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Robot-assisted rehabilitation is a growing field that can provide an intensity, quality,

and quantity of treatment that exceed therapist-mediated rehabilitation. Several

control algorithms have been implemented in rehabilitation robots to develop a

patient-cooperative strategy with the capacity to understand the intention of the user

and provide suitable rehabilitation training. In this paper, we present an upper-limb

motion pattern recognition method using surface electromyography (sEMG) signals

with a support vector machine (SVM) to control a rehabilitation robot, ReRobot,

which was built to conduct upper-limb rehabilitation training for post-stroke patients.

For poststroke rehabilitation training using the ReRobot, the upper-limb motion of

the patient’s healthy side is first recognized by detecting and processing the sEMG

signals; then, the ReRobot assists the impaired arm in conducting mirror rehabilitation

therapy. To train and test the SVM model, five healthy subjects participated in the

experiments and performed five standard upper-limb motions, including shoulder flexion,

abduction, internal rotation, external rotation, and elbow joint flexion. Good accuracy was

demonstrated in experimental results from the five healthy subjects. By recognizing the

model motion of the healthy side, the rehabilitation robot can provide mirror therapy to the

affected side. This method can be used as a control strategy of upper-limb rehabilitation

robots for self-rehabilitation training with stroke patients.

Keywords: surface electromyography, support vector machine, rehabilitation robot, upper limb, motion pattern

recognition

INTRODUCTION

Stroke is the leading cause of adult disability around the world (Burton et al., 2017), with upper-limb
motor impairments being the main factor influencing the quality of life in stroke survivors
(Stinear et al., 2017). Repetitive motor training on movement has a notable curative effect on the
restoration of arm function in stroke patients, and the patients’ degree of recovery is positively
influenced by treatment intensity (Steven et al., 2006; Gittler and Davis, 2018). Conventionally,
stroke patients usually rehabilitate with the assistance of therapists. However, the involvement of
therapists is challenging because rehabilitation training is a time-consuming and labor-intensive
process. Many stroke survivors experience upper-limb impairment with few rehabilitation
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opportunities due to a lack of rehabilitation therapists. Robot-
assisted therapy devices, which can provide the affected arm with
high intensity and repetitive treatment, have been increasingly
used in rehabilitation training and can potentially enhance
upper-limb functional recovery in stroke survivors (Yoo and
Kim, 2015; Veerbeek et al., 2017).

Various rehabilitation robotic devices have been developed
for upper-limb training in stroke patients. Among them, MIT-
Manus (Krebs et al., 1999) was one of the first systems to
be developed and can provide stroke survivors with plane
movements. Furthermore, MIME (Lum et al., 2006), GENTLE/s
(Coote et al., 2008), T-WREX (Domien et al., 2011), and
NEREBOT (Stefano et al., 2014) were proposed to permit three-
dimensional exercise training for patients with impaired arms.

Different control strategies have been developed and applied
to rehabilitation robots for the recovery of the affected arm.
Motion parameters of the patient’s arm are one of the major
inputs in the rehabilitation robot’s control system. Many types
of mechanical inputs, such as switches (e.g., Aubin et al., 2013;
Artz et al., 2015), force sensors (e.g., Diftler et al., 2014), and
computer vision (e.g., Taati et al., 2012), have been used as
feedback in the controllers of rehabilitation robots. The surface
electromyography (sEMG) signal, which is composed of the
action potentials from groups of muscle fibers, is one of the
major sources of information about neural control and can
reflect the degree of activity of the muscles (Yang et al., 2016).
During the rehabilitation training of the upper limb, sEMG
signals can be captured, interpreted, and used as input for the
control algorithms of rehabilitation robots (Rosen et al., 2001;
Kiguchi and Hayashi, 2012; Peternel et al., 2016). Considering
that rich motor control information and the user’s intention can
be detected from sEMG signals, the sEMG-based control scheme
is one of themost appropriately suited approaches for upper-limb
rehabilitation robots (Singh et al., 2014).

However, the sEMG signal is affected by many factors and
is not stable, which can lead to low accuracy in recognizing
patient motion intentions. Some studies have shown that
machine learning techniques can be employed for classifying
different tasks and improving the robustness and accuracy of
the identification and classification of arm movements through

FIGURE 1 | Human upper-limb motions. (A) Shoulder flexion; (B) shoulder abduction; (C) shoulder internal rotation and external rotation; (D) elbow flexion.

the exploitation of sEMG signals (Lucas et al., 2008; Young
et al., 2013; Suberbiola et al., 2015). The SVM algorithm is a
well-established technique to learn how to classify new data
starting from a collection of classified events and has been widely
applied in machine learning problems (Vapnik, 1995; Suykens
et al., 2015) and sEMG processing (Song et al., 2007) because of
its simplicity and robustness. With the determination of a few
additional tuning parameters, SVM solutions are characterized
by a convex quadratic optimization problem (Platt, 1999).
Considering that the availability and quality of sEMG signals can
vary from patient to patient, it is difficult to obtain a large number
of training samples. SVM is suitable for solving learning tasks
where the number of attributes is large relative to the number
of training examples (Suykens et al., 2002).

Aimed at developing a control strategy for upper-limb
rehabilitation robots with the capacity to understand the
intention of the patients and provide the corresponding
rehabilitation training, this paper proposed an sEMG-based
control framework based on SVM classifiers for intention
identification of the upper limb. The control strategy was applied
to the upper-limb rehabilitation robot, ReRobot, to perform
the rehabilitative exercise training. The motion of the patient’s
healthy side is first recognized from the measured and processed
sEMG signals, and then the ReRobot assists the affected side in
conducting the corresponding rehabilitation therapy. Based on
the developed sEMG-based control strategy, self-rehabilitation
training in stroke patients can be conducted.

METHODS

Data Collection
Many stroke patients have trouble moving their upper limbs

on the affected side, and they must receive much rehabilitation
training to recover motion ability (Merletti et al., 1999).

Stroke patients often show abnormal shoulder motor ability,
so shoulder rehabilitation actions, including shoulder forward
flexion, shoulder level adduction, and shoulder level abduction
(Chen and Zhou, 2015), should be carried out.

The coordinates were defined where the coronal axis of the
patient is the X-axis, the sagittal axis is the Y-axis, the vertical
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FIGURE 2 | Locations of the sEMG electrodes: middle deltoid, anterior deltoid, pectoralis major, biceps brachii, brachioradial muscle, ulnar flexor carpal, trapezius,

posterior deltoid, and triceps brachii. Written informed consent was obtained from the individual in this image for the publication.

axis is the Z-axis, and the acromioclavicular joint is the origin of
the coordinates. Five motions were used to test the performance
of this model, including shoulder flexion, abduction, internal
rotation, external rotation, and elbow joint flexion, as shown
in Figure 1.

Five healthy subjects (N = 5, age 25 ± 4 years, body mass

70 ± 5 kg, height 174 ± 6 cm, all male and all right-handed)

participated in the experiments. All subjects gave their informed
consent before participation. The experimental procedures were

conducted in accordance with the Declaration of Helsinki

and approved by the Ethic Board of Medical School, South
China University of Technology. Each subject performed five

repetitions in accordance with five standard motions. Since

stroke patients are mostly elderly people with lower motion
abilities on their healthy side compared to young adults, the

designed motions were imitated as movements of elderly stroke

patients on their healthy side.
For each test, the test subject did not carry weight, and the

movement lasted for 1–2 s. After the end of each movement,
the subject took at least 1min to rest to prevent muscle

fatigue. There are many muscles involved in the movement

of the shoulder and elbow joints. Muscles play two roles in
the movement process: proximal stability and distal activity.

In this paper, eight superficial muscles involved in the distal

shoulder and elbow movements were selected as monitoring
objects. To ensure safety, patients controlled the emergency

stop of the equipment according to their own comfort level. In
this paper, the patient’s clenched fist is used as the emergency
stop action, and the flexor radialis is used as the detection
channel for the emergency stop action. Therefore, a total of
nine muscles were selected as test objects. The sEMG signals

of nine muscles in the upper limb were acquired, including
the middle deltoid, anterior deltoid, pectoralis major, biceps
brachii, brachioradial muscle, ulnar flexor carpal, trapezius,
posterior deltoid, and triceps brachii. The first eight muscles
were used to evaluate how the muscle works while the signal
changes. The ulnar flexor carpal played a role in the subject’s
self-initiation of the safety protection mechanism. When the
subject felt uncomfortable during the test, he or she could
stop the robot by clenching his or her fist and activating the
ulnar flexor.

Figure 2 shows the experimental setup. A 16-channel sEMG
acquisition instrument with 1-kHz sampling frequency in each
channel was used. Each channel was related to a three-channel
differential electrode. After themuscle was disinfected by alcohol,
the electrodes were placed along the direction of the muscle
abdomen with an interval of 2 cm. Figure 3 shows the raw sEMG
signals of the eight muscles without preprocessing from one of
the five healthy individuals.

Data Processing
Preprocessing
sEMG signals are easily disturbed by the external environment
in the acquisition process. Motion artifacts, baseline offset, and
power frequency interference may all lead to distortion of the
sEMG signals, which leads to poor classification accuracy (Chen
et al., 2015). Data preprocessing methods of baseline correction,
20–500Hz bandpass filter, power frequency filter (50Hz notch),
full-wave rectification, and amplitude normalization were
carried out to improve the signal-to-noise ratio (SNR) of the
sEMG signal. All filters used in this paper are fourth-order
Butterworth filters.
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FIGURE 3 | Raw experimental data recorded during a single trial of shoulder abduction from one of the five individuals. The unit of the Y coordinate is µV. (T,

trapezius; PM, pectoralis major; PD, posterior deltoid; MD, middle deltoid; AD, anterior deltoid; TB, triceps brachii; BM, brachioradial muscle; BB, biceps brachii).

Signal Segmentation
Although the intensity of the sEMG signal detected in
each channel is different in the different movements, the
signals show good synchronization (Zhang and Zhou, 2012):
if the related muscles did not contract, then the sEMG
signal showed a stable low-amplitude signal before the test;
in contrast, the signal changed dramatically in the course
of executing the action. The characteristic of this type of
signal was that the signal could be segmented by a sample
entropy algorithm (Liu and Zhou, 2013). The sample entropy
algorithm is an efficient and time-consuming algorithm that
can avoid the signal deviation caused by self-matching.
Therefore, we adopted the sample entropy algorithm for
data segmentation.

In the experiments, the action signals of eight channels
were collected, and the muscle signal for the sample entropy
analysis was from the sum of the eight-channel signals,
which is:

sEMG (t) =
∑M

i=1
sEMGi(t) (1)

whereM is the total number of channels, sEMGi(t) is the tth value
of channel i, and sEMG is the sum of all channel signals.

The sample entropy can be calculated as follows:

SampEn (m, r, L) = − ln

[

Bm+1(r)

Bm(r)

]

(2)

where m is the dimension of the sEMG signal, r is the
similar tolerance, L is the length of the muscle signal,
and Bm (r) is the probability of the two signal sequences

FIGURE 4 | Teacher sample labels based on the sample entropy algorithm,

where the label value of the active segment is 1, and the non-action area is 0.

matching m points. In this study, we set m = 2 and
r = 0.25∗σ , where σ is the standard deviation of the
sEMG signal.

s (n) =

{

0, |SampEn < d
1, |SampEn ≥ d

(3)

where d (d = 0.6) is the threshold and s (n) is the judgment
function of the EMG signal. When s (n) = 1, it is the effective
part of the action; when s (n) = 0, it is the invalid part of the
action, as shown in Figure 4.

Feature Extraction and Classification
Because of the short-term stationarity of sEMG signals, the
signals need to be divided into frames. To prevent spectrum
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FIGURE 5 | Parameter optimization process based on a genetic algorithm.

FIGURE 6 | The ReRobot system. The system is set up to support seated rehabilitation training in 3D space, and the UR5 robot is the main system used.

leakage, window functions should be used for interception.
Compared with window functions such as the rectangular
window and triangular window, the Hanning window has the
characteristics of fast side lobe attenuation and is suitable
for non-stationary signals. Therefore, this paper adopts a
Hanning window for framing. Hanning windows with window
lengths ranging from 30 to 300ms (Chowdhury et al.,
2013) were used to extract the characteristics of the sEMG
signals. To ensure the implementation of the system and
the stability of the classification, 128ms was selected as
the window length, and the sliding step size was 64ms.
The root mean square (RMS), fourth-order autocorrelation

factor, wavelength, variance, absolute mean, and short-term
energy of each window in each channel are calculated
as follows:

RMSkj =

√

1

N

∑N

i=1
(sEMGij)

2 (4)

VARkj =
1

N

∑N

i=1

(

sEMGij − sEMGj

)

(5)

MAVkj =
1

N

∑N

i=1

∣

∣sEMGij

∣

∣ (6)
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FIGURE 7 | Control structure for robot-assisted exercise training based on the SVM classification of sEMG signals.

TABLE 1 | Classification performance—five types of motions.

Motion Precision Recall F1-score

Shoulder flexion 0.933 0.942 0.938

Shoulder external rotation 0.905 0.858 0.881

Shoulder internal rotation 0.906 0.937 0.921

Shoulder abduction 0.964 0.958 0.961

Elbow joint flexion 0.991 0.991 0.991

FIGURE 8 | Mean recognition accuracies for the five healthy subjects (SF,

shoulder flexion; SER, shoulder external rotation; SIR, shoulder internal

rotation; SA, shoulder abduction; and EJF, elbow joint flexion).

SSIkj =
∑N

i=1
(sEMGij)

2 (7)

where k represents the kth window and j is the jth channel.

Support Vector Machine
Support vector machine (SVM) is a machine learning method
based on statistical learning theory. The characteristic behavior

of SVM is to construct a high-dimensional hyperplane for
small samples and non-linear models and to classify samples by
calculating the maximum distance of training data points on the
hyperplane (Ma et al., 2004). Due to the physical limitations of
stroke patients, the sample size of the data that can be collected
is small. In small-sample model training, SVM has advantages
of higher stability and fewer training parameters (Raczko and
Zagajewski, 2017). Therefore, SVM is a better choice than a
neural network. The equation solved by the SVM algorithm after
the Lagrange operator can be expressed as:

{

min 1
2 ‖w‖

2 + C
∑N

i=1 ξi
s.t.yk(w • xk + b) ≥ 1− ξi, k = 1...N

(8)

where (xk, yk) represents the training data of the kth window.
ξi is a slack variable, which represents the magnitude of the
classification error.

The radial basis kernel function can be expressed as (Chung
et al., 2003):

κ(xi, xj) = exp

{
∥

∥xi − xj
∥

∥

2

2δ2

}

(9)

The penalty factor C and kernel function parameter δ

are the main parameters that affect the performance of the
model. Therefore, while training the model, the penalty factor
C and kernel function parameter δ should be optimized.
To optimize parameters C and δ of the model, the genetic
optimization algorithm is used. The accuracy of the time series
prediction is selected as the fitness function. The optimization
steps of SVM parameters based on the genetic algorithm are
shown in Figure 5.

To test the feasibility of the genetic optimization algorithm,
simulations were carried out using MATLAB. Five healthy
subjects (N = 5, age 25± 4 years, bodymass 70± 5 kg, height 174
± 6 cm, all male and all right-handed) were selected for shoulder
flexion, abduction, pronation, and elbow flexion. Each action was
performed five times for data classification and recognition.

The default value of MATLAB is C = 1; σ = 1/numfeatures,
where numfeatures is the number of features. In this paper,
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FIGURE 9 | Chaotic matrix of the five healthy subjects (the diagonal value of the matrix is the correct number of classifications, while the non-diagonal value is the

wrong number of classifications).

FIGURE 10 | Experiments for sEMG signal acquisition and SVM-based classification during rehabilitation exercises from the healthy side of the subject. Written

informed consents were obtained from the individuals in this image for the publication.
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numfeatures = 40. The value after optimization is C =

0.4579 and σ = 371.6339. The influence of the parameter
optimization is significant. Compared with the default value,
the optimized value has higher classification accuracy. When
the default parameters are used, the classification accuracy is
78.53%. After parameter optimization, the classification accuracy
reached 94.18%.

UPPER-LIMB REHABILITATION ROBOT
PLATFORM

Robot System
The ReRobot is a rehabilitation robot platform developed to
permit training of the upper limb in three-dimensional space,
as shown in Figure 6. The platform is set up to support
and guide the movement of the affected arm using a UR5
robot arm. UR robotic arms are lightweight, fast, easy to
program, flexible, and safe robotic arms with 6 DOF (Kebria
et al., 2017). The configuration can provide positioning and
orientation to a patient’s upper limb in the training tasks. The
transmission control protocol/internet protocol (TCP/IP) was
used to communicate with the robot and the MATLAB user
interface. After attaching to the forearm of a stroke patient,
ReRobot focuses on the rehabilitation exercise of the shoulder
and elbow joints in accordance with the range of movement of
the human arm, including shoulder flexion/extension, shoulder
abduction/adduction, shoulder internal/external rotation, elbow
joint flexion/extension, and forearm supination/pronation. The
rehabilitation data, e.g., data that include the sEMG, forces,
velocities, and positions, are used for analysis and ensure the
safety of subject is collected in real time during the exercises.
To ensure a comfortable fixation to the patient’s arm, a gas bag
is used as the buffer device at the attachment point with the
human arm.

Safety is an important issue in the ReRobot therapy system.
The safety system consists of several components, including an
emergency stop switch, force sensor stops, a hand-controlled
switch, and an sEMG signal stop. The emergency stop button,
which is held by the experimenter, cuts power to the robot
and shuts down all systems. The six-axis force sensor located
at the robot arm measures interaction forces generated during
the tasks. If the interaction force is abnormal, the power of
the system would be automatically cut off. The hand-controlled
switch, which is held by the subject, stops the movement
of the robot. In the event of any abnormality, the robot
stops and the patient’s arm can be easily removed from the
end of the ReRobot by a freely actuating mechanism and
removable ends.

Control Scheme Based on the SVM
Classification of sEMG Signals
The control system of the ReRobot system is intended to develop
a human–machine interface (HMI) that is able to activate the
device as soon as the patient’s motion intention is detected.
By using the SVM system, the upper-limb movements of the
healthy side can be detected and classified automatically through

sEMG signals, and the ReRobot will then assist the impaired arm
with that movement. The control scheme based on the SVM
classification of sEMG signals was thus established, as shown
in Figure 7.

This platform acquires the test subject’s sEMG signals of the
upper limb on the healthy side, and the preprocessed EMG
signals from one to eight channels are used for upper limbmotion
recognition using the SVM classificationmethod. The recognized
action label signals are sent to the robot for motion calculation,
and then the robot actuates the subject’s affected arm with the
position control method to perform the corresponding actions
based on a presupposed trajectory.

When the patient feels discomfort in his or her arm or muscle
abnormalities during the test, the whole system can be safely
stopped by patient through the first clenching motion, and the
sEMG signal from channel 9 is sent to the manipulator. At the
same time, there is an emergency stop button in the test subject’s
hand throughout the test process to ensure safety.

Experiment and Results
To test the feasibility of the upper-limb motion recognition
method based on the SVM classification, simulations were
carried out using MATLAB. Five movements of five normal
people were collected 20 times. After processing feature
extractions and label recognition of the collected data, 10 five-
fold cross-validations were performed. The results are shown in
Figure 8. The classification accuracy of each action is as follows:
average recognition rate, 93.34 ± 0.59%; shoulder flexion, 92.95
± 1.78%; shoulder external rotation, 91.44 ± 0.91%; shoulder
internal rotation, 86.67 ± 1.98%; shoulder abduction, 95.98
± 0.70%; and elbow flexion, 98.89 ± 0.42%. The chaotic
matrix of one of the classifications is shown in Figure 9. The
misclassification rate of shoulder internal rotation and shoulder
external rotation is high. The main reason is that the muscles
involved in the two movements have a high coincidence, so
they are easily confused. However, the overall recognition rate
is high, so the system can be used in the actual operation of the
experimental platform.

Based on the chaoticmatrix, three accuracymetrics (precision,
recall, and F1-score) can be obtained (Sokolova and Lapalme,
2009). Precision describes the accuracy of the detection.
Recall is the detection rate, which refers to how well the
target objects are detected without being missed. The F1-
score combines the precision and recall and provides a single
measure of quality that is easy for end-users to understand.
The precision, recall, and F1-score of SVM algorithm in
classifying five different motions, including shoulder flexion,
shoulder external rotation, shoulder internal rotation, shoulder
abduction, and elbow joint flexion, were calculated to evaluate
the performance, as shown in Table 1. The elbow joint flexion
was detected with excellent performance (F1-score = 0.991),
followed by shoulder abduction (F1-score = 0.961), shoulder
flexion (F1-score = 0.921), and shoulder external rotation (F1-
score = 0.881). The SVM-based classifier generally classified
well and the average F1-score of five types of motions
was 0.9368.
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Five subjects (N = 5, age 25 ± 4 years, body mass 70
± 5 kg, height 174 ± 6 cm, all male and all right-handed)
participated in the rehabilitation training experiments, and all
five subjects were able to complete robot-assisted voluntary
exercises, as shown in Figure 10. Since these five subjects are
all right-handed people, the sEMG signals of their right arms
were acquired and processed. Based on the SVM classification
method, their motion intentions were analyzed and used as
input into the control schema of ReRobot. Thus, ReRobot can
understand the desired movement of the subjects and facilitate
its execution, thus providing active support to their left arms.
A total of 100 actions were performed in the actual test, and 92
actions were correctly identified using the SVM-based method.
The robot arm successfully assisted the subject’s arm with
recognized movements. Multiple security guarantees ensure the
safety of the subjects in this process. The experimental results
showed that SVM-based classification achieved good accuracy in
rehabilitation training.

To verify the effectiveness of the safety switch based
on the sEMG signal, a total of 25 tests of safety stops
based on sEMG signals were performed. ReRobot had its
cut power during each test, which proved the feasibility
of using sEMG signals as an emergency stop in the
rehabilitation system.

The experimental results showed that SVM-based
classification can provide good accuracy in upper-limb motion
pattern recognition and enabled patients to choose actions
actively for rehabilitation. It is possible to use sEMG signals as an
emergency stop button in the upper-limb rehabilitation system
to ensure safety.

CONCLUSIONS

In this paper, we investigated the feasibility of SVM classifiers
for intention identification of the upper limb from sEMG
signals. A new human–machine interface for self-rehabilitation
training with stroke patients was developed. The upper-limb
rehabilitation robot, ReRobot, could adequately understand the
desired upper-limb movement and facilitate its execution, thus

providing active support to the impaired arm. Experiments
with the ReRobot showed that the SVM classification based on
sEMG signals can provide good accuracy in upper-limb motion
pattern recognition when a time-dependent multifeature set
was used.

In future research, this method to extract upper-limb
intention from sEMG signals will be tested by experiments with
stroke patients. The application of this classifier to upper-limb
rehabilitation robots will be implemented to achieve successful
clinical verification.
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