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A B S T R A C T   

The coronary microvasculature is responsible for providing oxygen and nutrients to myocardial tissue. A healthy 
microvasculature with an intact and properly functioning endothelium accomplishes this by seemless changes in 
vascular tone to match supply and demand. Perturbations in the normal physiology of the microvasculature, 
including endothelial and/or vascular smooth muscle dysfunction, result in impaired function (vasoconstriction, 
antithrombotic, etc.) and structural (hypertrophic, fibrotic) abnormalities that lead to microvascular ischemia 
and potential organ damage. While coronary microvascular dysfunction (CMD) is the primary pathologic driving 
force in ischemia with non-obstructive coronary artery disease (INOCA), angina with no obstructive coronary 
arteries (ANOCA), and myocardial infarction with non-obstructed coronary arteries (MINOCA), it may be a 
bystander in many cardiac disorders which later become pathologically associated with signs and/or symptoms 
of myocardial ischemia. Importantly, regardless of the primary or secondary basis of CMD in the heart, it is 
associated with important increases in morbidity and mortality. In this review we discuss salient features per-
taining to known pathophysiologic mechanisms driving CMD, the spectrum of heart diseases where it places a 
critical role, invasive and non-invasive diagnostic testing, management strategies, and the gaps in knowledge 
where future research efforts are needed.   

1. Coronary microvasculature 

The coronary vasculature, comprised of the epicardial vessels and 
the coronary microvasculature, is tasked with providing oxygen and 
nutrients to and removing waste from the myocardium. From proximal 
to distal, they decrease in size and carry out distinct functions. Epicar-
dial arteries (also known as conduit arteries) are >500 μm in size and 
their role is to transport blood with minimal resistance. The coronary 
microvasculature represents all vessels distal to the conductive arteries, 
including pre-arterioles and arterioles, capillaries, membrane, venules, 
and pericytes [1]. The coronary microvasculature is the essential 
determinant of myocardial perfusion, by matching myocardial blood 
and nutrient supply to cardiac work [2]. Pre-arterioles and arterioles are 
key regulators of blood flow. Pre-arterioles (~100–500 μm in size) are 
effective in maintaining a narrow range of pressure at the origin of ar-
terioles despite changes in coronary perfusion. Arterioles (<100 μm in 

size) function to match blood supply with local oxygen demand via a 
dilatation response to local metabolites [1]. Capillaries, the most distal 
and smallest component of the microvasculature (<10 μm), are the 
primary site of gas and nutrient exchange [3]. Other important com-
ponents, but less well studied, include pericytes, the membrane, and 
venules [4]. 

Acute changes in coronary blood flow mainly occur in response to 
neurogenic mechanisms as metabolic stimuli are responsible for slower 
changes and are regulated by microvascular tone through myogenic and 
flow-mediated responses [5]. Chronic adjustments involve structural 
remodeling of the coronary microvasculature via changes in the vascular 
tone regulated by endothelial and metabolic factors along with me-
chanical forces such as shear stress acting on the endothelium with 
resulting effects on underlying vascular smooth muscle cells [6]. Per-
turbations in these mechanisms lead to the pathologic state of coronary 
microvascular dysfunction. 
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2. Coronary microvascular dysfunction 

Coronary microvasculature dysfunction (CMD) is a result of func-
tional and structural abnormalities of the pre-arterioles, arterioles, and 
capillaries, culminating in myocardial tissue ischemia, necrosis, and 
subsequent dysfunction. Clinically, CMD may present as angina-like 
chest pain with no flow-limiting epicardial coronary artery stenosis on 
coronary angiography [7]. It is an important clinical entity to recognize 
since patients with chest pain and no flow-limiting epicardial coronary 
artery disease may be misdiagnosed as having non-cardiac chest pain. 
Risk factors for CMD include traditional cardiovascular risk factors such 
as hypertension, diabetes mellitus, hyperlipidemia, and smoking. 
Additional risk factors for CMD include female sex, younger age, and 
chronic inflammatory conditions such as systemic lupus erythematosus 
and rheumatoid arthritis [8–11]. Female sex is a particularly important 
risk factor; women of peri- or post-menopausal age typically present 
with greater number and severity of CMD risk factors than men [8]. In 
fact, nearly half of women who present with chest pain and no 
obstructive coronary arteries have CMD [12]. 

Chronic inflammatory states are also associated with CMD. Patients 
with chronic inflammatory and autoimmune disorders have CMD as 
assessed by reduced coronary flow reserve (CFR) in the presence of non- 
obstructive coronary artery disease (CAD) [13–15]. Elevated high- 
sensitivity C-reactive protein levels have been documented in subjects 
with CMD compared to control subjects, suggesting a chronic inflam-
matory condition [13,16]. 

The pathophysiology of CMD encompasses both functional and 
structural abnormalities including endothelial dysfunction, impaired 
autoregulation, vasospasm, and microthrombosis. Under normal con-
ditions the coronary endothelium produces vasoactive agents, such as 
nitric oxide and prostacyclin, to maintain adequate perfusion. An 
imbalance between vasodilators and vasoconstrictors (favoring vaso-
constriction) impairs coronary blood flow [17]. This phenomenon is of 
paramount importance in the heart because at rest there is a near 
maximal oxygen extraction such that any increased oxygen demand 
must be met with proportionally increased coronary blood flow. In CMD, 
the ability to increase coronary blood flow is attenuated, resulting in 
myocardial ischemia at times of increased myocardial oxygen demand 
[18]. Microvascular remodeling consisting of luminal narrowing of the 
intracardiac arterioles and capillaries, perivascular fibrosis, and 
destruction of the capillary bed (capillary rarefaction) are pathologic 
processes that lead to increased arteriolar resistance and decreased tis-
sue perfusion in CMD [3]. Microvascular remodeling resulting in CMD 
can also occur in patients with flow-limiting epicardial coronary artery 
disease, providing an explanation as to why anginal symptoms may 
persist after percutaneous or surgical revascularization of epicardial 
artery disease [19]. Coronary vasospasm is another significant contrib-
utor to CMD in patients with microvascular angina and is associated 
with endothelial dysfunction. In one study, nearly half of patients with 
stable angina had normal or near-normal coronary angiograms, but 
vasoreactivity testing with acetylcholine induced epicardial and/or 
microvascular coronary spasm in nearly two thirds of them [20]. Lastly, 
microthrombosis is another pathologic process that is operational in 
CMD. Elevated serum thrombomodulin (an anti-coagulant) levels have 
been documented in patients with CMD which is considered a 
compensatory response that is associated with decreased adverse car-
diac events [21,22]. 

3. Spectrum of coronary microvascular dysfunction 

This pathologic entity is now referred to as symptoms and/or signs of 
ischemia with non-obstructive coronary artery disease (INOCA) and 
angina with no obstructive coronary arteries (ANOCA). Furthermore, it 
is well accepted that it is not a benign condition and rather is associated 
with significant morbidity and mortality [23]. It is important to note 
that while INOCA and ANOCA is predominantly diagnosed in women, it 

also affects men [23,24]. Data from the Women's Ischemia Syndrome 
Evaluation (WISE) study suggest that patients with persistent chest pain 
and no obstructive epicardial coronary artery disease have worse clin-
ical outcomes compared to those without persistent pain including a 
near 2-fold increase in the risk of myocardial infarction and stroke [25]. 

Myocardial infarction with non-obstructed coronary arteries 
(MINOCA) is also common, occurring in 5–10 % of all myocardial in-
farctions, particularly in younger women with fewer traditional risk 
factors presenting with non-ST elevation myocardial infarction [26]. 
The diagnosis of MINOCA is made clinically following coronary angi-
ography that shows no coronary artery stenosis ≥50 % in a potential 
infarct-related artery [27]. In the Acute Catheterization and Urgent 
Intervention Triage Strategy (ACUITY) trial the prevalence of MINOCA 
was ~9 % [28], and one-year non-cardiac death was significantly higher 
in those with MINOCA compared to those with obstructive disease [28]. 
While there are some data to suggest that treatment with the standard 
medications usually prescribed post-myocardial infarction in cases of 
obstructive disease may be beneficial [29], randomized controlled trial 
data are lacking. Moreover, due to the heterogenous characteristics of 
this group it has been suggested that cardiac magnetic resonance (CMR) 
imaging can more fully delineate MINOCA from other causes of elevated 
troponin, such as myocarditis, spontaneous coronary artery dissection, 
coronary embolization [26], and Takotsubo syndrome [30]. This is due 
to the ability of CMR to identify and quantify myocardial scar. In 
Takotsubo syndrome, a condition also highly prevalent in women [31], 
CMD may play a localized role at least in some cases [32,33]. 

As previously mentioned, CMD can also be present in patients with 
flow-limiting lesions in the epicardial coronary arteries. In fact, 
abnormal microvascular function is thought to precede the development 
of obstructive epicardial coronary artery disease [34] and may com-
pound the extent of myocardial ischemia [19]. One important consid-
eration is that the presence of CMD in patients with obstructive 
epicardial coronary artery disease may result in an underestimation of 
epicardial artery lesion severity when evaluated invasively by fractional 
flow reserve. In one study, investigators reported that in patients with 
CMD, the values obtained using fractional flow reserve to identify flow- 
limiting epicardial artery stenoses were higher than in patients with no 
evidence of CMD [35]. Not only can this lead to deferred revasculari-
zation of an epicardial lesion that is flow-limiting but may also explain 
why some patients have persistent ischemic symptoms even after 
“technically” successful revascularization of epicardial artery lesions. 

In addition to being a primary driving force in INOCA, ANOCA, and 
MINOCA, there are many other heart-related conditions where CMD is a 
bystander, but may play a pathologic role. Systemic hypertension 
(without angina or signs of ischemia) [36], non-ischemic cardiomyop-
athy and infiltrative cardiomyopathies [37], diabetic cardiomyopathy 
[38], hypertrophic cardiomyopathy [39–42], aortic stenosis [43,44], 
and other disorders, such as HIV [45], and chemotherapy-associated 
cardiomyopathy are associated with CMD [46] (Table 1). Importantly, 
the bystander presence of CMD in these conditions is associated with 
worse outcomes. For example, the presence of CMD as measured by 

Table 1 
The spectrum of coronary microvascular dysfunction in heart disease.  

CMD as primary driver of pathology 
Angina with no obstructive coronary arteries 
Ischemia with non-obstructive coronary artery disease 
Myocardial infarction with non-obstructed coronary arteries 

CMD as “innocent” bystander 
Aortic stenosis 
Diabetic cardiomyopathy 
Hypertensive heart disease 
Hypertrophic cardiomyopathy 
HIV-associated cardiovascular disease 
Chemotherapy-induced cardiomyopathy 
Heart failure with preserved ejection fraction 
Non-ischemic and infiltrative cardiomyopathy  
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decreased CFR in patients with hypertrophic cardiomyopathy is a strong 
and independent predictor of adverse left ventricular remodeling, left 
ventricular dysfunction, and adverse clinical outcomes including death 
[39–42]. Histologic studies have shown abnormalities of the coronary 
microvasculature in HCM including smaller lumen and decreased 
capillary density [47,48]. CFR is also decreased in aortic stenosis and is 
related to the severity of the stenotic valve orifice [43]. In this patient 
population, CMD may promote myocardial fibrosis and left ventricular 
dysfunction. In one study of patients with severe aortic stenosis under-
going transcatheter aortic valve replacement, CFR improved after the 
valve was replaced [44]. In hypertensive heart disease, a highly preva-
lent condition [49], pathologic changes associated with left ventricular 
hypertrophy include changes in the extracellular matrix, increased size 
of cardiomyocytes, and derangement of the coronary microvasculature, 
and can lead to heart failure with a reduced or preserved ejection frac-
tion [50]. Recent data suggest that CMD leading to ischemia and fibrosis 
plays an important role in the pathophysiology driving heart failure with 
preserved ejection fraction (HFpEF), a condition associated with sig-
nificant morbidity and mortality [51,52]. Decreased coronary blood 
flow as assessed by coronary reactivity testing is associated with the 
presence of diastolic dysfunction in patients with HFpEF and a 5-fold 
increased rate of hospitalization for heart failure exacerbation [51]. 
Whether CMD-associated ischemia leads to diffuse myocardial fibrosis, 
diastolic dysfunction and HFpEF is currently being studied in the NIH- 
funded Women's Ischemia Syndrome Evaluation Mechanisms of Coro-
nary Microvascular Dysfunction Leading to Pre-Heart Failure with Pre-
served Ejection fraction (WISE preHFrEF) project (ClinicalTrials.gov 
NCT#03876223). 

In the early stages of diabetic cardiomyopathy structural and func-
tional abnormalities of the microvasculature are present that result in 
impaired myocardial perfusion and subsequent myocardial fibrosis [38]. 
In these patients, the presence of CMD among diabetics without flow- 
limiting epicardial stenoses was associated with at least as high and 
possibly higher rates of cardiac death compared to nondiabetic patients 
with known obstructive coronary artery disease [53]. Whether CMD is 
the primary pathologic driver of non-ischemic cardiomyopathy and 
infiltrative cardiomyopathies (such as Fabry's disease and amyloidosis) 
or if it is a bystander is unclear [37]. Regardless, the presence of CMD is 
associated with worse clinical outcomes including heart failure and 
death and could represent a focus of therapy for patients with these 
cardiomyopathies [37]. Endothelial dysfunction plays an important role 
in early cardiac transplant vasculopathy. In one study of heart transplant 
recipients, investigators reported significant epicardial coronary artery 
vasoconstriction and increased coronary blood flow in response to 
acetylcholine one year after transplantation. These patients had normal 
coronary flow reserve and no angiographic evidence of transplant vas-
culopathy [54]. Lastly, in people living with HIV, death due to cardio-
vascular disease has increased and CMD may play an important role 
[45]. Data suggest that CMD may be more common in HIV patients 
compared to those without HIV but with similar traditional cardiac risk 
factors [45]. The coronary microvasculature, therefore, could serve as a 
novel target for HIV-associated cardiovascular disease [45]. 

Patients with chronic inflammatory and autoimmune rheumatic 
disorders such as systemic lupus erythematosus and rheumatoid 
arthritis, are at increased risk for adverse cardiac events and CMD plays 
a crucial role in this pathophysiology. A combination of chronic 
inflammation and oxidative stress results in endothelial dysfunction and 
capillary rarefaction resulting in microvascular and macrovascular 
dysfunction [55]. In these patients, reduced CFR is common and is a 
major cause of chest pain in the absence of epicardial coronary artery 
disease [56]. CMD has been reported in nearly half of patients with 
systemic lupus erythematosus with suspected INOCA [57]. In this pa-
tient population, microvascular dysfunction is present in multiple or-
gans including the heart, kidneys, lungs, and skin. This underscores an 
intriguing hypothesis that suggests microvascular dysfunction of the 
heart is an expression of a systemic illness that worsens with age and is 

accelerated by vascular risk factors. Blindness, small vessel disease of the 
brain, pulmonary hypertension, renal failure, and peripheral arterial 
disease are all conditions where microvascular dysfunction plays a key 
role [58]. 

4. Diagnosis 

Consensus opinion from the Coronary Vasomotion Disorders Inter-
national Study Group (COVADIS) suggests that more definitive testing 
for CMD should be pursued if the patient fulfills the following criteria: 
(1) presence of symptoms suggestive of myocardial ischemia; (2) 
objective documentation of myocardial ischemia; (3) absence of 
obstructive coronary artery disease (defined as <50 % coronary diam-
eter reduction and/or fractional flow reserve >0.80); and (4) confir-
mation of a reduced coronary blood flow reserve and/or inducible 
microvascular spasm [59]. Currently diagnostic techniques involve both 
non-invasive and invasive modalities, each with its own inherent risks 
and benefits. Non-invasive methods to assess for CMD include trans-
thoracic doppler echocardiography (TTDE) [60], positron emission to-
mography (PET) [18], CMR [61], and myocardial first-pass computed 
tomography (CT) [62]. PET is considered the reference standard in non- 
invasive testing for CMD. It measures myocardial perfusion reserve 
(MPR) by quantifying myocardial blood flow (MBF) at rest and at 
maximal hyperemia with an MPR < 2 considered as diagnostic of CMD. 
TTDE uses a pulsed-wave doppler focused on the mid left anterior 
descending coronary artery territory to calculate the coronary flow ve-
locity ratio, and a value <2–2.5 suggests impaired microvascular func-
tion. This modality, however, is associated with technical pitfalls and 
requires a steep training curve. CMR measures myocardial perfusion 
reserve index and provides excellent anatomical visualization of the 
heart but it not an option in patients with contra-indications and diffi-
cult for those with claustrophobia. A major limitation to all these non- 
invasive tests is that acetylcholine cannot be used to test endothelial 
function. 

Invasive coronary reactivity testing in the cardiac catheterization 
laboratory offers the benefit of identifying the presence of both 
abnormal vasodilation and constriction pathways. The ratio between 
coronary blood flow at maximal pharmacologic stress and at rest (cor-
onary flow reserve) can be measured. Newer catheter-based invasive 
methods of assessing for CMD have allowed for more direct evaluation of 
the coronary microvasculature [63]. Despite the availability of an array 
of invasive and non-invasive diagnostic techniques, a significant number 
of patients with CMD remain undiagnosed. Circulating biomarkers in 
CMD to diagnose and follow response to therapy is a promising area of 
research and may allow point of care testing in a wide patient population 
from a simple blood draw [64,65]. 

5. Management 

Medications prescribed for secondary prevention for coronary artery 
disease and conventional anti-anginal medications have been studied in 
CMD [66]. In general, these studies are small, short-term pilot studies, 
with the limitations associated with this type of design. Nonetheless, 
regimens that include a potent statin in conjunction with maximally 
tolerated doses of angiotensin-converting enzyme inhibitors (or angio-
tensin receptor blockers if intolerant) have been associated with 
amelioration of symptoms and improved microvascular function [67]. 
In an early study published in 1999, treatment with the beta-blocker, 
atenolol, resulted in a statistically significant reduction in the number 
of anginal episodes and was associated with improved quality of life 
[68]. Vasodilatory beta blockers such as nebivolol likely improve 
symptoms through activation of the eNOS pathway or preservation of 
nitric oxide activity [69]. Calcium channel blockers can also contribute 
to management of CMD via a vasodilatory mechanism [70]. Nitrates 
have been shown to be most effective in reducing angina when used in 
combination with either a calcium-channel blocker or a beta-blocker 
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[71]. Treatment with ranolazine was found to improve CFR and 
decrease angina frequency [72,73]. 

It has been proposed that drugs that work against the effects of 
angiotensin II in the renin-angiotensin-aldosterone system can improve 
the endothelial dysfunction that drives CMD [74]. One study demon-
strated that enalapril therapy reduced exercise-induced ischemia in 
patients with CMD [75]. In a substudy of WISE, subjects with coronary 
flow reserve <3.0 following adenosine were randomized to quinapril 
(80 mg) or placebo for 4 months. Compared to placebo, those random-
ized to quinapril not only had significantly increased coronary flow 
reserve on invasive testing, but also had a significant reduction in 
anginal symptoms [76]. 

More targeted drugs including endothelin receptor antagonists and 
rho-kinase inhibitors have also been studied [77]. In another random-
ized study, simvastatin therapy was shown to significantly improve 
endothelial function in CMD patients as measured by flow-mediated 
dilatation of the brachial artery compared to placebo [78]. Moreover, 
subjects randomized to simvastatin treatment had longer times to ST 
segment changes on stress testing compared to those randomized to 
placebo. Novel, non-medication-based therapies including spinal cord 
stimulation [79], and exercise training [80] have also been studied with 
positive effects. We refer the reader to the paper published by Bairey 
Merz and colleagues for a complete review of the current state of CMD 
treatment [81]. 

The Women's Ischemia Trial to Reduce Events in Non-Obstructive 
CAD (WARRIOR, ClinicalTrials.gov NCT#03417388) is a multi-center, 
prospective study randomizing women with symptoms of ischemia 
and non-obstructive CAD to usual care or intensive medical therapy 
including high-intensity statin, aspirin and maximally tolerated 
angiotensin-converting enzyme inhibitor/or angiotensin receptor 
blocker [82]. Results of this study will provide important information 
regarding response to treatment and long-term clinical outcomes to 
inform future guideline recommendations. 

6. Future considerations 

While much has been learned about CMD there are still many 
unanswered questions regarding its pathophysiology. Mechanistic 
studies are needed to define the extent of structural defects and the 
functional abnormalities in CMD. Results from these studies will not 
only help us better understand the pathophysiology driving CMD but 
may also identify possible targets for novel therapies. Future studies 
should include men and adolescents to better understand the natural 
history of this disease process, and other cardiac conditions where CMD 
is considered an “innocent” bystander but plays a pathologic role and is 
associated with adverse clinical outcomes. Recently, the concept of 
multiple organ microvascular dysfunction has been raised [17,58] and 
of particular interest CMD and cerebral small vessel disease [83]. Lastly, 
research focused on identification and validation of biomarkers and 
genetic polymorphisms may improve our ability to predict risk of 
developing CMD and to diagnose it sooner. 
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