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Abstract

Neural networks in the brain can function reliably despite various sources of errors and noise present at every
step of signal transmission. These sources include errors in the presynaptic inputs to the neurons, noise in
synaptic transmission, and fluctuations in the neurons’ postsynaptic potentials (PSPs). Collectively they lead to
errors in the neurons’ outputs which are, in turn, injected into the network. Does unreliable network activity
hinder fundamental functions of the brain, such as learning and memory retrieval? To explore this question,
this article examines the effects of errors and noise on the properties of model networks of inhibitory and exci-
tatory neurons involved in associative sequence learning. The associative learning problem is solved analyti-
cally and numerically, and it is also shown how memory sequences can be loaded into the network with a
biologically more plausible perceptron-type learning rule. Interestingly, the results reveal that errors and noise
during learning increase the probability of memory recall. There is a trade-off between the capacity and reli-
ability of stored memories, and, noise during learning is required for optimal retrieval of stored information.
What is more, networks loaded with associative memories to capacity display many structural and dynamical
features observed in local cortical circuits in mammals. Based on the similarities between the associative and
cortical networks, this article predicts that connections originating from more unreliable neurons or neuron
classes in the cortex are more likely to be depressed or eliminated during learning, while connections onto
noisier neurons or neuron classes have lower probabilities and higher weights.
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Significance Statement

Signal transmission in the brain is accompanied by many sources of errors and noise, and yet, neural net-
works can reliably store memories. This article argues that noise should not be viewed as a nuisance, but
that it is an essential component of the reliable learning mechanism implemented by the brain. The article
describes a network model of associative sequence learning, showing that for optimal retrieval of stored in-
formation learning must be conducted in the presence of noise. To validate the model, it is shown that asso-
ciative memories can be loaded into the network with an online perceptron-type learning rule and that
networks loaded to capacity develop many structural and dynamical properties observed in the brain.
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Introduction
Brain networks can reliably store and retrieve long-term

memories despite the facts that various sources of errors
and noise accompany every step of signal transmission
through the network (Faisal et al., 2008), synaptic connec-
tivity changes over time (Trachtenberg et al., 2002;
Holtmaat and Svoboda, 2009; Gala et al., 2017), and ex-
traneous sensory inputs are usually present during mem-
ory recall. The brain can reduce the effects of noise and
extraneous inputs by attending to the memory retrieval
process (Cohen and Maunsell, 2009; Mitchell et al., 2009),
but such hindrances cannot be eliminated entirely.
Therefore, the reliability required for memory retrieval
must be built into the network during learning. This pro-
posal presents an interesting challenge. Traditional super-
vised learning models, such as the ones that rely on the
perceptron rule (Minsky and Papert, 1969; Hertz et al.,
1991), modify connectivity only when a neuron’s output
deviates from its target output. Thus, in such models
learning stops as soon as the neuron produces the de-
sired response and, subsequently, there is no possibility
for improving the response reliability. The network con-
nection weights in such models may end up near the
boundary of the solution region, and a small amount of
noise during memory retrieval can lead to errors or com-
pletely disrupt the retrieval process. More reliable solu-
tions are located farther away from the solution region
boundary, but the perceptron rule is not guaranteed to
find them. Thus, it is not clear how the neural networks in
the brain manage not only to learn but also to do it
reliably.
In the case of associative memory storage, reliability

can be incorporated into the perceptron learning rule by
means of a generic robustness parameter (Brunel et al.,
2004). This traditional description, however, is not biologi-
cally motivated and does not account for various types of
errors and noise present during learning and memory re-
trieval (Fig. 1A). A more comprehensive account must in-
clude errors in the inputs to the neurons, combine them
with fluctuations in the neurons’ presynaptic connection
weights and intrinsic sources of noise, and produce spik-
ing errors in the neurons’ outputs. The latter, injected
back into the network, give rise to input errors in the next
time step. The recurrence of errors presents a clear chal-
lenge for the retrieval of associative memory sequences
considered in this study. If not corrected at every step of
the retrieval process, errors in the network activity can
amplify over time and lead to an irreversible deviation of
the retrieved trajectory from the loaded sequence, i.e., a
partially retrieved memory.

The premise of this article is that errors and noise are
essential components of the reliable learning mechanism
implemented in the brain. As different fluctuations accom-
pany the presentation of the same learning example to a
neuron on different trials, the neuron in effect never stops
learning. Its connection weights move further away from
the solution region boundary every time a progressively
larger fluctuation is encountered. This process increases
the reliability of the loaded memory which can later be re-
trieved in the presence of noise. Similar ideas have been
successfully used in machine learning where an augmen-
tation of training examples with noise (Bishop, 1995) and
dropping out neurons and connections (Srivastava et al.,
2014) during training have been shown to significantly re-
duce both overfitting and training time. And, there are
many other examples in which noise is put to a construc-
tive use to improve various functions of physical and neu-
ral systems (for review, see Gammaitoni et al., 1998; Stein
et al., 2005; McDonnell and Abbott, 2009; McDonnell and
Ward, 2011). Therefore, the hypothesis that errors and
noise are exploited by the brain for reliable memory stor-
age may not be entirely surprising. Still, this hypothesis
requires careful quantitative evaluation and validation
with experimental data, which is the focus of this study.

Materials and Methods
Network model of associative memory storage in the
presence of errors and noise
We considered a model of associative sequence learn-

ing by a local (;100mm in size), all-to-all potentially
(structurally) connected (Stepanyants and Chklovskii,
2005; Stepanyants et al., 2008) cortical network, albeit
with no synaptic input originating from outside the circuit.
The model network consisted of Ninh inhibitory and (N �
Ninh) excitatory McCulloch and Pitts neurons (McCulloch
and Pitts, 1943; Fig. 1A) and was faced with a task of
learning a sequence of consecutive network states,
X1 ! X2 ! : : :Xm11, in which Xm is a binary vector repre-
senting target activities of all neurons at a time step m,
and the ratiom/N is referred to as the memory load. Some
assumptions and approximations of the model are dis-
cussed in (Chapeton et al., 2012). During learning, individ-
ual neurons had to independently learn to associate the
inputs they received from the network with the corre-
sponding target outputs derived from the associative
memory sequence. The neurons learned these input-out-
put associations by adjusting the weights of their input
connections, Jij (weight of connection from neuron j to
neuron i). In contrast to previous studies, we accounted
for the fact that learning in the brain is accompanied by
several sources of errors and noise. Within the model,
these sources are divided into three categories (Fig. 1A,
orange lightning signs): (1) input spiking errors, or errors in
Xm, (2) synaptic noise, or noise in Jij, and (3) intrinsic noise,
which combines all other sources of noise affecting the
neurons’ postsynaptic potentials (PSPs). The last cate-
gory includes background synaptic activity and the sto-
chasticity of ion channels. In the model, this category is
equivalent to noise in the neurons’ thresholds of firing, hi
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(for neuron i). In the following, asterisks are used to de-
note quantities containing errors or noise (e.g., Xpm),
whereas symbols without asterisks represent the mean
(for hi and Jij) or target (for Xm) values. The three types of
errors and noise collectively corrupt the neurons’ out-

puts, Xpm11
i ¼ u

XN
j¼1

JpijX
pm
j � hpi

0
@

1
A, making them different

from the target outputs, Xm11
i . Here, u denotes the

Heaviside step-function. As the probability of action po-
tential failure in neocortical axons is small (Cox et al.,
2000), we assumed that no additional errors affect the
neurons’ outputs before they become inputs for the next
time step.
The target neuron activities (e.g., binary scalar Xm

i )
were independently drawn from neuron-dependent
Bernoulli probability distributions: 0 with probability 1 – fi
and 1 with probability fi. Spiking errors in neuron activity
states were introduced with the Bernoulli trials by mak-
ing independent and random 1–0 changes with pro-

babilities P Xpm
i ¼ 0jXm

i ¼ 1
� � � p�

i for spike failures and
0–1 changes with probabilities P Xpm

i ¼ 1jXm
i ¼ 0

� � � p1
i

for erroneous spikes. Without loss of generality, we as-
sumed that these two types of spiking errors are bal-
anced, fip�

i ¼ 1� fið Þp1
i , and do not affect the neuron’s

firing probability, fi. This relation allowed us to describe
both types of spiking errors in terms of the neuron’s
overall spiking error probability, ri ¼ fip�

i 1 1� fið Þp1
i , i.e.,

p1
i ¼ ri

2 1� fið Þ and p�
i ¼ ri

2fi
.

To describe synaptic noise, we followed the basic
model of quantal synaptic transmission (Del Castillo
and Katz, 1954) and assumed that the variance of a
given connection weight, Jpij , is proportional to its mean,

var Jpij
� � ¼ hib syn; i

N
jJijj. The dimensionless coefficient bsyn, i

is referred to as the synaptic noise strength of neuron i,
and the factor of hi/N was introduced for convenience.
We assumed that the intrinsic noise is Gaussian distrib-
uted across trials with the mean hhpi i ¼ hi and variance

Figure 1. Associative memory storage in a recurrent network of inhibitory and excitatory neurons in the presence of errors and
noise. A, Error propagation through the network. Inhibitory neurons (red circles) and excitatory neurons (blue triangles) form an all-
to-all potentially (structurally) connected network. Red and blue arrows represent actual (functional) connections. Spiking errors (er-
rors contained in Xp), synaptic noise (Jpij ), and intrinsic noise (hpi ) accompany signal transmission (orange lightning signs). Errors in
the neurons’ outputs at a given time step become spiking errors in the next time step. B, Fluctuations in PSPs for two associations
with target neuron outputs 0 (left) and 1 (right). Large black dots denote PSPs in the absence of errors and noise. Small dots repre-
sent PSPs on different trials in the presence of errors and noise. Orange areas to the left of the PSP probability densities (solid lines)
represent the probabilities of erroneous spikes (left) and spike failures (right). C, The probability of successful learning by a neuron is
a sharply decreasing function of memory load m/N. Solid curves represent the probabilities of successful learning obtained with
nonlinear optimization (see Materials and Methods) for neurons receiving N=200, 400, and 800 homogeneous inputs. The numerical
values of b learn and rin = rout : rlearn are provided in the figure. The values of all other parameters of the model were adapted from
Chapeton et al. (2015). At 0.5 success probability, the neuron is said to be loaded to capacity, a. The dashed black line represents
the theoretical (critical) capacity, ac, obtained with the replica method in the N ! 1 limit. D, ac as a function of b learn for different
input noise strengths (colored lines). In the case of rin = 0, solution of Equation 1 (blue line) coincides with the solution of the tradi-
tional model (Zhang et al., 2019b), which uses a generic robustness parameter (black dots). E, Map of ac for a neuron receiving ho-
mogeneous input as a function of rin and rout. F, Same as a function of b learn and rin = rout : rlearn. The maps in E, F were obtained
with the replica method (see Materials and Methods), and the green asterisks correspond to the values of parameters used in C.
Dashed isocontours are drawn as a guide to the eye.
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var hpi
� � ¼ h2i b

2
int; i

N
. Here, b int; i is a dimensionless coeffi-

cient called the intrinsic noise strength of neuron i, and, as
before, a factor of h2i =Nwas introduced for convenience.
Similar to Chapeton et al. (2015), two biologically in-

spired constraints were imposed on the learning process.
First, the l1-norm of input connection weights of each neu-

ron was fixed during learning,
1
N

XN
j¼1

jJijj ¼ wi. Here, pa-

rameter wi is referred to as the average absolute connection
weight of neuron i. Second, the signs of output connection
weights of every neuron (inhibitory or excitatory) were fixed
during learning, Jijgj � 0. In these N2 inequalities, parameter
gj ¼ 1 if neuron j is excitatory and –1 if it is inhibitory.
Biological motivations for these constraints were previously
discussed (Chapeton et al., 2015).
Individual neurons (e.g., neuron i) learned independently

to associate noisy inputs they received from the network,
Xpm, with the corresponding target outputs (not corrupted by
noise) derived from the associative memory sequence, Xm11

i .
Neuron i is said to have learned the presented set of associa-
tions successfully if, in the presence of input spiking errors,
synaptic and intrinsic noise, the fractions of its erroneous and
failed spikes do not exceed its assigned spiking error proba-
bilities, p1

i and p�
i (Fig. 1B). The above-described model for

neuron i can be summarized as follows:

P u
XN
j¼1

Jp
ijX

pm
j � hp

i

 !
¼ 0jXm11

i ¼ 1

 !
� ri

2fi
;

m ¼ 1; : : :;m; i; j ¼ 1; : : :;N

P u
XN
j¼1

Jp
ijX

pm
j � hp

i

 !
¼ 1jXm11

i ¼ 0

 !
� ri

2 1� fið Þ
P Xpm

i ¼ 0jXm
i ¼ 1

� � ¼ ri
2fi

; P Xpm
i ¼ 1jXm

i ¼ 0
� � ¼ ri

2 1� fið Þ ; P Xm
i ¼ 1

� � ¼ fi

hJp
iji ¼ Jij; var Jp

ij

� � ¼ hib syn; i

N
jJijj

hhp
i i ¼ hi; var hp

ið Þ ¼ h2
i b

2
int; i

N
1
N

XN
j¼1

jJijj ¼ wi

Jijgj � 0

(1)

We note that, depending on the loaded associative
memory sequence, Equation 1 may have multiple solu-
tions if the learning problem faced by the neuron is feasi-
ble or no solution if the problem is not feasible. The
neuron’s success probability in learning associative se-
quences of a given length is defined as the average of
such binary outcomes (Fig. 1C). It is a decreasing function
of the memory load and levels of errors and noise.
At the network level, the described associative memory

storage model is governed by the network-related param-
eters N and {gi}, the memory loadm/N, and the neuron-re-
lated parameters {hi}, {wi}, fif g, rif g, b syn; i

� �
, and b int; i

� �
.

The task is to find connection weights, Jij
� �

, that satisfy
the requirements of Equation 1 for all neurons. In the
following, we examine the properties of associative
networks composed of inhibitory and excitatory neu-
rons governed by identical (hi ¼ h, wi ¼ w, fi ¼ f, ri ¼ r,
b int; i ¼ b int, and b syn; i ¼ b syn) and distributed neuron-

related parameters. We refer to these networks as ho-
mogeneous and heterogeneous.

Single-neuronmodel of associative memory storage
in the presence of errors and noise
Each neuron in the network (e.g., neuron i) receives

Ninh inhibitory and (N � Ninh) excitatory input connections
(Fig. 1A) and independently from other neurons attempts
to solve the problem outlined by Equation 1. This single-
neuron learning problem was solved with the replica
method in the limit of infinite network size (Edwards and
Anderson, 1975; Sherrington and Kirkpatrick, 1975) and
numerically with nonlinear optimization and perceptron-
type learning rule for large but finite networks. In contrast
to previous studies (Gardner, 1988; Gardner and Derrida,
1988; Brunel et al., 2004; Chapeton et al., 2012, 2015;
Brunel, 2016; Rubin et al., 2017; Zhang et al., 2019b), the
solution explicitly accounts for several distinct sources of
errors and noise present during learning and incorporates
two biologically inspired constraints on connectivity.
To simplify the notation in this single-neuron learning

problem, in the following, we redefine the variables related
to the neuron’s output, Xm11

i with ym, fi with fout, ri with rout,
and drop index i. The model is then summarized like so:

u
XN
j¼1

Jpj X
pm
j � hp

 !
¼ ypm; m ¼ 1; : : :;m; j ¼ 1; : : :;N

P Xpm
j ¼ 0jXm

j ¼ 1
� �

¼ rj
2fj

; P Xpm
j ¼ 1jXm

j ¼ 0
� �

¼ rj
2 1� fjð Þ ; P Xm

j ¼ 1
� � ¼ fj

P ypm ¼ 0jym ¼ 1ð Þ � rout
2fout

; P ypm ¼ 1jym ¼ 0ð Þ � rout
2 1� foutð Þ ; P ym ¼ 1ð Þ ¼ fout

hJpj i ¼ Jj; var Jpj
� � ¼ hb syn

N
jJjj

hhpi ¼ h; var hpð Þ ¼ h2b 2
int

N
1
N

XN
j¼1

jJjj ¼ w

Jjgj � 0

(2)

Learning in the model is accompanied by four types of er-
rors and noise. These include presynaptic and output spiking
errors, or errors in Xm and ym, synaptic noise, or noise in J, and
intrinsic noise, or noise in the neuron’s threshold of firing, h. As
before, we use asterisks to denote quantities containing errors
or noise (e.g., Xpm), whereas variables without asterisks repre-
sent themean (for h and Jj) or target (for Xm and ym) values. The
neuron is faced with the task of finding connection weights,
Jj
� �

, that satisfy Equation 2 for a given set of model parame-
ters:N; m=N; h; w; gjf g; fj

� �
; fout; rjf g; rout; b syn; b int:

Reformulation of the model in the largeN limit
In the limit of large N, the Central Limit Theorem ensures

that the neuron’s PSP,
XN
j¼1

Jpj X
pm
j , is Gaussian distributed

at every time step. Therefore, the deviation of PSP from

the threshold of firing, Ipm ¼
XN
j¼1

Jpj X
pm
j � hp, is also

Gaussian distributed with the mean and SD given by the
following expressions:
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Im ¼
XN
j¼1

Jj 1� rj
2fj

� 	
Xm
j 1

rj 1� Xm
j

� �
2 1� fjð Þ

" #
� h

smð Þ2 ¼
XN
j¼1

J2j 1� rj
2fj

� 	 rjX
m
j

2fj
1 1� rj

2 1� fjð Þ
� 	 rj 1� Xm

j

� �
2 1� fjð Þ

" #

1
hb syn

N

XN
j¼1

Jjgj 1� rj
2fj

� 	
Xm
j 1

rj 1� Xm
j

� �
2 1� fjð Þ

" #
1

h2b 2
int

N
:

(3)

As a result, the inequality constraints on the probabil-
ities of output spiking errors (Eq. 2, line three) can be ex-
pressed in terms of Im and sm:

Im � ffiffiffi
2

p
erf�1 1� rout

fout

� 	
sm; ym ¼ 1

Im � � ffiffiffi
2

p
erf�1 1� rout

1� fout

� 	
sm; ym ¼ 0:

(4)

The above two inequalities can be combined into a sin-
gle expression that must hold for a successfully learned
association m:

2ym � 1ð ÞIm � ffiffiffi
2

p
erf�1 1� rout

fout

� 	
ym1 erf�1 1� rout

1� fout

� 	
1� ymð Þ

� 	
sm

(5)

Additional assumptions required for the replica
calculation
Following the procedure outlined in Zhang et al.

(2019b), we assumed that the model parameters
m=N; fj

� �
; fout; rjf g; rout; b syn; b int are intensive, or of

order 1 in N. Also, we assumed that the connection
weights are inversely proportional to the system size,

Jj ¼ h
N
~Jj

� �
, and refer to ~Jj

n o
as scaled connection

weights. This particular scaling is traditionally used in
associative memory models (Brunel et al., 2004), and it
has been shown that in the biologically plausible high-
weight regime, Nwf..h, many model results become in-
dependent of this assumption (Zhang et al., 2019b). It fol-

lows from the sixth line of Equation 2 that w ¼ h
N

~w, and

we refer to ~w as scaled average absolute connection
weight.
The model, rewritten in terms of the scaled varia-

bles, contains one equality and m1N inequality
constraints:

2ym � 1ð Þ 1
N

XN
j¼1

~Jj 1� rj
2fj

� 	
Xm
j 1

rj 1� Xm
j

� �
2 1� fjð Þ

" #
� 1

0
@

1
A

�
ffiffiffiffi
2
N

r
erf�1 1� rout

fout

� 	
ym1 erf�1 1� rout

1� fout

� 	
1� ymð Þ

� 	

� 1
N

XN
j¼1

~J
2

j 1� rj
2fj

� 	 rjX
m
j

2fj
1 1� rj

2 1� fjð Þ
� 	 rj 1� Xm

j

� �
2 1� fjð Þ

 !"0
@

1b syn
~Jjgj 1� rj

2fj

� 	
Xm
j 1

rj 1� Xm
j

� �
2 1� fjð Þ

 !
1b

2
int�Þ

1
2

;

m¼1;: : :;m
1

N

XN
j¼1

~Jjgj¼ ~w

~Jjgj�0; j¼1;: : :;N
P Xm

j ¼1
� �¼ fj; P ym¼1ð Þ¼ fout: (6)

In the following, we only consider the output
spiking error probabilities in the ranges p1

out , fout and
p�
out , 1� fout, which is equivalent to rout , 2fout 1� foutð Þ.

This is required for the stability of the replica solution.

Replica theory solution of the model
We begin by calculating the volume of the connection

weight space, V Xm; ymf gð Þ, in which Equation 6 holds for a
given set of associations, Xm; ymf g:

V Xm; ymf gð Þ ¼
ðYN
j¼1

d~Jj

YN
j¼1

u ~Jjgj

� �
d

1
N

XN
j¼1

~Jjgj � ~w

 !

Ym
m¼1

u 2ym�1ð Þ� 1
N

XN
j¼1

~Jj 1� rj
2fj

� 	
Xm
j 1

rj 1� Xm
j

� �
2 1� fjð Þ

" #
�1

0
@

1
A

0
@

�
ffiffiffiffi
2
N

r
erf�1 1� rout

fout

� 	
ym1 erf�1 1� rout

1� fout

� 	
1� ymð Þ

� 	

� 1
N

XN
j¼1

~J
2

j 1� rj
2fj

� 	 rjX
m
j

2fj
1 1� rj

2 1� fjð Þ
� 	 rj 1� Xm

j

� �
2 1� fjð Þ

 !"0
@

1b syn
~Jjgj 1� rj

2fj

� 	
Xm
j 1

rj 1� Xm
j

� �
2 1� fjð Þ

 !
1b 2

int�Þ12Þ (7)

The typical volume of this solution space, Vtypical, is de-
fined through the averaging of ln V Xm; ymf gð Þð Þ over the set
of associations Xm; ymf g, and is calculated by introducing
n replica systems:

ln Vtypical

� � ¼ hln V Xm; ymf gð Þð Þi Xm;ymf g

¼ lim
n!0

hV Xm; ymf gð Þni Xm;ymf g � 1

n
: (8)

The quantity hV Xm; ymf gð Þni Xm;ymf g can be rewritten as a
single multidimensional integral and calculated by follow-
ing a previously established procedure (Zhang et al.,
2019b). Below, we only provide the main steps of this cal-
culation, additional details can be found in Zhang et al.
(2020):

ln Vtypical

� � ¼ N 2z1 h ~wð Þ ffiffi
t

p
1 tk t� D1

out 1D�
out

� �2
2 u1 1 u�ð Þ2 « � dð Þk t1aGE u1; u�; «ð Þ1GS h ; t; t ; z; dð Þ

 !

GE u1; u�; «ð Þ ¼
ð1

�1

e�x2ffiffiffiffi
p

p dx foutln erfc
u� � xffiffiffi

«
p

� 	� 	
1 ð1� foutÞln erfc

u1 � xffiffiffi
«

p
� 	� 	� 	

� ln2

GS h ; t; t ; z; dð Þ¼
1

N

XN
j¼1

ð1
�1

e�x2ffiffiffiffi
p

p dxln e�t tb 2
int

ffiffiffiffi
p

p
e

h12zgjfj 1 t
ffiffi
t

p
b synfj � 2x

ffiffiffiffiffi
Cj

p
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cjd 1Bjt

p
 !2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cjd t1Bjt t

p

0
BBB@

erfc
h 1 2zgjfj 1 t

ffiffi
t

p
b synfj � 2x

ffiffiffiffiffi
Cj

p
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cjd 1Bjt

p
 !Þ

Bj¼ rj 1� rj
4fj 1� fjð Þ

� 	
; Cj ¼ fj 1� fjð Þ 1� rj

2fj 1� fjð Þ
� 	2

;

D
1
out ¼

ffiffiffi
2

p
erf�1 1� rout

1� fout

� 	
; D

�
out ¼

ffiffiffi
2

p
erf�1 1� rout

fout

� 	
: (9)

The nine latent variables, u1, u-, k , « , h , t, t , z, and d
are defined by the position of the maximum of ln Vtypical

� �
.

They can be obtained by solving the following system of
nine equations:
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@GE u1; u�; «ð Þ
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D1

out 1D�
out

� �2
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t t� D1
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out

� �2
2 u1 1 u�ð Þ2 « � dð Þt ¼ 0; a

@GE u1;u�; «ð Þ
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� D1
out 1D�

out

� �2
2 u1 1u�ð Þ2 k t ¼ 0

@GS h ; t; t ; z; dð Þ
@h

1 ~w
ffiffi
t

p
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@GS h ; t; t ; z; dð Þ
@t

1
2z1h ~wð Þ
2
ffiffi
t

p 1 tk � D1
out1D�

out

� �2
2 u11u�ð Þ2 « � dð Þk ¼ 0

@GS h ; t; t ; z; dð Þ
@t

1k t ¼ 0;
@GS h ; t; t ; z; dð Þ

@z
12

ffiffi
t

p
¼ 0;

@GS h ; t; t ; z; dð Þ
@d

1
D1

out 1D�
out

� �2
2 u�1u1ð Þ2 k t ¼ 0

k � 0; « � 0; u1 1 u� � 0:

(10)

The three inequality constraints in the last line of
Equation 10 ensure that the solution is physical.

Replica theory solution at critical capacity
With an increasing number of associations m, Vtypical

shrinks and approaches zero at the maximum (critical) ca-

pacity of the neuron, ac ¼ mc

N
. In this limit, q0 � qð Þ goes to

zero and Equation 10 can be expanded asymptotically in
terms of 1=« and 1=d . After replacing t

ffiffi
t

p
with y, d =t with x,

and eliminating variables, « , t, k , t , and d , we arrived at the
final system of six equations and one inequality. This system
contains six latent variables u6, x, h , y, and z which deter-
mine the critical capacity of the neuron, ac:

ð1� foutÞF u1ð Þ � foutF u�ð Þ ¼ 0

x ¼ 4 u� 1 u1ð Þ
D1

out 1D�
outð Þ2

foutE u�ð Þ1 ð1� foutÞE u1ð Þ
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F � h12zfjgj 1 yb synfj
2
ffiffiffiffiffi
Cj

p
 !

¼ 2~wy

1
N

XN
j¼1

fjgj

ffiffiffiffiffi
Cj

p
Cjx1Bj

F � h 1 2zfjgj 1 yb synfj
2

ffiffiffiffiffi
Cj

p
 !

¼ 2y

1
N

XN
j¼1

Cj

Cjx1Bj

� �2 Bj

2
� u� 1u1ð Þ2

D1
out 1D�

outð Þ2 Cj

 !
D � h 1 2zfjgj 1 yb synfj

2
ffiffiffiffiffi
Cj

p
 !

¼ b 2
inty

2 � y~wh � 2yz

1
N

XN
j¼1

b synfj
ffiffiffiffiffi
Cj

p
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ffiffiffiffiffi
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p
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8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:
ac ¼ x2

foutD u�ð Þ1ð1�foutÞD u1ð Þ
foutE u�ð Þ1 ð1� foutÞE u1ð Þ� �2

1

N
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C2
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Cjx1Bj

� �2 D � h 1 2zfjgj 1 yb synfj
2

ffiffiffiffiffi
Cj

p
 !
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(11)

Functions E, F, and D in Equation 11 are defined as
follows:

E xð Þ ¼ 1
2

11 erf xð Þð Þ

F xð Þ ¼ 1ffiffiffiffi
p

p e�x2 1 x 11 erf xð Þð Þ
D xð Þ ¼ xF xð Þ1E xð Þ

(12)

We note that Equation 11 contains as a limiting case the
solution described in Brunel et al. (2004), where a simplified
version of the model presented here was solved by minimiz-
ing the probability of output spiking errors for a given intrinsic
noise strength. Equation 11 expands that result to account
for additional features such as the homeostatic constraint,
learning by inhibitory inputs, heterogeneity of inputs, synaptic
noise, input and output spiking errors.

Distribution of input weights at critical capacity
Connection probabilities, Pcon, probability densities of

non-zero input weights, pPSP, and average weights of
these inputs, h~Ji, at critical capacity were calculated as
previously described (Zhang et al., 2019b). The result de-
pends on the latent variables of Equation 11:

Pcon
j ¼ E � h 12zfjgj 1 yb synfj

2
ffiffiffiffiffi
Cj

p
 !

pPSP
j

~Jð Þ ¼
u gj

~J
� �

ffiffiffiffiffiffiffi
2p

p
s j ~wE � h12zfjgj 1 yb synfj

2
ffiffiffiffiffi
Cj

p
 ! e

�
~Jffiffiffi
2

p
s j ~w

1
h 12zfjgj 1 yb synfj

2
ffiffiffiffiffi
Cj

p gj

 !2

h~Jji ¼ gjs j ~w
F E�1 Pcon

j

� �� �
ffiffiffi
2

p
Pcon

j

s j ¼
ffiffiffiffiffi
Cj

p
ffiffiffi
2

p
~wy Cjx1Bj

� � :
(13)

A given input, j, has a non-infinitesimal probability of
having a connection weight of zero, while its probability
density for non-zero connection weights is a truncated
Gaussian with a mean h~Jji and SD s j ~w.
Equations 11, 13 were solved in MATLAB to produce

the results for heterogeneous networks consisting of in-
hibitory and excitatory neurons with distributed spiking
error probabilities and distributed intrinsic and synaptic
noise strengths. The code is available at Zhang et al.
(2019a). In both cases, the remaining model parameters
were the same for all input connections (e.g., fi � f). In
this case, the solutions of Equations 11, 13 depend on

b int and b syn only in a combination b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 2

int1~wb synf
q

,

referred to as the postsynaptic noise strength.

The solution in the case of two homogeneous classes
of inputs
In this case, all inputs have the same firing probability,

fin, and the same spiking error probability, rin. Equation
11, 13 simplify significantly after the introduction of two

new variables, v6 ¼ �h 6 2zfin � yb synfin
2
ffiffiffiffiffiffiffi
Cin

p :

ð1� foutÞF u1ð Þ � foutF u�ð Þ ¼ 0
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 !2
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N

Ninh=exc

1� 1
~wfin

� 	
(14)

The intrinsic and synaptic noises in Equation 14 are en-
tirely contained within the parameter b , while the spiking
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error probabilities rin and rout appear only in the parame-
ters j and z :

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 2

int 1 ~wb synfin
q

j ¼ rin 4fin 1� finð Þ � rinð Þ
2 2fin 1� finð Þ � rinð Þ2 erf�1 1� rout

1� fout

� 	
1 erf�1 1� rout

fout

� 	� 	2

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fin 1� finð Þp

~w 2fin 1� finð Þ � rinð Þ erf�1 1� rout
1� fout

� 	
1 erf�1 1� rout

fout

� 	� 	 (15)

We note that in the absence of spiking errors in the
input (rin = 0), Equation 14 is similar in structure to the so-
lution of a traditional model considered by Zhang et al.
(2019b; Fig. 1D). That model did not explicitly consider
different sources of errors and noise, but instead used a
generic robustness parameter k, or a rescaled robustness

parameter r ¼ k

w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nf 1� fð Þp , to ensure that memories are

recalled reliably in the case when only intrinsic noise is
present. Solutions to both models become identical when
rin ¼ 0 and r ¼ b z . Therefore, Equation 15 explains the
nature of parameters k and r , relating them to the output
error probability, intrinsic and synaptic noise strengths:

k ¼ hffiffiffiffiffiffiffi
2N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 2

int 1 ~wb synfin
q

erf�1 1� rout
1� fout

� 	
1 erf�1 1� rout

fout

� 	� 	

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 2

int 1 ~wb synfin
q
~w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fin 1� finð Þp erf�1 1� rout

1� fout

� 	
1 erf�1 1� rout

fout

� 	� 	 (16)

Numerical solution of Equations 14, 15 shows that the criti-
cal capacity (Fig. 1) and probabilities of inhibitory and excita-
tory connections decrease with b int, b syn, and rin, and
increase with rout. This is consistent with previous results
(Brunel et al., 2004; Zhang et al., 2019b) showing that the crit-
ical capacity and connection probabilities are decreasing
functions of r . The averages and SDs of inhibitory and excita-
tory connection weight magnitudes exhibit an opposite de-
pendence on errors and noise, which is also consistent with
the results of these studies. For homogeneous associative
networks, we set rin = rout : r and fin = fout : f in Equations
14, 15, as these parameters must be the same for all neurons
in the network. This does not alter the trend of the results re-
lated to b , but the dependence on r becomes more complex
(Fig. 1F). Figures 2–6 show the results for homogeneous net-
works as functions of b and r.
The average weights of non-zero inhibitory and excita-

tory connections are uniquely determined by ~w, Pcon
inh=exc,

Ninh=exc=N, and fin (Eq. 14, last line). This result is obtained
from the functional form of the input weight distribution,
but it also follows from the fact that the input connection
weights are homeostatically constrained (Eq. 6, second
line) and, at critical capacity, the neuron operates in a bal-
anced regime in which inhibitory and excitatory currents
are anti-correlated and largely cancel each other out
(Rubin et al., 2017). Experimentally, it has been shown
that inhibitory postsynaptic currents are larger in magni-
tude than excitatory (Atallah and Scanziani, 2009; Salkoff
et al., 2015; Feng et al., 2019). Although Equation 14 de-
rived in the N!1 limit yield a small positive or zero aver-
age postsynaptic input (high-weight regime), associative
networks of finite-size loaded with memories to capacity
show a trend consistent with the experimental measure-
ments (Zhang et al., 2019b).

Numerical solution of the model with nonlinear
optimization
For a finite number of inputs, the solution to the

problem outlined in Equation 6 was obtained numeri-
cally. To that end, we made the problem feasible by in-
troducing a slack variable sm � 0 for every association
and chose the solution that minimizes the sum of these
variables:

argmin
f~Jjg
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 !
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~Jjgj � 0; j ¼ 1; : : :;N
sm � 0; m ¼ 1; : : :;m: (17)

Equation 17 were solved by using the fmincon
function of MATLAB and the results are shown in
Figures 2, 3, 5, 6. The fmincon function utilizes the in-
terior-point technique for finding solutions to con-
strained nonlinear optimization problems (Byrd et al.,
1999, 2000). The code is available at Zhang et al.
(2019a).

Numerical solution of the model with a perceptron-
type learning rule
In addition to the replica and nonlinear optimization sol-

utions, a biologically more plausible online solution of
Equation 17 was devised by approximately stepping in
the direction of the negative gradient of the sum of the
slack variables. The latter is:

� @
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(18)

The first approximation to this gradient was made by
omitting the second term in the right-hand side of
Equation 18. This was done because this term is
smaller than the first term (for large enough N)
and because there is no clear way of calculating it
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in an online, biologically plausible manner. The
second approximation was made by noting that

1� rj
2fj

� 	
Xm
j 1

rj 1� Xm
j

� �
2 1� fj
� �

2
4

3
5 in the first term in the right-

hand side of Equation 18 is the average of Xpm
j over the

spiking errors, and therefore, a stochastic estimate of this
gradient direction can be made in an online manner with a
perceptron-type learning step 2ym � 1ð ÞXpm

j (Rosenblatt,
1962). These approximations lead to the learning rule of

Equation 22. Related rules, in the absence of errors, noise,
or l1-norm constraint, were previously described (Brunel et
al., 2004; Zhang et al., 2019b).
In numerical simulations, we trained neurons on

associations presented in the order of their appear-
ance in the associative sequence, one at a time. This
constitutes one learning epoch. We set the learning
rate g = 0.1 and ran the algorithm until a solution was
found or the maximum number of 106 epochs was
reached. The results of this procedure are shown in
Figure 6.

Figure 2. Retrieval of loaded associative memory sequences and the trade-off between capacity and reliability of
loaded memories. A, Illustration of memory playout during complete and partial memory retrieval (left). The target
memory sequence is shown in black, while the sequences retrieved on different trials are in blue and red. Memory retrieval
is incomplete when the retrieved sequence deviates significantly from the target sequence (see text for details). Radii of
blue spheres illustrate the root-mean-square Euclidean distances between the retrieved and target states. The fraction of
errors as a function of time step during sequence retrieval (right). Successfully retrieved sequences do not deviate from
the loaded sequences by more than a threshold amount (dashed line). The parameters of the associative network are pro-
vided in the figure. The values of b learn and rlearn correspond to the green asterisk from Figure 1. B, The probability of suc-
cessful memory retrieval (green) and the retrieved fraction of loaded sequence length (red) as a function of b learn. The
postsynaptic noise strength b retr = 30 (dashed line) at every step of memory retrieval and rretr was set to 0 at the first step.
C, Map of retrieval probability as a function of b learn and rlearn. Dashed isocontour is drawn as a guide to the eye. The loca-
tion of the green asterisk is the same as in Figure 1F. D, The trade-off between memory retrieval probability and a.
Individual points correspond to all values of b learn and rlearn considered in C. Higher errors and noise during learning result
in lower a and higher retrieval probability regardless of the noise strength during memory retrieval (different colors). The re-
sults shown in A–D were obtained with the nonlinear optimization method (see Materials and Methods). For every parameter
setting, the results shown in B–D were averaged over 100 networks and 1000 retrievals of the loaded sequence in each
network.
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Mutual information contained in retrieved associative
sequences
The mutual information contained in one success-

fully retrieved association Xm ! Xm11ð Þ can be calcu-
lated as a difference of marginal and conditional
entropies,

I Xm;Xm11
� �

¼ H Xm11ð Þ � H Xm11jXm
� �

: (19)

For homogeneous networks loaded with associations
consisting of random and independent network states,
the two entropies reduce to:

H Xm11ð Þ ¼ �N f log2f1ð1� fÞlog2ð1� fÞ½ �

H Xm11jXm
� � ¼ �N f

r
2f

log2

r
2f

1 1� r
2f

� 	
log2 1� r

2f

� 	� 	


1 1� fð Þ r
2 1� fð Þ log2

r
2 1� fð Þ1 1� r

2 1� fð Þ
� 	�

�log2 1� r
2 1� fð Þ

� 	Þ�: (20)

As the length of a retrieved sequence may be shorter
than the length of the loaded sequence,m, we considered
two types of retrieved information. One type is defined as
the expected retrieved information per memory playout in
which contributions of partially retrieved sequences are
set to zero. This information is based on completely re-
trieved sequences only and is equal to the product of the
retrieval probability (Fig. 2C) and mI. The other type of re-
trieved information is calculated based on completely and
partially retrieved sequences and is equal to the product
of the average retrieved sequence length and I. According
to these definitions, the former is always less or equal to
the latter.

Dataset of connection probabilities and strengths in
local brain circuits in mammals
To compare connection probabilities and widths of

non-zero connection weight distributions in associative
networks with those reported experimentally, we used the
dataset published in (Zhang et al., 2019b). This dataset in-
cludes measurements reported in peer-reviewed publica-
tions since 1990 in which at least 10 pairs of neurons
separated laterally by ,100mm were recorded from the
same layer of the mammalian neocortex in juvenile or
adult animals of either sex. The dataset includes 87 publi-
cations describing 420 local projections.

Results
Network model of associative memory storage in the
presence of errors and noise
We examined a model network consisting of Ninh inhibi-

tory and (N � Ninh) excitatory McCulloch and Pitts neu-
rons (McCulloch and Pitts, 1943; Fig. 1A) involved in
associative learning. The model is described in detail in
Materials and Methods, and in this subsection, we only
mention its main features. The network was designed to
model a local cortical circuit (;100mm in size) of all-to-all
potentially (structurally) connected neurons (Stepanyants
and Chklovskii, 2005; Stepanyants et al., 2008). The net-
work was presented with a task of learning a sequence
of consecutive network states, X1 ! X2 ! : : :Xm11, in
which Xm is a binary vector representing target activities of
all neurons at a time step m, and the ratio m/N is referred
to as the memory load. Network activity in the model was
accompanied by several sources of errors and noise (Fig.
1A, orange lightning signs), including (1) input spiking er-
rors, or errors in Xm; (2) synaptic noise, or noise in

Figure 3. Postsynaptic noise during learning is required for optimal retrieval of stored information. A, B, Maps of expected retrieved
information per memory playout calculated based on completely retrieved sequences (A) and completely and partially retrieved se-
quence (B) in bits�N2 as functions of b learn and rlearn. b retr = 30 at every step of memory retrieval, and rretr was set to 0 at the first
step. Dashed isocontours are drawn as guides to the eye. The locations of the green asterisks are the same as in Figure 1F. C, The
maximum of retrieved information is achieved when b learn is greater than zero regardless of the value of b retr. The optimal postsy-
naptic noise strengths were calculated based on the averages of the results from A, blue line, and B, orange line, over the range of
rlearn values from A, B. All results were obtained with the nonlinear optimization method (see Materials and Methods) and averaged
over 100 networks and 1000 retrievals of the loaded sequence in each network for every parameter setting.
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connection weights, Jij (weight of connection from neuron
j to neuron i); and (3) intrinsic noise, which combines all
other sources of noise affecting the neurons’ PSPs. The
last category includes background synaptic activity and
the stochasticity of ion channels and in the model is
equivalent to noise in the neurons’ firing thresholds, hi.
The three types of errors and noise collectively corrupt
the neurons’ outputs making them different from the tar-
get outputs. The strengths of these errors and noise in the
model are governed by parameters ri, b syn, i, and b int, i,
respectively.
Individual neurons in the model learned independently

to associate noisy inputs they received from the network,
Xpm, with the corresponding target outputs (not corrupted
by noise) derived from the associative memory se-
quence, Xm11

i . The neurons learned such input-output
associations by adjusting the weights of their input con-
nections, Jij, in the presence of two biologically inspired
constraints (Chapeton et al., 2015). First, the average ab-
solute weight of input connections of each neuron was
kept constant, wi. Second, the output connection weights
of neurons (inhibitory or excitatory) did not change signs
during learning.
The described associative network model is summar-

ized by Equation 1. It is governed by the network-related
parameters N and Ninh/N, the memory load m/N, and the
neuron-related parameters {hi}, {wi}, fif g, rif g, b syn; i

� �
,

and b int; i
� �

. In the following, we examine the properties
of associative networks with identical and distributed neu-
ron-related parameters. These networks are referred to as
homogeneous and heterogeneous.

Solutions of the model
Equation 1 was solved with the replica method, nonlin-

ear optimization, and a perceptron-type learning rule
(see Materials and Methods). Each of these methods has
its advantages and drawbacks, and, consequently, all
three methods were used in this study. The replica
method (Edwards and Anderson, 1975; Sherrington and
Kirkpatrick, 1975) provides an analytical solution in the
N ! 1 limit. Though neuron networks in the brain are fi-
nite, they are thought to be large enough to have many
properties that are well described by this limit (Zhang et
al., 2019b). More importantly, the analytical solution of
the replica method reveals the dependence of the results
on combinations of network parameters that can be then
explored with other methods. The downside of the rep-
lica solution is that it does not provide the full connectiv-
ity matrix, Jij, but instead gives the connectivity statistics
that is insufficient to calculate all relevant network prop-
erties. Nonlinear optimization can be used to solve
Equation 1. This method is fast and accurate for small
networks, yielding the full connectivity matrix, but is im-
practical for large networks (N ; 1000). As the replica
and nonlinear optimization solutions cannot be readily
implemented by neural networks in the brain, we also de-
veloped a biologically more plausible perceptron-type
learning rule that can be used to approximate the solu-
tion of Equation 1. Because simulations based on the
perceptron-type learning rule become time-consuming

at or near memory storage capacity as the solution re-
gion shrinks to a point, results for varying levels of errors
and noise were obtained with the replica and nonlinear
optimization methods, while the perceptron-type learn-
ing rule was used only for a biologically plausible set of
parameters to confirm that all three methods lead to sim-
ilar results.
In the N ! 1 limit, the associative memory storage

problem for a neuron loaded to capacity was solved with
the replica method. This solution for a neuron in a homo-
geneous network depends on the following combination
of the intrinsic and synaptic noise strengths (see Materials
and Methods):

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 2

int 1 b synfN
w
h

r
(21)

This quantity is referred to as the postsynaptic noise
strength. In the following, we assume that the postsynap-
tic noise strength, b , and the spiking error probability, r,
can differ between the times of learning and memory re-
trieval and add subscripts “learn” and “retr” to these pa-
rameters to distinguish among the two phases.
Figure 1C shows that when the memory load is rela-

tively low, the probability of successful learning by a neu-
ron is close to 1. With increasing load, the learning
problem becomes more difficult, and the success proba-
bility undergoes a smooth transition from 1 to 0. Memory
load corresponding to the success probability of 0.5 is re-
ferred to as the neuron’s associative memory storage ca-
pacity, a. With increasing network size, N, the transition
from successful learning to inability to accurately learn the
complete memory sequence becomes sharper, and the
neuron’s capacity monotonically approaches its N ! 1
limit, which is referred to as the critical capacity, ac. The
critical capacity depends on the levels of errors and noise
accompanying learning and other parameters of the
model. Figure 1D–F illustrates the dependence of ac on
the input and output spiking error probabilities and post-
synaptic noise strength. As expected, because input spik-
ing errors, intrinsic, and synaptic noise, make the learning
problem more challenging, ac is a decreasing function of
rin (Fig. 1D,E) and b learn (Fig. 1D,F). On the other hand, the
learning problem becomes simpler with increasing rout as
more output errors are tolerated, and ac is an increasing
function of rout (Fig. 1E). For a neuron in a recurrent homo-
geneous network, the dependence of ac on spiking errors
is more complex as rin = rout : rlearn, and both the input
and output spiking errors of the neuron are controlled by
the same parameter (Fig. 1F).

The trade-off between capacity and reliability of
loadedmemories
Can memories, loaded into individual neurons, be suc-

cessfully recalled at the network level? To answer this
question, we loaded neurons in the network to capacity
with associations derived from a single associative se-
quence by solving Equation 1. The postsynaptic noise
and spiking errors during learning were set at the levels
b learn and rlearn (Fig. 1F, green asterisk). During memory
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retrieval, the network was initialized at the beginning of
the loaded sequence, X1, and no additional spiking errors,
beyond those produced by the network at subsequent
steps, were added as the memory played out. At each
step of memory playout, synaptic and intrinsic noise were
added independently to every connection and every neu-
ron in the network at strengths governed by b retr.
The sequence is said to be retrieved completely if the

network states during the retrieval do not deviate sub-
stantially from the target states. Otherwise, the sequence
is said to be retrieved partially, and the retrieved se-
quence length is defined by the number of steps taken to
the point where the network states begin to deviate sub-
stantially from the target states (Fig. 2A). In practice, there
is no need to precisely define the threshold amount of de-
viation. This is because for large networks the fraction of
errors in a retrieved network state either fluctuates around
rlearn6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rlearn 1� rlearnð Þ=N

p
(mean 6 SD) or diverges to

2f 1� fð Þ6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f 1� fð Þ 1� 2f 1� fð Þð Þ=N

p
(expected fraction

of differences between two random network states of fir-
ing probability f), which is significantly greater for the cho-
sen values of parameters rlearn and f. Figure 2B shows the
probability of retrieving a complete loaded sequence and
the fraction of retrieved sequence length for different
values of b learn. It illustrates that memory sequences
can be reliably retrieved if they were loaded with the
postsynaptic noise strength that is slightly higher than
that present during memory retrieval. Likewise, the
averaged retrieved sequence length fraction increases
with b learn and approaches one as b learn exceeds the
noise strength present during retrieval. A similar conclu-
sion can be drawn from Figure 2C, which shows the
map of the retrieval probability as a function of b learn

and rlearn. Errors and noise during learning make memo-
ry retrieval more reliable. However, the reliability of
loaded memories comes at the expense of the memory
storage capacity, a. Figure 2D shows the trade-off be-
tween the retrieval probability and capacity of loaded
associative memories in which higher levels of errors
and noise during learning enable reliable memory re-
trieval but reduce a.

Noise during learning is required for optimal retrieval
of stored information
Figure 3A,B shows the maps of expected retrieved in-

formation per sequence playout calculated in two differ-
ent ways. In the first calculation, the contribution of
partially retrieved sequences to the expected retrieved in-
formation was set to zero, while in the second, partially re-
trieved sequences contributed in the proportion of the
retrieved sequence length (see Materials and Methods).
Both maps illustrate that optimal retrieval of stored infor-
mation is achieved when memories are stored in the pres-
ence of noise, b learn . 0. This conclusion is independent
of the postsynaptic noise strength during memory re-
trieval, which was set to b retr = 30 in Figure 3A,B. To illus-
trate this finding, we averaged the maps over the rlearn
dimension and determined b learn that correspond to the
maxima of the retrieved information. Figure 3C illustrates

the results of this procedure for different values of b retr,
showing that the optimal b learn is greater than zero
even when there is no noise during memory retrieval. The
optimal b learn increases with b retr, and the two noise
strengths become approximately equal in the high noise
limit.

Neuron-to-neuron connectivity in associative
networks of homogeneous inhibitory and excitatory
neurons
One of the most salient features of sign-constrained as-

sociative learning models, such as the one described in
this study, is that finite fractions of inhibitory and excita-
tory connections assume zero weights at capacity (Kohler
and Widmaier, 1991), mirroring the trend observed in
many local cortical networks. We compared the connec-
tion probabilities (Pcon) and the coefficients of variation
(CVs) of non-zero connection weights in associative net-
works at capacity to the connection probabilities and CVs
of unitary PSPs (uPSPs) obtained experimentally. To that
end, we used the dataset compiled in (Zhang et al.,
2019b) based on 87 electrophysiological studies describ-
ing neuron-to-neuron connectivity for 420 local cortical
projections (lateral distance between neurons, 100mm).
Figure 4A shows that the average inhibitory Pcon (38 stud-
ies, 9522 connections tested) is significantly larger
(p, 10�10, two-sample t test) than the average excitatory
Pcon (67 studies, 63,020 connections tested). Associative
networks exhibit a similar trend in the entire region of con-
sidered b learn and rlearn values (Fig. 4B,C). What is more,
in the (b learn, rlearn) parameter region demarcated with the
dashed isocontours and arrows in Figure 4B,C, the model
results are consistent with the middle 50% of the experi-
mentally measured Pcon values for inhibitory and excita-
tory connections.
Figure 4D shows that the average CV of inhibitory uPSP

(10 studies, 503 connections recorded) is slightly lower
than that for excitatory (36 studies, 3956 connections re-
corded), and this trend is also reproduced by the associa-
tive networks in the entire region of considered b learn and
rlearn values (Fig. 4E,F). As before, there are (b learn, rlearn)
parameter regions in these maps in which the results of
the model are consistent with the middle 50% of the CV
of uPSP measurements for inhibitory and excitatory
connections.

Spontaneous dynamics in associative networks of
homogeneous inhibitory and excitatory neurons
The model associative networks can exhibit irregular

and asynchronous spiking activity like that observed in
cortical networks. To analyze such spontaneous (not
learned) network dynamics, we used associative net-
works loaded to capacity, initialized them at random
states of firing probability f=0.2, and followed their activ-
ity for 1000 time steps. Because the number of available
network states, which is exponential in N, is much larger
than the number of loaded states, aN, the spontaneous
network activity in the numerical simulations never
passed through any of the loaded states.
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To quantify the degree of similarity in the dynamics
of the model and brain networks we compared the CV
of interspike-intervals (ISIs) and the cross-correlation
coefficient of spiking neuron activity in the model to
those measurements obtained experimentally. Figure 5A,
dashed isocontour, outlines (b learn, rlearn) parameter re-
gion in which the model CV of ISI is consistent with the
0.7–1.1 range measured in different cortical systems
(Softky and Koch, 1993; Holt et al., 1996; Buracas et al.,
1998; Shadlen and Newsome, 1998; Stevens and Zador,
1998). Similarly, Figure 5B shows that there is a (b learn,
rlearn) parameter region in which the calculated spike
cross-correlation coefficients are in agreement with the
interquartile range of the corresponding cortical measure-
ments, 0.04–0.15 (Cohen and Kohn, 2011). The degree of
asynchrony in spontaneous spiking activity in associative
networks increases with the postsynaptic noise strength,
which can be explained by the decrease in connection
probability (Fig. 4B,C) and, consequently, a reduction in
the amount of common input to the neurons.
It was shown that irregular and asynchronous activity

can result from the balance of inhibitory and excitatory
postsynaptic inputs to individual cells (van Vreeswijk and
Sompolinsky, 1996, 1998). In a balanced state, the magni-
tudes of these inputs are much greater than the threshold

of firing, but, because of a high degree of anti-correlation,
these inputs largely cancel, and firing is driven by fluctua-
tions. Figure 5C shows a region of parameters in which
neurons in the associative model function in a balanced
regime. Because it is difficult to simultaneously measure
inhibitory and excitatory postsynaptic inputs to a neuron,
the anti-correlation of inhibitory and excitatory inputs has
only been measured in nearby cells, averaging to ;0.4
(Okun and Lampl, 2008; Graupner and Reyes, 2013). As
within-cell anti-correlations are expected to be stronger
than between-cell anti-correlations, 0.4 was used as a
lower bound for the former (Fig. 5C, dashed isocontour
and arrow).
The seven error-noise regions obtained based on the

properties of neuron-to-neuron connectivity (Fig. 4) and
network dynamics (Fig. 5) have a non-empty intersection
(Figs. 4, 5, red contour). In this biologically plausible region
of parameters, the considered properties of the associa-
tive networks are consistent with the corresponding ex-
perimental measurements. This observation suggests
that b learn must lie in the 20–50 range and rlearn must be
,0.06. While we are not aware of direct experimental
measurements of these parameters, the low value of
rlearn is in qualitative agreement with the reliability of fir-
ing patterns evoked by time-varying stimuli in vivo

Figure 4. Comparison of structural properties of the model and cortical networks. A, Inhibitory and excitatory connection probabil-
ities reported in 87 studies describing 420 local cortical projections. Each dot represents the result of a single study/projection. B,
C, Maps of inhibitory and excitatory connection probabilities as functions of b learn and rlearn. The results are based on the replica
method (see Materials and Methods). Dashed isocontours and arrows illustrate the interquartile ranges of the experimentally ob-
served connection probabilities from A. The red contour outlines a region of parameters that is consistent with all structural and dy-
namical measurements in cortical networks considered in this study. The locations of the green asterisks are the same as in Figure
1F. D–F, Same for the CV of non-zero inhibitory and excitatory connection weights. A, D were adapted from Zhang et al. (2019b).
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(Buracas et al., 1998) and in vitro (Mainen and
Sejnowski, 1995).

Solution of the model with a perceptron-type learning
rule
As the replica and nonlinear optimization solutions of

Equation 1 cannot be easily implemented by neural net-
works in the brain, we set out to develop a biologically
more plausible online solution to the associative learn-
ing problem. The following perceptron-type learning
rule was devised to approximate the solution of
Equation 1 (see Materials and Methods). At each learn-
ing step, e.g., m, a neuron receives an input containing
spiking errors, Xpm, combines it with synaptic and intrin-
sic noise, and produces an output corrupted by noise,

ypm ¼ u
XN
j¼1

Jpj X
pm
j � hp

0
@

1
A. If this output differs from the

neuron’s target output, ym, which is noise-free, the neu-
ron’s input connection weights are updated in four con-
secutive steps:

Jj 7! Jj 1
gh
N

2ym � 1ð ÞXpm
j ; j ¼ 1; : : :;N

Jj 7! Jju Jjgjð Þ
Jj 7! Jj 1 w� 1

N

XN
j¼1

����Jj

����
 !

gj

Jj 7! Jju Jjgjð Þ

(22)

The first line in Equation 22 is a stochastic perceptron
learning step (Rosenblatt, 1962), in which parameter g
is referred to as the learning rate. The second line en-
forces the sign constraints, while the last two lines im-
plement the homeostatic l1-norm constraint and are
equivalent to the soft thresholding used in LASSO regression

(Tibshirani, 1996). In contrast to the standard perceptron
learning rule, Equation 22 uses noisy inputs and enforce sign
and homeostatic constraints at every learning step. They can
be used to learn temporally correlated input-output network
states, including auto-associations.
By including input spiking errors, synaptic and intrinsic

noise in the condition that triggers the learning step out-
lined in Equation 22, the learning rule implicitly depends
on the model parameters rjf g, b syn; j

� �
describing the

fluctuations in the neuron’s inputs (indexed with j), and
the parameter b int which describes the neuron’s intrinsic
noise. Because Equation 22 is designed to approximately
minimize the neuron’s output spiking error probability for
a given memory load (see Materials and Methods), which
at capacity matches the desired output error probability
of the neuron, r, the learning rule also depends implicitly
on fluctuations in the neuron’s output.
Figure 6 compares the theoretical solution obtained

with the replica method in the N ! 1 limit with numerical
solutions for networks of N=200, 400, and 800 neurons
obtained with nonlinear optimization and the perceptron-
type learning rule. Figure 6A shows that the perceptron-
type learning rule sometimes fails to find a solution to a
feasible learning problem, i.e., a problem that can be
solved with nonlinear optimization. Yet, even in such
cases, the perceptron connection weights in a steady
state (after 106 learning epochs) are well-correlated with
the nonlinear optimization weights (Fig. 6B). Therefore,
though the perceptron-type learning rule is not as efficient
as nonlinear optimization, it can find an approximate solu-
tion to the learning problem. Consistent with this conclu-
sion, the associative memory storage capacity of a
neuron loaded with the perceptron-type learning rule is
15–18% lower than that loaded with nonlinear optimiza-
tion, and the two methods lead to similar structural and
dynamical network properties (Fig. 6C, red and blue bars).

Figure 5. Comparison of dynamical properties of the model and cortical networks. A, The CV of ISI for spontaneous (not learned)
activity as a function of b learn and rlearn. Dashed isocontour and arrows demarcate a region of CV values that is in general agreement
with experimental measurements. B, Same for the cross-correlation coefficient of neuron spike trains. C, Same for the anti-correla-
tion coefficient of inhibitory and excitatory postsynaptic inputs to a neuron. The red contour outlines a region of parameters that is
consistent with the considered structural and dynamical measurements. The locations of the green asterisk are the same as in
Figure 1F. All results were obtained with the nonlinear optimization method (see Materials and Methods) and averaged over 100 net-
works and 100 runs for each network for every parameter setting.
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The scales of non-zero inhibitory and excitatory connec-
tion weights according to the replica calculation are pri-
marily determined by w, inhibitory/excitatory connection
probabilities, and fractions of these inputs (Eq. 14, last
line), and this agrees with the results of nonlinear optimi-
zation and perceptron learning.

Properties of heterogeneous associative networks
The associative learning model, Equation 1, makes it

possible to investigate the properties of networks com-
posed of heterogeneous populations of inhibitory and

excitatory neurons. Specifically, we examined the effects
of distributed spiking error probabilities and distributed
synaptic and intrinsic noise strengths on properties of
connectivity at critical capacity. Figure 7A–C shows that
in networks of neurons with heterogeneous spiking error
probabilities (homogeneous in all other parameters), the
probabilities and weights of inhibitory and excitatory con-
nections monotonically decrease with increasing rlearn.
Therefore, as may have been expected, connections
originating from more unreliable neurons (higher rlearn) are
more likely to be depressed and/or eliminated during learn-
ing. Properties of networks of neurons with distributed

Figure 6. Comparison of solutions obtained with the perceptron-type learning rule, nonlinear optimization, and replica method. A,
Output error probability as a function of the number of learning epochs for the perceptron-type learning rule. The black dashed line
indicates the target output error probability. Results for three different cases are shown: a not feasible problem (red line), a feasible
problem which was not solved with the perceptron-type learning rule (blue line), and a feasible problem which was solved with the
perceptron-type learning rule (green line). The parameters of the associative network are provided in the figure. The values of b learn

and rlearn correspond to the green asterisk from Figure 1F. B, Comparisons of connection weights obtained with the perceptron-
type learning rule and nonlinear optimization for the three cases shown in A. Straight lines are the best linear fits. C, Comparisons of
memory storage capacity, retrieval, structural, and dynamical properties of networks of N=200, 400, and 800 neurons obtained
with the perceptron-type learning rule (red colors) and nonlinear optimization (blue colors). The memory storage capacity and struc-
tural properties calculated with the replica method in the N ! 1 limit are shown in black.
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synaptic and intrinsic noise strengths (homogeneous oth-
erwise) depend on the combination of these parameters in
the form of the postsynaptic noise strengths, b learn. Figure
7D–F show how connection probabilities and average con-
nection weights depend on b learn. Like in the previous
case, connections onto noisier neurons (higher b learn) are
less probable. Here, however, the average inhibitory and
excitatory connection weights increase with b learn because
of the homeostatic l1-norm constraint (Eq. 1).
Motivated by the agreement between the results of the

associative learning model and cortical measurements, we
put forward two predictions that can be tested in future ex-
periments. First, we predict that in cortical networks, inhibi-
tory and excitatory connections originating from more
unreliable neurons or neuron classes must have lower con-
nection probabilities and average uPSPs (Fig. 7B,C).
Second, we predict that connections onto noisier neurons
or neuron classes must have lower connection probabil-
ities but higher average uPSPs (Fig. 7E,F).

Discussion
We examined a network model of inhibitory and excita-

tory neurons loaded to capacity with associative memory
sequences in the presence of errors and noise. First, we
showed that there is a trade-off between the capacity and
reliability of stored sequences which is controlled by the
levels of errors and noise present during learning. For an
optimal trade-off, as judged by the amount of information
contained in the retrieved sequences, noise must be pres-
ent during learning. Second, as synaptic connectivity of
neurons changes during learning (Holtmaat and Svoboda,
2009), it is not unreasonable to expect that the require-
ment of reliable memory retrieval is reflected in the prop-
erties of network connectivity and, consequently, the
activity of neurons in the brain. Interestingly, local neural
networks in the mammalian cortical areas have many
common features of connectivity and network activity
(Zhang et al., 2019b). We showed that these network
properties in the model emerge all at once during reliable

Figure 7. Properties of connections in associative networks of heterogeneous neurons. A–C, Connection probability (B) and average
non-zero connection weight (C) for inhibitory (red) and excitatory (blue) connections in a network of neurons with distributed spiking
error probabilities and homogeneous in all other parameters. The spiking error probabilities of inhibitory and excitatory inputs during
learning were randomly drawn from the log-normal distribution shown in A. Unreliable inputs have lower probabilities and weights.
The parameters of the associative network are shown in A. The values of b learn and ,rlearn. correspond to the green asterisk from
Figure 1F. D–F, Same for a network of neurons with heterogeneous postsynaptic noise strengths. The postsynaptic noise strengths
of neurons during learning were randomly drawn from the log-normal distribution shown in D. Noisier neurons receive stronger but
fewer inhibitory and excitatory inputs.
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memory storage. Third, as levels of errors and noise can
differ across individual neurons or neuron classes, we ex-
amined the properties of model networks composed of
heterogeneous neurons and made two salient predictions
regarding the connectivity of neurons operating with rela-
tively high levels of errors and noise.
This study incorporates a comprehensive description of

errors and noise into the model of associate sequence
learning by recurrent networks of neurons with biologi-
cally inspired constraints. It shows that errors and noise
during learning can be beneficial, as they can increase the
reliability of loaded memories to fluctuations during mem-
ory retrieval. Because errors and noise are both free and
unavoidable harnessing their power, rather than trying to
suppress it, may be an efficient way of improving the reli-
ability of memories in the brain. This mechanism is illus-
trated in Figure 8. When the associative memories are
loaded at a below capacity level, the solution region of
Equation 1 is comparatively large. A solution, e.g., a vec-
tor of connection weights of a neuron obtained with a per-
ceptron-type learning rule, may be located near the
solution region boundary. Such a solution is deemed

unreliable because a small amount of noise during memo-
ry retrieval can move it outside the solution region, result-
ing in spiking errors that can disrupt the associative
sequence retrieval process (Fig. 8A). By adding noise during
learning, the solution can be forced to move away from the
boundary, thus making it more reliable (Fig. 8B). However,
increasing the noise strength reduces the neuron’s capacity,
and at a certain strength, the capacity and memory load are
guaranteed to match (Fig. 8C). A further increase in noise
strength can improve the reliability even more, but at the ex-
pense of the memory load as the latter must remain at or
below the capacity (Fig. 8D). An alternative way of improving
reliability is by suppressing noise during memory retrieval
(Fig. 8E). Incidentally, it has been shown that visual attention
that improves behavioral performance reduces the variability
in spike counts of individual neurons in Macaque V4 (Cohen
and Maunsell, 2009; Mitchell et al., 2009). Though signifi-
cant, the amount of reduction is relatively small, suggesting
that this mechanism has physical limitations. Using noise
during learning can enhance the reliability of stored memo-
ries beyond what can be accomplished by attending to the
memory retrieval process.

Figure 8. Increasing the noise strength during learning and decreasing it during memory recall lead to more reliable solutions. A,
The associative learning problem for a below capacity load in the absence of noise during learning, b learn = 0. The solution region
(blue) is bounded by hyperplanes corresponding to the individual associations (black lines). The learning phase (red arrows) ends as
the connection weight vector enters the solution region. The solution shown in A is unreliable because noise during memory retrieval
(red cloud of radius b retr) can move it outside the solution region with high probability. B, Adding noise during learning (green cloud
of radius b learn) transforms the association hyperplanes (gray lines) into hypersurfaces (black lines; Eq. 1), reducing the solution re-
gion and forcing the connection weight vector further away from the hyperplanes. This increases solution reliability. C, The contin-
ued increase of the noise strength improves reliability as the solution region shrinks to zero. At this noise strength, the memory load
is at capacity. A further increase in reliability can be achieved by increasing the noise strength during learning (D) or decreasing it
during retrieval (E). In the former case, the memory load must be reduced to match the reduction in capacity.
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The study of associative memory storage by artificial
neural networks has a long history dating back to the
seminal works of McCulloch and Pitts, Hebb, Rosenblatt,
Steinbuch, Cover, Minsky, and Papert (McCulloch and
Pitts, 1943; Hebb, 1949; Rosenblatt, 1957; Steinbuch,
1961; Cover, 1965; Minsky and Papert, 1969). Associative
models of binary neurons can be generally categorized
into learning models, in which memories are loaded into
the network over time using activity-dependent learning
rules, and memory storage models, which often bypass
the learning phase and focus on memory storage capacity
and properties of learned networks. Models of the first
type often rely on Hebbian-type learning rules in which
connection weights are modified based on activities of
presynaptic and postsynaptic neurons (Willshaw et al.,
1969; Hopfield, 1982; Tsodyks and Feigel’man, 1988;
Amit, 1989; Palm, 2013). Although the general idea of
Hebbian learning has been corroborated experimentally
and characterized as long-term potentiation/long-term
depression, recent studies demonstrated that changes in
synaptic efficacy can have a complicated dependence on
spike timing, spike frequency, and PSP (Sjöström et al.,
2001).
Memory storage models make no assumptions as to the

details of the learning rules, provided that they are powerful
enough to load memories into the network, and analyze net-
work properties as functions of the memory load and net-
work parameters. An advantage of such models is that they
often yield closed-form analytically solutions. One of the first
models of this type was solved by Cover (Cover, 1965) who
used a geometrical argument to show that a simple percep-
tron with N inputs can learn 2N unbiased associations.
Later, a general framework for the analysis of memory stor-
age capacity was established by Gardner and Derrida
(Gardner, 1988; Gardner and Derrida, 1988) who used the
replica theory to solve the problem of robust learning of arbi-
trarily biased associations. Subsequent studies incorpo-
rated sources of noise into the associative learning model
and examined the effects of learning on neural network
properties. In these studies, the basic associative learning
model was extended to include biologically inspired ele-
ments, such as sign-constrained postsynaptic connections
(inhibitory and excitatory; Kohler and Widmaier, 1991;
Brunel et al., 2004; Chapeton et al., 2012), homeostatically
constrained presynaptic connections (Chapeton et al.,
2015), and robustness to noise which is traditionally en-
forced through a generic robustness parameter k (Gardner,
1988; Gardner and Derrida, 1988). In particular, Brunel et al.
(2004) and Brunel (2016) showed that sparse excitatory con-
nectivity and certain two-neuron and three-neuron motifs
develop in networks robustly loaded with associations to ca-
pacity and that similar results can be obtained in a model
which, in place of k , includes Gaussian intrinsic noise and
output spiking errors (see their supplementary material).
Rubin et al. (2017) considered presynaptic and intrinsic
noise and showed that the balance of inhibitory and excita-
tory currents emerges at capacity. Zhang et al. (2019b)
showed that many structural and dynamical properties of
local cortical networks emerge in associative networks ro-
bustly loaded to capacity.

This article significantly differs from the above-men-
tioned studies both in terms of the model and results.
First, the model introduced in this article provides a more
systematic account of errors and noise by combining
input and output spiking errors, synaptic and intrinsic
noise. Second, the model allows for the possibility of hav-
ing different levels of errors and noise during learning and
memory retrieval. Third, the model makes it possible to
analyze networks of neurons with heterogeneous proper-
ties. In terms of model results, we first show how errors
and noise during learning facilitate reliable memory re-
trieval and next produce a comprehensive list of results
related to network structure and dynamics that are then
compared with the data from local cortical networks to
validate the model and make predictions. What is more,
our results explain the nature of the robustness parame-
ter, k , used in traditional models (Eq. 16) and show explic-
itly how it is related to errors and noise present during
learning.
The model described in this study assumes that individ-

ual neurons learn independently from one another and are
loaded with memories to capacity. There is no direct sup-
port for these assumptions, but they have been shown to
lead to structural and dynamical network properties that
are consistent with experimental data (Brunel et al., 2004;
Clopath et al., 2010; Chapeton et al., 2012; Brunel, 2016;
Zhang et al., 2019b). This study corroborates these as-
sumptions by matching a variety of experimental results
with a single set of model parameters. The derived per-
ceptron-type rule mediates learning by modifying connec-
tion weights based on local activities of presynaptic and
postsynaptic neurons in the presence of errors and noise,
which is biologically feasible. However, a supervision sig-
nal must be fed to every neuron during learning. This is a
major drawback of the presented approach and the su-
pervised learning models in general, as the origins of this
signal in the brain remain unknown. The problem can be
minimized by feeding the supervision signal to a fraction
of neurons in the network while letting the remaining neu-
rons learn in an unsupervised manner (Krotov and
Hopfield, 2019). Unsupervised learning can be mediated
by local spike timing, frequency, and voltage-dependent
rules that are biologically more plausible and can explain
many experiments describing functional properties of in-
dividual neurons (Clopath et al., 2010). However, unsuper-
vised learning rules are not known to produce the host of
structural and dynamical properties of local cortical cir-
cuits examined in this study. It would be interesting to find
out if a recurrent network composed of unsupervised and
supervised neurons can satisfy all the requirements of a
biologically realistic learning network.

References

Amit DJ (1989) Modeling brain function: the world of attractor neural
networks. Cambridge; New York: Cambridge University Press.

Atallah BV, Scanziani M (2009) Instantaneous modulation of gamma
oscillation frequency by balancing excitation with inhibition.
Neuron 62:566–577.

Bishop CM (1995) Neural networks for pattern recognition. Oxford;
New York: Clarendon Press; Oxford University Press.

Research Article: New Research 17 of 19

January/February 2021, 8(1) ENEURO.0302-20.2020 eNeuro.org

http://dx.doi.org/10.1016/j.neuron.2009.04.027
https://www.ncbi.nlm.nih.gov/pubmed/19477157


Brunel N (2016) Is cortical connectivity optimized for storing informa-
tion? Nat Neurosci 19:749–755.

Brunel N, Hakim V, Isope P, Nadal JP, Barbour B (2004) Optimal in-
formation storage and the distribution of synaptic weights: percep-
tron versus Purkinje cell. Neuron 43:745–757.

Buracas GT, Zador AM, DeWeese MR, Albright TD (1998) Efficient
discrimination of temporal patterns by motion-sensitive neurons in
primate visual cortex. Neuron 20:959–969.

Byrd RH, Hribar ME, Nocedal J (1999) An interior point algorithm for
large-scale nonlinear programming. SIAM J Optim 9:877–900.

Byrd RH, Gilbert JC, Nocedal J (2000) A trust region method based
on interior point techniques for nonlinear programming. Math
Program 89:149–185.

Chapeton J, Fares T, LaSota D, Stepanyants A (2012) Efficient asso-
ciative memory storage in cortical circuits of inhibitory and excita-
tory neurons. Proc Natl Acad Sci USA 109:E3614–E3622.

Chapeton J, Gala R, Stepanyants A (2015) Effects of homeostatic
constraints on associative memory storage and synaptic connec-
tivity of cortical circuits. Front Comput Neurosci 9:74.

Clopath C, Büsing L, Vasilaki E, Gerstner W (2010) Connectivity re-
flects coding: a model of voltage-based STDP with homeostasis.
Nat Neurosci 13:344–352.

Cohen MR, Maunsell JH (2009) Attention improves performance pri-
marily by reducing interneuronal correlations. Nat Neurosci
12:1594–1600.

Cohen MR, Kohn A (2011) Measuring and interpreting neuronal cor-
relations. Nat Neurosci 14:811–819.

Cover TM (1965) Geometrical and statistical properties of systems of
linear inequalities with applications in pattern recognition. IEEE
Trans Electron Comput 14:326–334.

Cox CL, Denk W, Tank DW, Svoboda K (2000) Action potentials reli-
ably invade axonal arbors of rat neocortical neurons. Proc Natl
Acad Sci USA 97:9724–9728.

Del Castillo J, Katz B (1954) Quantal components of the end-plate
potential. J Physiol 124:560–573.

Edwards SF, Anderson PW (1975) Theory of spin glasses. J Phys F
Met Phys 5:965–974.

Faisal AA, Selen LP, Wolpert DM (2008) Noise in the nervous system.
Nat Rev Neurosci 9:292–303.

Feng F, Headley DB, Amir A, Kanta V, Chen Z, Paré D, Nair SS (2019)
Gamma oscillations in the basolateral amygdala: biophysical
mechanisms and computational consequences. eNeuro 6:
ENEURO.0388-18.2018.

Gala R, Lebrecht D, Sahlender DA, Jorstad A, Knott G, Holtmaat A,
Stepanyants A (2017) Computer assisted detection of axonal bou-
ton structural plasticity in in vivo time-lapse images. Elife 6.

Gammaitoni L, Hänggi P, Jung P, Marchesoni F (1998) Stochastic
resonance. Rev Mod Phys 70:223–287.

Gardner E (1988) The space of interactions in neural network models.
J Phys A Math Gen 21:257–270.

Gardner E, Derrida B (1988) Optimal storage properties of neural net-
work models. J Phys A Math Gen 21:271–284.

Graupner M, Reyes AD (2013) Synaptic input correlations leading to
membrane potential decorrelation of spontaneous activity in cor-
tex. J Neurosci 33:15075–15085.

Hebb DO (1949) The organization of behavior; a neuropsychological
theory. New York: Wiley.

Hertz J, Krogh A, Palmer RG (1991) Introduction to the theory of neu-
ral computation. Redwood City: Addison-Wesley Publ Co.

Holt GR, Softky WR, Koch C, Douglas RJ (1996) Comparison of dis-
charge variability in vitro and in vivo in cat visual cortex neurons. J
Neurophysiol 75:1806–1814.

Holtmaat A, Svoboda K (2009) Experience-dependent structural syn-
aptic plasticity in the mammalian brain. Nat Rev Neurosci 10:647–
658.

Hopfield JJ (1982) Neural networks and physical systems with emer-
gent collective computational abilities. Proc Natl Acad Sci USA
79:2554–2558.

Kohler HM, Widmaier D (1991) Sign-constrained linear learning and
diluting in neural networks. J Phys A Math Gen 24:L495–L502.

Krotov D, Hopfield JJ (2019) Unsupervised learning by competing
hidden units. Proc Natl Acad Sci USA 116:7723–7731.

Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocort-
ical neurons. Science 268:1503–1506.

McCulloch W, Pitts W (1943) A logical calculus of the ideas imma-
nent in nervous activity. Bull Math Biophys 5:115– 133.

McDonnell MD, Abbott D (2009) What is stochastic resonance?
Definitions, misconceptions, debates, and its relevance to biology.
PLoS Comput Biol 5:e1000348.

McDonnell MD, Ward LM (2011) The benefits of noise in neural sys-
tems: bridging theory and experiment. Nat Rev Neurosci 12:415–
426.

Minsky ML, Papert S (1969) Perceptrons: an introduction to compu-
tational geometry. Cambridge: The MIT Press.

Mitchell JF, Sundberg KA, Reynolds JH (2009) Spatial attention de-
correlates intrinsic activity fluctuations in macaque area V4.
Neuron 63:879–888.

Okun M, Lampl I (2008) Instantaneous correlation of excitation and
inhibition during ongoing and sensory-evoked activities. Nat
Neurosci 11:535–537.

Palm G (2013) Neural associative memories and sparse coding.
Neural Netw 37:165–171.

Rosenblatt F (1957) The Perceptron–a perceiving and recognizing
automaton (Project PARA). Report No. 85–460-1. New York:
Cornell Aeronautical Laboratory.

Rosenblatt F (1962) Principles of neurodynamics; perceptrons and
the theory of brain mechanisms. Washington: Spartan Books.

Rubin R, Abbott LF, Sompolinsky H (2017) Balanced excitation and
inhibition are required for high-capacity, noise-robust neuronal se-
lectivity. Proc Natl Acad Sci USA 114:E9366–E9375.

Salkoff DB, Zagha E, Yuzgec O, McCormick DA (2015) Synaptic
mechanisms of tight spike synchrony at gamma frequency in cere-
bral cortex. J Neurosci 35:10236–10251.

Shadlen MN, Newsome WT (1998) The variable discharge of cortical
neurons: implications for connectivity, computation, and informa-
tion coding. J Neurosci 18:3870–3896.

Sherrington D, Kirkpatrick S (1975) Solvable model of a spin glass.
Phys Rev Lett 35:1792–1796.

Sjöström PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and co-
operativity jointly determine cortical synaptic plasticity. Neuron
32:1149–1164.

Softky WR, Koch C (1993) The highly irregular firing of cortical cells is
inconsistent with temporal integration of random EPSPs. J
Neurosci 13:334–350.

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R
(2014) Dropout: a simple way to prevent neural networks from
overfitting. J Mach Learn Res 15:1929–1958.

Stein RB, Gossen ER, Jones KE (2005) Neuronal variability: noise or
part of the signal? Nat Rev Neurosci 6:389–397.

Steinbuch K (1961) Automat und Mensch; über menschliche und ma-
schinelle Intelligenz. Berlin: Springer.

Stepanyants A, Chklovskii DB (2005) Neurogeometry and potential
synaptic connectivity. Trends Neurosci 28:387–394.

Stepanyants A, Hirsch JA, Martinez LM, Kisvárday ZF, Ferecskó AS,
Chklovskii DB (2008) Local potential connectivity in cat primary
visual cortex. Cereb Cortex 18:13–28.

Stevens CF, Zador AM (1998) Input synchrony and the irregular firing
of cortical neurons. Nat Neurosci 1:210–217.

Tibshirani R (1996) Regression shrinkage and selection via the lasso.
J R Stat Soc Series B Stat Methodol 58:267–288.

Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E,
Svoboda K (2002) Long-term in vivo imaging of experience-de-
pendent synaptic plasticity in adult cortex. Nature 420:788–794.

Tsodyks MV, Feigel’man MV (1988) The enhanced storage capacity
in neural networks with low activity level. Europhys Lett 6:101–
105.

van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal networks
with balanced excitatory and inhibitory activity. Science 274:1724–
1726.

Research Article: New Research 18 of 19

January/February 2021, 8(1) ENEURO.0302-20.2020 eNeuro.org

http://dx.doi.org/10.1038/nn.4286
https://www.ncbi.nlm.nih.gov/pubmed/27065365
http://dx.doi.org/10.1016/j.neuron.2004.08.023
https://www.ncbi.nlm.nih.gov/pubmed/15339654
http://dx.doi.org/10.1016/s0896-6273(00)80477-8
https://www.ncbi.nlm.nih.gov/pubmed/9620700
http://dx.doi.org/10.1137/S1052623497325107
http://dx.doi.org/10.1007/PL00011391
http://dx.doi.org/10.1073/pnas.1211467109
http://dx.doi.org/10.3389/fncom.2015.00074
https://www.ncbi.nlm.nih.gov/pubmed/26150784
http://dx.doi.org/10.1038/nn.2479
https://www.ncbi.nlm.nih.gov/pubmed/20098420
http://dx.doi.org/10.1038/nn.2439
https://www.ncbi.nlm.nih.gov/pubmed/19915566
http://dx.doi.org/10.1038/nn.2842
https://www.ncbi.nlm.nih.gov/pubmed/21709677
http://dx.doi.org/10.1109/PGEC.1965.264137
http://dx.doi.org/10.1073/pnas.170278697
https://www.ncbi.nlm.nih.gov/pubmed/10931955
http://dx.doi.org/10.1113/jphysiol.1954.sp005129
https://www.ncbi.nlm.nih.gov/pubmed/13175199
http://dx.doi.org/10.1088/0305-4608/5/5/017
http://dx.doi.org/10.1038/nrn2258
https://www.ncbi.nlm.nih.gov/pubmed/18319728
http://dx.doi.org/10.1523/ENEURO.0388-18.2018
http://dx.doi.org/10.7554/eLife.29315
http://dx.doi.org/10.1103/RevModPhys.70.223
http://dx.doi.org/10.1088/0305-4470/21/1/030
http://dx.doi.org/10.1088/0305-4470/21/1/031
http://dx.doi.org/10.1523/JNEUROSCI.0347-13.2013
https://www.ncbi.nlm.nih.gov/pubmed/24048838
http://dx.doi.org/10.1152/jn.1996.75.5.1806
https://www.ncbi.nlm.nih.gov/pubmed/8734581
http://dx.doi.org/10.1038/nrn2699
https://www.ncbi.nlm.nih.gov/pubmed/19693029
http://dx.doi.org/10.1073/pnas.79.8.2554
https://www.ncbi.nlm.nih.gov/pubmed/6953413
http://dx.doi.org/10.1088/0305-4470/24/9/008
http://dx.doi.org/10.1073/pnas.1820458116
https://www.ncbi.nlm.nih.gov/pubmed/30926658
http://dx.doi.org/10.1126/science.7770778
https://www.ncbi.nlm.nih.gov/pubmed/7770778
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1371/journal.pcbi.1000348
https://www.ncbi.nlm.nih.gov/pubmed/19562010
http://dx.doi.org/10.1038/nrn3061
https://www.ncbi.nlm.nih.gov/pubmed/21685932
http://dx.doi.org/10.1016/j.neuron.2009.09.013
http://dx.doi.org/10.1038/nn.2105
https://www.ncbi.nlm.nih.gov/pubmed/18376400
http://dx.doi.org/10.1016/j.neunet.2012.08.013
https://www.ncbi.nlm.nih.gov/pubmed/23043727
http://dx.doi.org/10.1073/pnas.1705841114
https://www.ncbi.nlm.nih.gov/pubmed/29042519
http://dx.doi.org/10.1523/JNEUROSCI.0828-15.2015
http://dx.doi.org/10.1523/JNEUROSCI.18-10-03870.1998
http://dx.doi.org/10.1103/PhysRevLett.35.1792
http://dx.doi.org/10.1016/s0896-6273(01)00542-6
https://www.ncbi.nlm.nih.gov/pubmed/11754844
http://dx.doi.org/10.1523/JNEUROSCI.13-01-00334.1993
http://dx.doi.org/10.1038/nrn1668
https://www.ncbi.nlm.nih.gov/pubmed/15861181
http://dx.doi.org/10.1016/j.tins.2005.05.006
https://www.ncbi.nlm.nih.gov/pubmed/15935485
http://dx.doi.org/10.1093/cercor/bhm027
https://www.ncbi.nlm.nih.gov/pubmed/17420172
http://dx.doi.org/10.1038/659
https://www.ncbi.nlm.nih.gov/pubmed/10195145
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1038/nature01273
https://www.ncbi.nlm.nih.gov/pubmed/12490942
http://dx.doi.org/10.1209/0295-5075/6/2/002
http://dx.doi.org/10.1126/science.274.5293.1724
https://www.ncbi.nlm.nih.gov/pubmed/8939866


van Vreeswijk C, Sompolinsky H (1998) Chaotic balanced state in a
model of cortical circuits. Neural Comput 10:1321–1371.

Willshaw DJ, Buneman OP, Longuet-Higgins HC (1969) Non-holo-
graphic associative memory. Nature 222:960–962.

Zhang C, Zhang D, Stepanyants A (2019a) Associative learning in the
presence of errors and noise. Available from https://github.com/
neurogeometry/Associative_Learning_with_Noise.

Zhang D, Zhang C, Stepanyants A (2019b) Robust associa-
tive learning is sufficient to explain the structural and dyna-
mical properties of local cortical circuits. J Neurosci 39:
6888–6904.

Zhang C, Zhang D, Stepanyants A (2020) Noise in neurons and syn-
apses enables reliable associative memory storage in local cortical
circuits. bioRxiv 583922.

Research Article: New Research 19 of 19

January/February 2021, 8(1) ENEURO.0302-20.2020 eNeuro.org

http://dx.doi.org/10.1162/089976698300017214
https://www.ncbi.nlm.nih.gov/pubmed/9698348
http://dx.doi.org/10.1038/222960a0
https://www.ncbi.nlm.nih.gov/pubmed/5789326
https://github.com/neurogeometry/Associative_Learning_with_Noise
https://github.com/neurogeometry/Associative_Learning_with_Noise
http://dx.doi.org/10.1523/JNEUROSCI.3218-18.2019
https://www.ncbi.nlm.nih.gov/pubmed/31270161

	Noise in Neurons and Synapses Enables Reliable Associative Memory Storage in Local Cortical Circuits
	Introduction
	Materials and Methods
	Network model of associative memory storage in the presence of errors and noise
	Single-neuron model of associative memory storage in the presence of errors and noise
	Reformulation of the model in the large N limit
	Additional assumptions required for the replica calculation
	Replica theory solution of the model
	Replica theory solution at critical capacity
	Distribution of input weights at critical capacity
	The solution in the case of two homogeneous classes of inputs
	Numerical solution of the model with nonlinear optimization
	Numerical solution of the model with a perceptron-type learning rule
	Mutual information contained in retrieved associative sequences
	Dataset of connection probabilities and strengths in local brain circuits in mammals

	Results
	Network model of associative memory storage in the presence of errors and noise
	Solutions of the model
	The trade-off between capacity and reliability of loaded memories
	Noise during learning is required for optimal retrieval of stored information
	Neuron-to-neuron connectivity in associative networks of homogeneous inhibitory and excitatory neurons
	Spontaneous dynamics in associative networks of homogeneous inhibitory and excitatory neurons
	Solution of the model with a perceptron-type learning rule
	Properties of heterogeneous associative networks

	Discussion
	References


