath (pressure
in PCV and volume in VCV).

We first show how the changes in the volume model
parameters can be qualitatively related to changes in lung

compliance and resistance when the volume variable is free. For
that, we focus on three model parameters that might have direct
physiological meaning: β1, β2, and Av. The first parameter, β1
might be inversely correlated with lung compliance as higher
values of β1 result in a lower inspiratory flow rate (Figure 3A
and Supplementary Figure 5A). During PCV, the inspiratory
flow rate will decrease with reduced compliance or increased
resistance. A second parameter, β2, controls the gradient of
expiration and is captured as feature B in Figure 1A. Higher
values of β2 result in a longer expiration (cf. Figure 3B and
Supplementary Figure 5A) and so β2 is directly proportional to
the expiratory time constant, which is the product of resistance
and compliance. Finally, parameter Av controls the amplitude of
the volume waveform and for the same pressure waveform (in
PCV) indicates a direct correlation with compliance (Figure 3C
and Supplementary Figure 5A). In VCV, parameter Av would
present the tidal volume, which is set by the ventilator.

The pressure model has five parameters that may reflect
aspects of lung compliance during VCV: a3, b3, β3, Ap1, and
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TABLE 1 | Interpreting damaged-informed lung ventilator model parameters.

Parameter Model relevance Physiological relevance (with increased values)

Volume model

θ Number of breaths/s. Higher values result in a higher number of breaths/s –

a1 Smoothness of the square waveform (fb1). Higher values result in a sharper transition –

b1 I:E ratio. Higher values result in smaller inspiration cycle –

81 Starting of the inspiration point. Higher value results in a more delayed response –

β1 Gradient of the rising signal. Higher values result in a slower rising signal Lower compliance and/or higher resistance

β2 Gradient of the falling signal. Higher values result in a slower falling signal Higher expiration time constant

Av Peak amplitude Higher overall compliance

Pressure model

b2 I:E ratio. Higher values result in a smaller inspiration cycle –

a2 Smoothness of the square waveform. Higher values result in a sharper transition –

82 Starting of the fb2 function. Higher value results in a more delayed response –

a3, b3 Gradient of the pressure signal at low volume. Higher values result in a slower rise Higher low volume compliance

83 Starting of the inspiration point. Higher value results in a more delayed response –

β3 Gradient of the rising signal after inflection point. Higher values result in a slower rising signal Higher high-volume compliance

β4 Gradient of the falling signal. Higher values result in a slower falling signal –

β5, β6 Shape of plateau. Higher value means a sharper peak Associated with ventilator desynchrony

Ap1 Peak amplitude Lower high-volume compliance

Ap2 Amplitude of the peaks at the plateau

Ap3 Higher values increase the amplitude of fp33 function Moves upper inflection point up

Ap4 Pressure base line value PEEP

The parameters that are correlated with known measures of lung physiology are in bold.

Ap3. The parameter a3, which controls feature A1 (Figure 4A),
may be directly correlated with low-volume compliance as
higher values of a3 result in slower pressure rise at low volume
while maintaining the shape of the gradient (Supplementary
Figure 5B). Additionally, parameter b3 can also be used to
control feature A1 (Supplementary Figure 5B) and is directly
related to the low-volume compliance. A third parameter, β3
controls the rate of pressure increase above the inspiratory
inflection point (A2), and higher values of β3 result in slower
pressure increase (Supplementary Figure 5B), indicating β3
might be correlated with high-volume compliance during VCV.
A fourth parameter, Ap1, defines the plateau pressure with higher
values of Ap1 yielding higher plateau pressures (Supplementary
Figure 5B), indicating an inverse correlation between Ap1 and
compliance during VCV. Finally, change in the upper inflection
point (UIP) can be directly related to the Ap3 parameter such
that higher values of Ap3 increase the UIP pressure as shown
in Supplementary Figure 5B. During PCV, these (and other)
parameters may be directly controlled via a ventilator.

It is important to note that these interpretations are qualitative
and valid only when a change is observed in one of the variables
(volume or pressure) while the other waveform (pressure
or volume) is held fixed. In cases where both the volume
and pressure waveforms change simultaneously, additional
interpretation is needed to establish the relationships between
pressure and volume parameters. For example, in the pressure
signal, interpretation of feature A2 with respect to A1 will be
valid only during the constant flow signal (Grasso et al., 2004).
Similarly, when there is a change in the amplitude of volume and
pressure simultaneously, we use the Av/Ap1 to assess compliance.

Damage-Informed Lung Ventilator Model
Quantitative Verification for Experimental
Mouse Model Ventilator Data
To demonstrate the effectiveness of the DILV model, we now
quantitatively validate the model by estimating parameters for
data sets corresponding to different phenotypes—e.g., injured
versus healthy. We then show that differences in the estimated
parameter values reflect different phenotypic states in a manner
that is consistent with expected changes due to acute lung injury.
Here we consider data from PCV and VCV, in healthy and
lung-injured mice, and in the absence and presence of VD.

In Pressure Controlled Ventilation, the Model
Outcomes Align With the Injury Status and Single
Compartment Model
Figures 5A,B, panel 1 shows two different pressure-controlled
breaths recorded in a healthy mouse (green) and after a lung
injury induced by injurious lavage and mechanical ventilation
(orange). The pressure-volume loops (Figure 5C) show a
reduction in lung compliance and an increase in hysteresis
that is characteristic of acute lung injury. The DILV model
estimated states (dashed-dot lines) show the same trends. The
estimated parameter values and the respective uncertainty for
individual breaths are shown in Table 2 with bold indicating
physiological relevance.

In the volume model, the injured lung showed a lower
inspiratory flow rate, quantified by an increase in β1, and a faster
expiration, quantified by a reduction in both β2 and Av than
the healthy lung model estimates. Given that the inspiratory
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FIGURE 5 | Volume and pressure models’ responses closely agree with the experimental data from the representative mice in healthy and injured condition. (A–C) In
Panel 1, the measured breaths of first mouse are shown in healthy and injured conditions (solid lines) while the damaged-informed lung ventilator (DILV) model
response is shown in dashed lines. Equations 1–18 were used to generate the best-fit model response using estimated mean parameter values shown in Table 1,
respectively. (D–G) In Panel 2, three representative breaths of mouse two is shown here, which are corresponding to three different lung conditions (solid lines) while
the damaged-informed lung ventilator model response is shown in the dashed-dot lines. For these breaths, histograms of the initial guesses and estimated
parameters are shown in Supplementary Figure 6A. The response of the single-compartment model is shown in dashed-dashed lines. (F–I) The cumulative values
of mean squares errors (MSE) of the two models are compared here. These values corresponded to sixty breaths for healthy no ventilator dyssynchrony (VD) and
injured no VD cases while ten breaths for injured VD case. For each case and breath, the estimated parameter values and MSE are shown in the Supplementary
Figures 6B–D. All the data shown here was collected in PCV (see “Materials and Methods”).

pressures remain unchanged, this suggests a reduction in lung
compliance, and the associated decrease in the expiratory time
constant (See Table 1).

Physiologic interpretation of the pressure model is limited
because of the use of PCV. In this case, the pressure signal is
prescribed by the piston ventilator and the observed differences
between the healthy and injured lungs are a result of the ventilator
control system algorithms. Hence, the respective changes in the
parameters’ values, such as an increase in parameters a3 and β3
correspond to the changes in the ventilator dynamics and not
in the respiratory mechanics. These results make an important
point: it is essential to see the relative change in the parameters
that control these features and to synthesize the model-based
inference in a holistic fashion, instead of focusing on any one
parameter or feature in isolation.

To analyze changes in lung mechanics in a manner that
accounts for ventilator settings, we define the lung compliance
Cd = Av/Ap1 (Table 2), which is the ratio of volume and pressure
model amplitudes. As expected, Cd decreases with injury.
Furthermore, Cd shows a strong correlation with compliance
(Cs) calculated with the single-compartment model (Table 2;
Mellema, 2013).

Damaged-Informed Lung Ventilator Model Accurately
Captures Mouse Model Data With Ventilator
Dyssynchrony While the Single-Compartment Model
Is Unable to Capture This Variability
In the previous section, we demonstrate that the DILV model
can accurately estimate a single breath. We did not, however,
validate that the model has enough flexibility to account
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TABLE 2 | Estimated model parameters obtained from the optimization scheme for the results shown in Figure 5 (Panel 1) and Figure 6 (human patient 1) correspond
to the mouse and human data, respectively.

Figure 5 (Panel 1) Figure 6 (Patient 1)

Parameters Healthy Injured Beginning Ending

θ 0.66 ± 0.000 0.66 ± 0.000 0.34 ± 0.000 0.35 ± 0.000

a1 9.67 ± 0.385 15.41 ± 0.397 7.51 ± 0.258 7.57 ± 0.282

b1 0.59 ± 0.006 0.53 ± 0.006 0.66 ± 0.000 0.63 ± 0.000

81 0.09 ± 0.007 –0.01 ± 0.007 0.42 ± 0.003 0.51 ± 0.002

β1 112.97 ± 9.733 458.95 ± 8.179 10.96 ± 0.223 12.53 ± 0.240

β2 28.35 ± 10.490 10.60 ± 10.590 12.42 ± 0.051 12.64 ± 0.039

Av 1.03 ± 0.006 0.70 ± 0.003 402.61 ± 0.368 337.08 ± 0.531

a2 52.06 ± 1.440 32.11 ± 1.514 27.39 ± 0.118 17.73 ± 0.163

b2 0.80 ± 0.002 0.66 ± 0.001 0.67 ± 0.000 0.66 ± 0.000

82 0.34 ± 0.002 0.09 ± 0.002 0.35 ± 0.002 0.32 ± 0.001

a3 2.55 ± 0.334 5.11 ± 0.205 7.71 ± 0.183 18.37 ± 0.146

b3 1.00 ± 0.002 0.53 ± 0.003 0.91 ± 0.000 0.90 ± 0.000

83 0.00 ± 0.002 0.00 ± 0.005 0.15 ± 0.001 0.14 ± 0.001

β3 50.00 ± 0.388 100.84 ± 0.262 7.25 ± 0.157 12.88 ± 0.147

β4 18.54 ± 0.239 11.93 ± 0.193 1.95 ± 0.121 2.52 ± 0.064

β5 – – 1.0014 ± 0.0001 1.0048 ± 0.0001

β6 – – 1.1262 ± 0.0012 1.0771 ± 0.0055

Ap1 35.53 ± 0.018 35.02 ± 0.017 16.58 ± 0.018 11.64 ± 0.008

Ap2 – – 3.80 ± 0.011 2.48 ± 0.022

Ap3 14.00 ± 0.081 9.60 ± 0.077 3.90 ± 0.022 4.10 ± 0.016

Ap4 0.06 ± 0.035 0.00 ± 0.021 19.98 ± 0.011 17.91 ± 0.004

Cs 0.030 0.019 26.80 31.40

Cd 0.029 0.020 24.28 28.96

The error values were determined using the standard error of the mean for individual breaths. To quantify uncertainty in parameter estimates, each individual breath was
estimated 1,000 times. The parameters that are correlated with a known measure of lung physiology are in bold. Here, Cs and Cd are lung compliance values extracted
by fitting the single-compartment model to data (Cs) and from the damaged-informed lung ventilator model (Cd) = Av/Ap1.

for large variations in the waveform data, or that the DILV
model can estimate a large number of breaths reliably while
maintaining unique and consistent solutions of parameters
values for each breath. To show these characteristics, we
estimate a large number of breaths for the second mouse in
three different lung conditions: (1) healthy breaths without
VD, (2) injured breaths without VD, and (3) injured breaths
with VD (See “Materials and Methods”). In the 1st and
2nd cases, we selected sixty breaths in a sequence from the
random location out of 424 and 128 breaths, respectively. In
the 3rd case, we manually selected ten breaths out of 332
breaths that had VD from the data set containing breaths
with and without VD. Here, we define VD as any substantial
respiratory effort because the flexiVent small animal ventilators
do not allow the subject to trigger a breath. A representative
breath for each case is shown in Figures 5D–G, panel
2 along with the DILV model response at the optimum
parameter values, which are listed in Supplementary Table 1.
Histograms of the initial guesses and estimated parameters
are shown in the Supplementary Figure 6A. We observed
minor variability in most of the estimated parameters values for
individual breaths, suggesting that those features are modularly
controlled by the respective parameter. We do observe high
variability in some parameters (a1, β1, a3, and β3) due
to the low sensitivity of the model for those parameters
(Supplementary Figure 6A).

To demonstrate what is gained by the DILV model we
compare it to single-compartment model (Bates, 2009) estimated
resistance and compliance to estimate the same breaths for
each case (Figure 5, panel 2). The single-compartment model
has substantially larger estimated mean squares errors (MSE)
and these errors increase as the mouse lung condition worsens
and in the presence of VD (Figures 5H,I and Supplementary
Figures 6B–D). Consequently, in terms of lung compliance
values, the two models’ outcomes closely agree in the healthy
lung case but then diverge somewhat for the injured lung and
more substantially during VD (Supplementary Figures 6E–G).
These discrepancies have their root in the limited ability of the
single-compartment model to estimate VD (Figures 5F,G), errors
that are quantified by the MSE between model estimates and
data (Supplementary Figures 6B–D). Note that the calculated
compliance values include the effects of muscle effort, which
explain the differences in compliance with and without VD in the
same injured mouse.

In Volume-Controlled Ventilation, the Pressure Model
Outcomes Align With the Injury Status and the Single
Compartment Model
Above we verified the DILV model using data sets collected
during PCV, where the estimated volume model parameters
reflected the lung dynamics since the volume was the free
variable. We now consider data collected during VCV so that
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the estimated pressure model parameters reflect changes in lung
condition. Here, we consider variations in PEEP during low
tidal volume ventilation (VCV). The pressure model indicates
a reduction in compliance in the injured lung as quantified by
lower values of parameters a3, b3, and β3, and elevated estimates
of in Ap1 (Table 1, Supplementary Figure 7, and Supplementary
Table 1). In contrast to the PCV results shown in Figure 5,
differences in parameter estimates between healthy and injured
lungs in the pressure model were much larger compared to those
estimated differences in the volume model. This is expected since
the tidal volumes were approximately equal during VCV, and
the reduction in compliance is reflected in increased pressure.
This effect can be inferred by analyzing the Av/Ap1 ratio showing
a reduction in the injured cases at both the PEEP settings
(Supplementary Table 1). We also note that the healthy lung
becomes stiffer at PEEP = 12 cmH2O due to strain stiffening.
In contrast, the injured lung becomes more compliant at high
PEEP, which our previous studies in this injury model attribute
to recruitment (Mellenthin et al., 2019).

Damage-Informed Lung Ventilator Model
Quantitative Verification for Intensive
Care Unit Patient-Ventilator Data
The DILV model is intended to be used with both laboratory
data and clinical ventilator data where standard models, such
as the single-compartment model, cannot recapitulate all of the
potentially relevant waveform features. To show the clinical
applicability of the DILV model we consider waveform data of
two ICU patients, the first—patient 1—includes waveform data
without VD and the second—patient 2—has waveform data with
VD. For each case, we estimate each individual breath 1,000
times to quantify uncertainty in parameter estimates for each
of 263 breaths to quantify uncertainty in parameter estimates
across many breaths. These data were recorded near extubation
when ARDS had nearly resolved. For both patients, the ventilator
was operating in patient-triggered mode, a ventilator mode
that is not possible in our mouse ventilators but is commonly
used in the ICU.

Intensive Care Unit Data-Driven Verification in the
Absence of Ventilator Dyssynchrony (Patient 1)
For patient 1, we selected a sequence of 130 breaths without VD
at a random location out of 1,829 breaths and performed
parameters estimation breath by breath. The sequence
of breaths starts at PEEP = 20 cmH2O and switches to
PEEP = 18 cmH2O at breath number 68. Figures 6A–C shows
two representative breaths along with the DILV model response
at the optimum parameter values (Table 2). Histograms of
the initial guesses and estimated parameters are shown in
the Supplementary Figure 8A for the respective breaths. For
all the model parameters, we observed unimodal estimated
parameter distributions with low variance, suggesting that each
parameter controls a specific feature of the waveform. We also
estimated each breath using the single-compartment model
and substantially higher MSE compared to the DILV model
(Figures 6G,H). Note that in Figures 6G–J, an MSE ratio less

than one indicates that the DILV model produced waveforms
that were more similar to the measured data.

Pressure-volume (PV) loops for these cases (Figure 6C)
suggest that lung compliance is increased by the prescribed
change in PEEP. We found that the model-estimated parameters
indicate an increase in compliance (the Av/Ap1 ratio) with a
reduction in PEEP (Table 2). The increased compliance at lower
PEEP agrees with the single-compartment model (Bates, 2009)
response (Supplementary Figures 8B,C) and also the patient
outcome (successful extubation). Moreover, a significant increase
in parameters a3 and β3 suggested the same (Table 2). The
prescribed reduction in PEEP was reflected in a reduction in Ap4.

Intensive Care Unit Data-Driven Verification in the
Presence of Ventilator Dyssynchrony (Patient 2)
In the cases where VD is present a more thorough parameter
interpretation is needed to quantify and understand the patient-
ventilator interaction. To show this, from patient 2’s data we
randomly selected 133 breaths out of 3,201 breaths that showed
mild to severe flow limited VD. Two representative breaths for
this case are shown in Figures 6D–F along with the DILV model’s
estimate of these breaths at the optimum parameter values
(Supplementary Table 1) and the single compartment model fit.
Histograms of the initial guesses and estimated parameters for
these breaths are shown in the Supplementary Figure 9A.

PV loops for these breaths (Figure 6F) suggest that lung
compliance is increased prior to extubation compared to earlier
in the ICU course. This qualitative observation is supported
by the increased Av/Ap1 ratio (Supplementary Table 1) that
is a measure of compliance. However, it is important to note
that this compliance includes the additional effects of VD.
To further demonstrate the importance of the DILV model,
we compared the DILV model’s estimate of the breaths with
the single-compartment model (Bates, 2009) estimates for each
breath. The single-compartment model estimates of the breaths
have substantially higher MSE values for patient 2 compared
to patient 1 (Figures 6G–J) due to the presence of VD.
Accordingly, we expect large errors in the compliance values
estimated with the single-compartment model (Supplementary
Figures 9B,C). These results agree with the fact that the DILV
model can estimate the volume and pressure waveform data more
accurately, especially when the waveforms have high variability,
as in the case of patient 2 with VD.

The mouse data verification showed that the DILV model
is able to estimate most of the parameters for individual
breaths. It is also important to quantify uncertainty across many
breaths and in different patients. Analyzing the variability in the
estimated parameters over several breaths might capture the lung
condition’s heterogeneous nature, including many potentially
different and differently damaging breaths that show VD. In
the ICU, there are no controlled experiments, and patients
simultaneously experience many types and severities of VD,
different interventions, heterogeneous injurious insults, etc. As
such, we expect to see minor variability in parameter estimates
when many breaths of a patient are approximately the same
compared to large variability in the parameter estimates when
breaths are heterogeneous. For example, we observed a low
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FIGURE 6 | Damaged-informed lung ventilator model can accurately follow breaths of the ICU patients with ARDS without and with dyssynchrony. Measured
representative breaths of (A–C) patient 1 without dyssynchrony and (D–F) patient 2 with flow limited dyssynchrony are shown in solid lines, while the DILV model
inferred response is shown in the dashed-dot lines. The response of the single-compartment model is shown in dashed-dashed lines. Histograms of the initial
guesses and estimated parameters are shown in the Supplementary Figure 8A. For all the breaths in each case, the corresponding ratio of mean squares errors
(MSE) between the DILV model and the single-compartment model is shown in panels (G–J), respectively, while histograms are shown in Supplementary
Figures 9, 10. The response of the DILV model was determined using Eqs 1–18 to generate the best-fit model response using estimated mean parameter values
shown in Table 1 and Supplementary Table 1. All the data shown here were collected in human-triggered mode (see “Materials and Methods”).

variability in all the volume model parameters over several
breaths with the exception of Av for patient 1, indicating
that the volume waveforms’ characteristic shape remains the
same at different time points except for variations in tidal
volume. This contrasts with what we observed for patient 2
where VD drove heterogeneity and substantial deviations from
more normal breaths (Supplementary Figures 10, 11). More
importantly, parameters associated with patient-VD can be
used to infer the presence of VD. In patient 2, we observed
increases in the β5, β6, and Ap2 parameters which align with
the visual determination of VD in those breaths (Supplementary
Figures 10, 11).

Taken together, these results suggest that the DILV
model can reproduce a wide variety of waveform data and
is capable of extracting hypothesis-driven, clinically-relevant
information from the waveforms that might facilitate a systematic
interpretation of the dynamics of the injured lung.

DISCUSSION

In this work, we developed a new damage-informed lung
ventilator model that represents pressure and volume waveform
data by reconstructing the waveforms from hypothesis-driven
modular subcomponents. We then preformed a proof-in-
principle verification that the model can potentially represent
hypothesized damage in humans and mice. The model accurately
estimated pressure and volume waveforms data and consistently
distinguished healthy from injured lungs based on parameter
estimation. Furthermore, we directly incorporate clinical and
physiologic knowledge regarding important and observable
features into the model that might be associated with the lung
pathophysiology—the subcomponents of the model represent
hypothesis-driven deviations from normal breaths. We also
analytically define lung compliance in terms of model parameters
and demonstrate changes in compliance values that agree with
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experimentally induced lung injury. This is a proof of principle
work where our objective was to develop a ventilator waveform
data-based lung model and demonstrate that the model has the
potential to be used both with the laboratory and clinical data
and infer lung condition.

To demonstrate what is gained with this novel approach,
we present a comprehensive comparison between the DILV
model and the single-compartment model for a wide range
of ventilator waveforms related to different lung conditions
and patient-ventilator interactions. We include pressure- and
volume-controlled ventilation in healthy and lung-injured mice
and in humans in the absence and presence of VD. Through this
comparison, we establish that the DILV model can reproduce
the features present in the waveform data and report lung
compliance values that agree with lung condition (Figures 5, 6
and Supplementary Figures 6–11). This is primarily possible
because of our unique waveform-based approach that enabled
the model to have enough flexibility. At the same time, the
model is limited using prior knowledge so as not to have the
capability to estimate every possible variation in PV waveforms,
but rather is constrained to estimate the features of the ventilator
data that are the most clinically impactful. This approach lives
between a machine learning approach, where the model is
flexible enough to estimate every feature and must then discern
which features are important through regularization to prevent
overfitting, and the fully mechanistic lung modeling approach
where the observed physiology must emerge from the proposed
lung mechanics. It is possible that taking this middle path will
help advance all approaches.

The most direct application of the DILV modeling approach is
to quantify the qualitative physiological interpretation of pressure
and volume data. An experienced clinician or physiologist
can infer the status of a patient, the safety of ongoing
ventilation, the presence of VD, and other important details
from visual inspection. However, we currently do not yet have
methods to identify all of these characteristics in ventilator
data quantitatively. The entire waveform may be utilized and
this provides a rich repository of data that is challenging
and time-consuming to use for diagnosis and treatment. In
contrast, summarizing the waveform data in scalar values for
resistance and compliance may cast aside important details
such as identifying dyssynchrony. Our approach may offer
a methodology for condensing the pressure-volume data to
track changes in injury severity over time, and estimate
injury phenotypes (Supplementary Figures 10, 11). A similar
phenotype study on a large dataset could be used to categorize
and understand lung injury, serve as outcome measures
for interventions, and describe the impacts of dyssynchrony
(Sottile et al., 2018a) and VILI (Chiumello et al., 2016;
Aoyama et al., 2018).

Lung injury diagnosis and decision-making are based in
part on the interpretation of the pressure, volume, and flow
waveforms. However, different pathophysiologic mechanisms
can lead to the same observed waveform features. For example,
increased driving pressure could be a result of derecruitment
(alveolar collapse) or alveolar flooding (Gattinoni et al., 1987;
Smith et al., 2020). In other words, the human-based inference

using limited waveform data can be ill-posed. The DILV
modeling and parameter estimation approach could allow to
estimate a large number of breaths efficiently with unique
solutions (Supplementary Figures 10, 11). We could therefore
use the DILV model to estimate over many similar but varied
breaths, and might be able to better triangulate the most
probable pathophysiologic drivers because the primary driver of
damage will likely be present, and significant, despite inter-breath
variations. At the same time, more extraneous details will not be
consistently expressed in every breath.

Note that in the DILV model, an explicit coupling between
pressure and volume signals is absent. We have intentionally
taken this approach to preserve flexibility so that we can
accurately recapitulate a wide variety of clinically and
experimentally observed features in the pressure and volume
signals, including the effects of VD (Figures 5F,G, 6D–F).
Such flexibility in the model outcome is not always possible
with rigid coupling between pressure and volume data, as we
have shown by comparing the DILV model response with the
single-compartment model. This is not to say that pressure and
volume are totally independent in the DILV model because we
utilize the same respiratory rate for both. In addition, we show
that the ratio of a volume and pressure model parameter (Av
and Ap1) describes lung compliance. In future studies, we will
link additional specific components of the pressure and volume
waveforms through physiologically relevant parameters such as
the nonlinearity of lung elastance or inspiratory and expiratory
flow resistance. Alternatively, a compartment-based model could
be used to incorporate the physiologic coupling between pressure
and volume data by utilizing the outputs from the DILV model
presented here as inputs for compartment models. If the DILV
model is used to preprocess the data before analysis using a
compartment model, it is possible to formulate the problem
entirely of ordinary differential equations, opening up a range
of more efficient inference machinery (Bertsimas and Tsitsiklis,
1997; Nocedal, 2006; Albers et al., 2019b).

Finally, our work here has several notable limitations. First,
this is a model development work, where we built a new lung
model and showed that the model can accurately recapitulate
waveforms and estimate accepted physiological parameters such
as compliance as a baseline evaluation. This is sufficient for proof-
in-principle that the model can capture physiologic differences.
However, establishing that the model can accurately differentiate
more specifically defined phenotypes will require validation on
much larger laboratory and clinical populations. Moreover, to
tie the model outputs to injury phenotypes, the pathogenesis of
VILI, etc., we will have to establish the concordance between
the model estimates of human and mouse-model data in
similar settings and validate the phenotypes, etc., within the
mouse lung. This work will be done in the following steps:
hypothesize damage-related feature(s) within human ventilator,
estimate model for humans and extract contextual clinical
information (e.g., lung injury source), create mouse model data
with a context similar to the human data, estimate the model
for mice, validate concordance of model estimates between
humans and mice, validate the damage severity and cause
within the mice.

Frontiers in Physiology | www.frontiersin.org 16 October 2021 | Volume 12 | Article 724046

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-724046 September 27, 2021 Time: 15:53 # 17

Agrawal et al. Damaged-Informed Lung Ventilator Model

Second, the human data in this study were collected using
a specific ventilator (Hamilton G5) operated in a pressure-
controlled volume targeted mode. For the wider applicability of
the model, additional data verification is required across different
ventilators and ventilation modes. Third, in this work we did
not explicitly relate our model parameters with the physiological
or morphometric data. We rather pose hypotheses about the
presence and physiological meaning of waveform features that
deviate from normal instead of observing the deviant features
emerging from lung physiology. For this interpretation, we
relied on the expertise of a laboratory ventilation expert (BS)
and a critical care physician (PS). However, it is likely that
differing opinions will exist among experts. Collecting and
synthesizing such information will require a different qualitative
study. Moreover, there may be differing opinions regarding what
should and should not be included in the model. This does not
negate our novel methodology or the DILV model. In fact, the
model was constructed with these issues in mind to be flexible,
allowing for the testing of differing hypotheses mind. These issues
suggest future work is necessary to understand better and verify
clinically important features. Alternatively, we may instead seek
to link model features to patient outcomes, thus establishing
the important characteristics of the model by linking those
parameters to outcomes. Fourth, in this manuscript, we have
incorporated the human waveform data that has flow limited
VD to demonstrated that the DILV has enough flexibility to
recapitulate waveforms that have patient-VD. In order to identify
and phenotype different types of VD, further model update and
evaluation will be required, and this work in progress.

In summary, we developed a data-driven lung and ventilator
model that can reproduce the commonly observed features in
pressure and volume waveforms during mechanical ventilation.
The performance of the model was verified with experimental
and clinical data in healthy and injured lungs to demonstrate
model efficacy in robustly estimating parameters. These
parameters are hypothetically linked to both physiologic
and ventilator-based mechanisms. Furthermore, the model
outputs yield a pulmonary system compliance that is in good
agreement with single compartment model estimates and, as
expected, compliance decreases with acute lung injury. This
methodology represents a departure from many lung modeling
efforts, and suggests future directions of work that can provide
another pathway for better understanding lung function during
mechanical ventilation and can potentially form a bridge between
experimental physiology and clinical practice.
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