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Abstract: Intracranial hemorrhage is a medical emergency that requires urgent diagnosis and
immediate treatment to improve patient outcome. Machine learning algorithms can be used to
perform medical image classification and assist clinicians in diagnosing radiological scans. In this
paper, we apply 3-dimensional convolutional neural networks (3D CNN) to classify computed
tomography (CT) brain scans into normal scans (N) and abnormal scans containing subarachnoid
hemorrhage (SAH), intraparenchymal hemorrhage (IPH), acute subdural hemorrhage (ASDH) and
brain polytrauma hemorrhage (BPH). The dataset used consists of 399 volumetric CT brain images
representing approximately 12,000 images from the National Neuroscience Institute, Singapore.
We used a 3D CNN to perform both 2-class (normal versus a specific abnormal class) and 4-class
classification (between normal, SAH, IPH, ASDH). We apply image thresholding at the image
pre-processing step, that improves 3D CNN classification accuracy and performance by accentuating
the pixel intensities that contribute most to feature discrimination. For 2-class classification, the F1
scores for various pairs of medical diagnoses ranged from 0.706 to 0.902 without thresholding. With
thresholding implemented, the F1 scores improved and ranged from 0.919 to 0.952. Our results
are comparable to, and in some cases, exceed the results published in other work applying 3D
CNN to CT or magnetic resonance imaging (MRI) brain scan classification. This work represents
a direct application of a 3D CNN to a real hospital scenario involving a medically emergent CT
brain diagnosis.

Keywords: 3D convolutional neural networks; machine learning; CT brain; brain hemorrhage

1. Introduction

Intracranial hemorrhage is a medical emergency that can have high morbidity and mortality if not
diagnosed and treated immediately. This condition affects 40,000 to 67,000 patients in the United States
annually and up to 52% of patients die within one month [1]. Three commonly-encountered sub-types
of intracranial hemorrhage are subarachnoid hemorrhage (SAH), intraparenchymal hemorrhage (IPH),
acute subdural hemorrhage (ASDH). In a severe brain trauma, various permutations of SAH, IPH,
and ASDH can be seen, which we have termed brain polytrauma hemorrhage (BPH) in this work.
The common causes of SAH are trauma and cerebral aneurysmal rupture, while IPH can be caused
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by hypertension, amyloid angiopathy, brain tumor hemorrhage or trauma. ASDH and BPH appear
because of head trauma.

When patients with intracranial hemorrhage present to the emergency department, a computed
tomography (CT) scan of the brain is done to diagnosis intracranial hemorrhage, so that medical or
surgical treatment can follow. CT scans work by exploiting the differential absorptive properties of
body tissues placed between an x-ray emitter and detector. Brain tissue, blood, muscle, and bone give
rise to different levels of x-ray attenuation, expressed in Hounsfield units. By moving the x-ray emitter
and detector circumferentially around a subject, a three-dimensional image of the subject’s internal
tissues is obtained.

Limitations in the availability or experience of clinicians, especially in rural or resource-strapped
health systems, to diagnose CT brains quickly can cause treatment delays. Automating the diagnosis
of CT brain scans, or assisting the clinician in triaging critical from normal scans, would help patients
by expediting their treatments and improve outcomes. Figure 1 shows the axial slices of five CT brain
scans showing a normal brain, SAH, IPH, ASDH, and BPH. The outer rim of uniform white skull bone
surrounds the dark grey brain tissue, and areas of acute hemorrhage, appear as patchy, light-grey areas
of varying shapes.

Sensors 2019, 19, x FOR PEER REVIEW 2 of 13 

 

rupture, while IPH can be caused by hypertension, amyloid angiopathy, brain tumor hemorrhage or 
trauma. ASDH and BPH appear because of head trauma. 

When patients with intracranial hemorrhage present to the emergency department, a 
computed tomography (CT) scan of the brain is done to diagnosis intracranial hemorrhage, so 
that medical or surgical treatment can follow. CT scans work by exploiting the differential 
absorptive properties of body tissues placed between an x-ray emitter and detector. Brain tissue, 
blood, muscle, and bone give rise to different levels of x-ray attenuation, expressed in Hounsfield 
units. By moving the x-ray emitter and detector circumferentially around a subject, a three-
dimensional image of the subject’s internal tissues is obtained. 

Limitations in the availability or experience of clinicians, especially in rural or resource-strapped 
health systems, to diagnose CT brains quickly can cause treatment delays. Automating the diagnosis 
of CT brain scans, or assisting the clinician in triaging critical from normal scans, would help patients 
by expediting their treatments and improve outcomes. Figure 1 shows the axial slices of five CT brain 
scans showing a normal brain, SAH, IPH, ASDH, and BPH. The outer rim of uniform white skull 
bone surrounds the dark grey brain tissue, and areas of acute hemorrhage, appear as patchy, light-
grey areas of varying shapes. 

Figure 1. Computed tomography (CT) brain scans. From left, normal (N), subarachnoid 
hemorrhage (SAH), intraparenchymal hemorrhage (IPH), acute subdural hemorrhage (ASDH), 
brain polytrauma hemorrhage (BPH). Each image represents an individual image slice. One 
patient’s complete stack of CT images contained between 24 to 34 image slices in our dataset. 

The artificial neuron was first described by McCulloch and Pitts in 1943 [2]. This has evolved 
through the symbolic, rule-based artificial intelligence (AI) paradigms, to manual feature-
handcrafting algorithms, and to modern multi-layered or “deep” neural networks, which perform 
feature detection and classification automatically. Convolutional neural networks (CNN) owe their 
inception to Fukushima’s Neocognitron model in 1982 [3], and their popularity to Lecun et al. [4] and 
Krizhevsky et al. [5] The latter employed a CNN to win the 2012 Imagenet Large Scale Visual 
Recognition Challenge, and since then CNNs have been used for many image classification tasks. The 
advantage of CNNs in image classification is the ability to perform feature-extraction and learn high-
level image features automatically without feature-handcrafting, leading CNNs to become the 
dominant machine learning architecture in image recognition tasks. CNNs have been widely used in 
machine vision to perform a variety of tasks, such as image classification, object detection, and 
semantic segmentation. In the medical image analysis space, CNNs have been used for the 
classification and diagnosis of 2-dimensional medical images, such as chest x-rays, retinal 

Figure 1. Computed tomography (CT) brain scans. From left, normal (N), subarachnoid hemorrhage
(SAH), intraparenchymal hemorrhage (IPH), acute subdural hemorrhage (ASDH), brain polytrauma
hemorrhage (BPH). Each image represents an individual image slice. One patient’s complete stack of
CT images contained between 24 to 34 image slices in our dataset.

The artificial neuron was first described by McCulloch and Pitts in 1943 [2]. This has evolved
through the symbolic, rule-based artificial intelligence (AI) paradigms, to manual feature-handcrafting
algorithms, and to modern multi-layered or “deep” neural networks, which perform feature
detection and classification automatically. Convolutional neural networks (CNN) owe their inception
to Fukushima’s Neocognitron model in 1982 [3], and their popularity to Lecun et al. [4] and
Krizhevsky et al. [5] The latter employed a CNN to win the 2012 Imagenet Large Scale Visual
Recognition Challenge, and since then CNNs have been used for many image classification tasks.
The advantage of CNNs in image classification is the ability to perform feature-extraction and learn
high-level image features automatically without feature-handcrafting, leading CNNs to become the
dominant machine learning architecture in image recognition tasks. CNNs have been widely used in
machine vision to perform a variety of tasks, such as image classification, object detection, and semantic
segmentation. In the medical image analysis space, CNNs have been used for the classification and
diagnosis of 2-dimensional medical images, such as chest x-rays, retinal photographs, skin dermoscopic
images, and histology images, with performance comparable to or exceeding human clinicians [6–9].
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In analyzing volumetric magnetic resonance imaging (MRI) or CT data, various machine learning
approaches including 2D CNN have been attempted. These efforts have involved manual slice selection,
extensive manual pre-processing, feature hand-crafting, and segmentation, before classification [10–12].
A number of these approaches classify individual images from a volumetric image stack one image
at a time, turning a 3D classification problem into a 2D task. Other authors have used employed a
combination of 2D CNN in the three planes (axial, coronal, sagittal) that define a 3D volume [13–15].
Roth et al. [14] detected abnormal lymph nodes on thoracic CT scans, by decomposing a 3D volume
of interest into re-sampled 2D views, and then training their CNN on augmented variations of these
2D views. Their CNN achieved a satisfactory sensitivity of 90%, at six false positives per patient.
The disadvantages of these previous strategies include the manual time and effort in hand-crafting,
feature segmentation, and stripping, and the potential loss of spatial contextual information when a
3D volume is analyzed using 2D slices.

Three-dimensional CNNs are an emerging architecture, and have been used mainly in analyzing
video or 3-dimensional volumetric medical images. Previously, the use of 3D CNN was limited as it was
computationally expensive and lengthy to process 3-dimensional kernels and entire volumes of images.
However, more papers on 3D CNN have appeared in the scientific literature with their adoption
likely aided by decreasing computational hardware costs. In medical image analysis, 3D CNNs have
been applied to detecting abnormalities (tumors, hemorrhage, ischemia) in brain, heart, lung, and
liver organs on CT or MRI imaging [16–18]. As a measure of the interest in the clinical problem of
automatically detecting intracerebral hemorrhage on MRI or CT, there is also a growing number of
publications on this topic using 3D CNNs [19,20]. Dou et al. [20] analyzed cerebral microbleeds on MRI
brain scans using a two-stage 3D CNN that screened and then detected microbleeds. Their method
achieved 93% sensitivity, at a cost of 44% precision and 2.7 false positives per patient.

We propose a 3D CNN that classifies CT brain scans into normal (N), subarachnoid hemorrhage
(SAH), intra-parenchymal hemorrhage (IPH), acute subdural hemorrhage (ASDH), and brain
polytrauma hemorrhage (BPH).

In this work, we aim to create a 3D CNN that can automatically detect and diagnose SAH,
ASDH and IPH on CT brain scans, and distinguish them from normal scans. This work would
have direct clinical application in emergency departments and acute-care hospitals worldwide. We
propose a simple and fast 3D CNN that is effective and accurate. It is hoped that the straightforward
implementation of this 3D CNN will lead to its widespread adoption. Specifically, we modify
well-known 2D CNN architectures into 3D CNN. The novel aspects of our work are as follow:

(1) To our knowledge, this is the first demonstration of a 3D CNN on volumetric CT brain data that
classifies patient scans into different acute hemorrhagic variants, which impacts subsequent medical
treatment. Previous work has been limited to detecting normal versus abnormal scans. We also
demonstrate that our network performance gives state-of-the-art results in classification accuracy.

(2) We present a novel image thresholding method optimized for the detection of acute hemorrhage
on CT brain scans, which mimics the visual analysis of radiological images by human radiologists. We
demonstrate that the application of our method improves the classifier performance.

This paper is organized into the following sections. Section 2 describes our methods, with
details on the dataset, network architectures, and training protocols. Section 3 reports our results and
experimentation with various network parameters. Section 4 analyzes the impact, limitations and
future work stemming from our results. Section 5 summarizes and concludes this paper.

2. Methods

2.1. 3-Dimensional Convolutional Neural Networks

The feature map of a convolution layer is formed by convolving the feature map of the previous
layer with learnable kernels, adding a bias term, and then applying an activation function [21].
Specifically, we can define hp

k as the kth feature map of the pth layer, and hp−1
j as the jth feature map of



Sensors 2019, 19, 2167 4 of 12

the previous layer, p− 1. Wp
j,k is a learnable kernel, and bp is the bias term. σ is the activation function,

commonly a rectified linear activation unit (ReLu). This is written as:

hp
k = σ

∑
j

hp−1
j ×Wp

j,k + bp
k

 (1)

A 2-dimensional convolution can be defined for convolving an input image I with a kernel K.
Extending the equation for a 2-dimensional convolution [22] into a 3-dimensional convolution, we
obtain:

S(`, m, n) = (K × I)(l, m , n) =
∑
a

∑
b

∑
c

I(` − a, m− b, n− c) K(a, b, c) (2)

Equation (2) may be expressed as:

S(`, m , n) =
∑

a, b,c
hp−1

j (` − a, m− b , n− c)Wp
j,k(a, b, c) (3)

In Equation (3), hp−1
j is the jth 3-dimensional feature map of the previous layer p− 1, and Wp

j,k is

the 3-dimensional kernel. Substituting Equations (1) and (3), we obtain the equation for hp
k , which is a

3-dimensional feature map:

hp
k = σ

(
Sp

j,k + bp
k

)
(4)

These 3-dimensional convolution layers were stacked with max-pooling and fully-connected
layers. Kernels were initialized with Gaussian distribution and parameters were tuned with standard
stochastic gradient descent and cross-entropy loss minimization.

2.2. Image Thresholding to Detect Acute Hemorrhage

The CNN extracts features from the input images, and most of the features are associated with
edges, shape, and curves present in the input images. It can also be seen by visualizing the different
layers of CNN that the first layer mostly picks up edges present in the images, while the second layer
picks up curves, and the third layer picks up shapes. The human eye is similar in that it also observes an
image for its constituent edges, curves, and shapes, as suggested by the presence of ocular dominance
and orientation columns in the primary visual cortex of the mammalian brain. In detecting anomalies
on medical images, a region of interest (ROI) may be subtle or not apparent to visual inspection by
either human or CNN. Just as thresholding aids a human radiologist to emphasize possibly abnormal
areas, we propose a threshold operator to accentuate individual sharp edges, such that this improves
the likelihood of a CNN detecting a feature, and, therefore, performing a correct classification.

To improve the discriminatory ability of our model, we propose a novel thresholding method
to detect acute hemorrhage. We build on the work of Zhang et al. [23] who used spatial histograms
to detect cars in images. There is a range of pixels intensities which is common in both normal and
abnormal CT scans. Therefore, we can discard these intensities before feeding the image to the CNN
without any loss of information. This is similar to the dimensionality reduction process. In our
proposed method, we generate the average pixel intensity histograms of 2 classes of CT scans (such
as Normal and SAH), to overlap and search for an optimal pixel intensity threshold that accentuates
their difference. Pixel intensities below this threshold are then disregarded. This process creates sharp
edges and shapes around a ROI which helps CNN in feature extraction. An added benefit is that a
CNN will require less time for training.

The intuition underlying this approach is two-fold. First, we observed that normal CT brain scans,
even across different patients are largely homogeneous, which makes a histogram representation of
the class meaningful. Abnormal scans can be thought of as the addition of extraneous blood signal to
normal scans. Second, we also observed that radiologists adjust image contrast levels when reading CT
scans, to accentuate subtle amounts of blood, and to downplay the appearance of normal surrounding
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tissue. Our method attempts to model this behavior in human visual cognition. Using our method
improves the overall performance of the classifier across all classes of acute brain hemorrhage.

2.3. Dataset and Pre-Processing

The dataset consists of non-contrast CT brain images from the National Neuroscience Institute at
Tan Tock Seng Hospital, Singapore. After institutional review board approval, a search of electronic
discharge summaries with the diagnoses matching head injury or intracranial hemorrhage was
performed. The resultant list of patient identifiers was used to query and retrieve relevant scans from
the hospitals’ Picture archiving and communication system (PACS) servers. Each scan was anonymized
and manually checked by the authors to ensure ground truth. The final dataset consisted of 399 unique
patient volumetric CT brain scans representing approximately 12,000 images, summarized by the
different classes in Table 1. These scans had varying numbers of image slices and slice thickness,
owing to variability in CT scanner model and scanning protocols. We prepare the data for 5 five-fold
cross-validation. Training, validation, and test CT scan images were augmented eight-fold by flipping
along the vertical axis, and rotation up to 45 degrees.

Table 1. Number of original unique patient computed tomography (CT) scans.

Normal Subarachnoid
Hemorrhage (SAH)

Intraparenchymal
Hemorrhage (IPH)

Subdural
Hemorrhage (ASDH)

Brain Polytrauma
Hemorrhage (BPH)

130 141 61 32 35

2.4. Network Architecture

Table 2 shows the model architecture used in our 3D CNN. We experimented with various model
architectures including VGGNet and GoogLeNet, to optimize for the trade-off between classification
accuracy and computational time. We aimed to have a model with a straightforward design for easy
trouble-shooting and to facilitate real-world implementation. Like Dou et al. [20], we were concerned
with the impact of processing large files of volumetric brain images on computation time. However,
while they opted for a two-part ensembled screening and discrimination stages, we opted for a single
throughput architecture for simplicity and performance. Figure 2 is a pictorial diagram of our proposed
3D CNN. After the necessary preprocessing steps, input volumetric data of 3D CT scans are passed
through a pre-defined threshold operator as discussed in Section 2.2 and becomes the input to the
3D CNN.

Table 2. Model architecture of the 3-dimensional convolutional neural networks (3D CNN) used in
this work.

Layer Kernel Size Stride Output Size (Width × Length × Depth × Filters)

Input - - 50 × 50 × 28
Convolution 1 3 × 3 × 3 1 50 × 50 × 28 × 32

Pooling 1 2 × 2 × 2 2 25 × 25 × 14 × 32
Convolution 2 3 × 3 × 3 1 25 × 25 × 14 × 64

Pooling 2 2 × 2 × 2 2 13 × 13 × 7 × 64
Convolution 3 3 × 3 × 3 1 13 × 13 × 7 × 128

Pooling 3 2 × 2 × 2 2 7 × 7 × 4 × 128
Fully Connected 1 - - 25,088 × 1024
Fully Connected 2 - - 1024 × 2
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2.5. Training and Implementation

Training was performed on a computer with two Intel Xeon E5-2630 CPU processors, four NVIDIA
GTX 1080 Ti Graphical processing units, and 128 GB of DDR4 Random access memory. The project
was implemented using the Python programming language and the Google Tensorflow library. We
used the rectified linear unit (ReLu) as the activation function, the Adam optimizer, and cross-entropy
as the loss function. We used the grid search approach for optimizing the learning rate, dropout, and
kernel size of the convolution and pooling layers. We varied learning rates from (0.1, 0.001, 0.0001),
and dropout from (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) after each convolution layer and fully connected layer.
The kernel sizes of convolution layers were varied from (1 × 1 × 1, 2 × 2 × 2, 3 × 3 × 3, 5 × 5 × 5), and
pooling kernel sizes ranged from (1 × 1 × 1, 2 × 2 × 2). Eventually, we set the learning rate at 0.001
and set the dropout after the fully connected layer at 0.2. We employed a convolutional kernel size of
3 × 3 × 3 at each layer, with a 2 × 2 × 2 pooling kernel after each convolutional layer. We set β1 = 0.001,
β2 = 0.999; ε = 10−8.

Metrics

To evaluate our network performance, we measured the Sensitivity (S), Precision (P) and F1 scores
across each classification task. TP, FP, FN refer to true positive, false positive, and false negative,
respectively. The F1 score is defined as the harmonic average of Sensitivity and Precision and is a
measure of a test’s accuracy. An F1 score of 1 indicates perfect Sensitivity and Precision, while a score
of 0 indicates the opposite.

S = TP
TP+FN , S = TP

TP+FP (5)

F1 = 2
1
S+

1
P

(6)

The confusion matrix for this 4 Class classification problem is tabulated in Table 3. Table 4
summarizes the Sensitivity, Precision, and F1 scores, re-casting the multi-class problem into a 2-class
problem (Normal versus a specific class) to calculate these metrics.
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Table 3. Multi-Class Classification for Normal and Abnormal CT Scans.

Actual

Normal SAH IPH ASDH

Predicted Normal 129 30 4 0

SAH 7 100 35 3

IPH 15 31 32 0

ASDH 1 7 1 29

Table 4. 2-Class Classification Results (Normal versus a specific Abnormal Class).

Task Sensitivity Precision F1 Score AUC

Normal versus SAH 0.947 0.818 0.878 0.900
(no thresholding)

Normal versus SAH 1.000 0.864 0.927 0.950
(with thresholding)
Normal versus IPH 0.819 0.881 0.849 0.958
(no thresholding)

Normal versus IPH 0.944 0.919 0.932 0.989
(with thresholding)

Normal versus ASDH 0.750 0.666 0.706 0.953
(no thresholding)

Normal versus ASDH 0.938 0.968 0.952 0.999
(with thresholding)
Normal versus BPH 0.925 0.881 0.902 0.989

(no thresholding)
Normal versus BPH 0.850 1.00 0.919 0.990
(with thresholding)

Highest F1 scores are in bold.

3. Results

We performed experiments involving binary classification (Normal versus SAH, IPH, ASDH,
BPH) and multi-class classification. In the latter, BPH was left out as BPH contains features of Normal,
SAH, IPH, and ASDH. For the binary classification experiments, we implemented the experiments
with and without the thresholding method described in Section 2.2.

For the multi-class classification experiments, the model discriminated between four classes with
an overall F1 score of 0.684. Table 3 presents the confusion matrix for the multi-class classification.
The actual number for each class represents the augmented test set after the original test set was
augmented eight-fold. The respective F1 scores for each class are Normal: 0.819, SAH: 0.639, IPH:
0.427, ASDH: 0.829. Thresholding was not implemented for the multi-class classification as it is
optimized for binary classification. The model performed well for Normal and ASDH scans, but only
moderately well for SAH. Interestingly, although the training dataset for ASDH was the smallest,
the model was able to discriminate this the best. This may be due to the fact that ASDH images are
visually grossly asymmetrical compared to the other classes. This is due to brain compression from the
significant subdural hemorrhage (see Figure 1), and may be a strongly activated discriminatory feature.
Surprisingly, a significant number of IPH scans were misinterpreted as SAH, and we hypothesize that
this may be due to subtle SAH traces that may appear on some of the IPH scans.

Table 4 summarizes the results from the 2-class classification experiments. Overall, our model
was able to discriminate between normal and each of the classes with satisfactory results, matching or
exceeding previously published results for similar work (Table 5). We demonstrate that for every class,
the implementation of the thresholding technique improves all the evaluation metrics. The largest
increase was seen in the ASDH class, where the F1 score increased from 0.706 to 0.952, despite a small
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training set. Various model architectures, input image, and filter sizes were modified to optimize for
accuracy and computational time. The original image size of the CT scans was 512 × 512 × 28 pixels
(at 5 mm slice thickness), and the input size to our model was 50 × 50 × 28 pixels. Further decreasing
the input size resulted in deteriorating model performance. We posit that the thresholding technique
improves the signal-to-noise ratio for each input image by downplaying the extraneous image features,
thereby accentuating the presence of acute hemorrhage. We also found that the thresholding technique
decreased training time for the respective models significantly. For example, in the Normal versus SAH
classification task, the model training time was decreased from over 10 h to 1 h 32 min. 3D CNNs are
computationally intensive to train, and any decrease in computational cost and time is advantageous
in clinical deployment.

Table 5. Comparison of results involving brain hemorrhage detection in volumetric brain scans.

Task Reference Sensitivity
Precision F1 Task Reference

Detecting cerebral micro-bleeds Dou et al. [20] 93.2 % 44.3 % -
on MRI brain scans

Brain hemorrhage classification Grewal et al. [24] 88.6 % 81.3 % 0.85
on CT scan

Brain hemorrhage classification Jnawali et al. [19] 77.0 % 87.0 % 0.83
on CT scan

Brain hemorrhage classification Our best performing 92.5 % 88.1 % 0.90
on CT scan method (no thresholding)

Brain hemorrhage classification Our best performing 93.8 % 96.8 % 0.95
on CT scan method (with thresholding)

Dou et al. expressed their evaluation metric as Sensitivity, Precision, and False positives per subject.

4. Discussion

Acute brain hemorrhage is a common neurosurgical emergency which can result in severe patient
morbidity and mortality. It is the result of myriad causes, including trauma, hypertension, cerebral
aneurysm rupture, and the treatment of each is different. Depending on the clinical condition, the
patient may require close observation in a high dependency or intensive care setting, or immediate
neurosurgical operation. It is imperative to minimize the time from diagnosis to treatment, to give the
patient the best chance of recovery.

We propose an automated 3D CNN to classify volumetric CT brain data into various hemorrhagic
variants, to assist doctors in expediting patient treatment. We trained and tested our model on 399 CT
brain images from our hospital to classify CT brain scans into normal, SAH, IPH, ASDH and BPH.
These classes were chosen as the neurosurgical treatment for each class is different.

We also proposed and implemented a novel pixel thresholding method to detect acute hemorrhage
on CT brain scans. This method improved classifier performance on our dataset and can be conceivably
exported for use in other datasets for other anatomical regions, where acute hemorrhage detection
is required. Potentially, aside from detecting acute blood, this method can also be generalized for
the detection of other abnormalities such as tumors. Figure 3 demonstrates an image slice of a CT
brain with acute subdural hemorrhage. The hemorrhage is the white crescent on the left of the image,
which is putting pressure on the grey areas of brain, and pushing it to the right of the image. To
visualize the activations in the 3D CNN better, we used the deconvolution technique described by
Yosinski et al. [25] to visualize this single image. The top row of the image (boxes B and C) represent
convolution layer 1 and pooling layer 1, respectively. The bottom row (boxes D and E) represent
the same layers with thresholding applied. The difference with thresholding is that the edges of the
target hemorrhagic lesion appear more distinct and sharper, which may account for why thresholding
improves classification accuracy.
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Figure 3. To demonstrate the effect of thresholding, a single slice of an ASDH CT Brain scan is shown,
with the corresponding activations of convolution and pooling layers. A, original image. B, 1st
convolution layer. C, 1st pooling layer. D, 1st convolution layer with thresholding applied. E, 1st
pooling layer with thresholding applied. D and E appear sharper than B and C, demonstrating how
thresholding can accentuate abnormal areas, and improve classifier performance.

In this paper, we demonstrate state-of-the-art 3D CNN classifier performance for different
classes of acute brain hemorrhage. In addition, the application of our thresholding method for acute
hemorrhage enables our model to achieve further additional improvement in classification. In the
4-class classification task, our model achieved an overall F1 score of 0.684. To our knowledge, there has
been no published work involving multi-class classification of different classes of brain hemorrhage for
comparison. In the 2-class classification task, the best performance was achieved in differentiating
normal from ASDH scans, with a F1 score of 0.952 using our proposed thresholding method. The
largest improvement with thresholding was also seen in the ASDH class, as the initial F1 score was
only 0.706.

There has been a long history in the attempt to analyze hemorrhage in volumetric CT and MRI data.
Before the widespread use of CNNs in image analysis, methods used included Hopfield networks [26],
support vector machines [27], and segmentation masking with logistic classifiers [28]. Although
these simple classifiers performed well, they were often applied to single image slices with obvious
pathology, that were often manually chosen, which, therefore, represents an unrealistic problem
scenario. Hybrid 2D CNN methods exemplified by Roth et al. [14] were a bridge to the 3D CNN
training of networks. Fully 3D CNN model local and contextual spatial dependencies and extract
features in all three dimensions of image voxels. Kamnitsas et al. [16] exploited the dense inference
technique and small kernels, to segment lesional areas on brain MRI scans. Of note, they used a dual
11-layer 3D CNN pathway to process images at multiple scales, and Conditional Random Fields to
decrease their false positive rate.

There are two points worth noting in our network architecture design. First, we deliberately
kept our network architecture simple with relatively few layers, and did not leverage on other
techniques, such as ensembling and transfer-learning. This was for both practical and theoretical
considerations. The application of full 3D CNN to volumetric medical images is nascent, and by
purposely keeping the model architecture straightforward, we are able to assess the effect size of various
hyperparameter-tuning quickly, experiment with various architectures efficiently, and to troubleshoot
network errors expediently. Running 3D CNN is computationally intensive, and a simpler network
mitigates lengthy run-times.
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From a more theoretical perspective, a straightforward architecture also allows us to grasp a
sense of the baseline performance of a 3D CNN, and to describe our experimentations with a clear
mathematical description. We believe that a firm theoretical framework will help in directing further
areas for exploration, rather than blindly tuning hyperparameters, or implementing network boosting
ensembling architectures without understanding.

The second point is that with a straightforward network architecture design, we were able
to demonstrate the clear improvement that our thresholding method brought for detecting acute
hemorrhage. We arrived at this thresholding method by observing radiologists as they scrolled through
various patient CT scans. We noted that in situations where areas of acute brain hemorrhage were
subtle, the radiologists would increase and decrease the image contrast to accentuate the appearance of
the abnormality, which in this case was blood. We did the same thing while studying our dataset, and,
therefore, explored how this optimization of human visual cognition or analysis could be implemented
algorithmically. We took inspiration from the work of Zhang et al. [23] who used pixel intensity
’spatial histograms’ for object detection within an image. Our underlying assumption was similar, that
objects of a certain class would have similar patterns of pixel intensities. Where we differ is that while
Zhang et al. were concerned with the spatial location of the object, we are concerned more with the
actual presence of a particular pattern of pixel intensity, and the point of divergence from the pattern
denoting a normal scan. This is because in CT brain scans depicting a hemorrhage, the blood even
within the same class of brain hemorrhage can appear in several different areas of the brain.

The proposed architecture in this work has important clinical significance. The different abnormal
diagnoses studied in this work all exert a significant epidemiological and social-economic toll on
healthcare systems and societies. SAH, IPH, ASDH, and BPH are all neurosurgical emergencies that
require immediate but different treatments to maximize the likelihood of patient survival and to
achieve a good long-term functional outcome. Our work has a role in helping clinicians minimize
the time between diagnosis and treatment, especially in hospitals that may not have a radiologist
after hours, or in remote rural settings where no clinicians are available. Even in large tertiary care
hospitals with 24 h-radiologists, our proposed architecture framework can assist radiologists by
triaging important abnormal scans from the large numbers of normal scans that are read sequentially
as patients are scanned.

One limitation of this work is the relatively small and un-balanced dataset that we worked with,
which is a common issue in medical image analysis, with a bias towards normal samples. At 399 images,
our dataset size is comparable to those used in many other works [20,24] but smaller than the almost
40,000 CT scans used by Jnawali et al. [19]. Despite this, data augmentation techniques have resulted
in performance comparable to Jnawali et al.’s much larger dataset. This may be due to the fact that
medical data is relatively homogeneous in appearance, compared to natural image processing tasks. It
would be interesting to study what is the optimal dataset size for processing specific volumetric image
classification tasks, in CT, MRI, 3D ultrasound images for different lesions. We addressed concerns of
overfitting with known mitigating techniques, such as dropout, which were applied to the early layers
in our network.

There are many avenues for further exploration in volumetric medical image analysis. CNNs and
3D CNNs have been the dominant network architecture in image analysis, but unsupervised learning
methods for medical image analysis are emerging for 3D object generation [29,30], and they have been
largely unexplored in the context of 3D medical image analysis. Generative architectures, such as
variational autoencoders and generative adversarial networks, have not been applied to volumetric
medical data, and these techniques may potentially mitigate the need for large well-labelled datasets.
Specific to our work, we intend to explore if adding a screening stage to a 3D CNN, or multi-scale
receptive fields can improve performance, as some authors have demonstrated [16,20] for MRI brain
scans. The addition of a memory or attention-based component to model long term dependencies in
3D medical image analysis [24,31,32] is also interesting for further investigation, as there is evidence
for a strong biological correlate with the mammalian visual system [33].
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5. Conclusions

This work presented the implementation of a 3D CNN to classify and diagnose volumetric CT
brain data. Normal CT brains and a variety of abnormal scans constituting different types of brain
hemorrhage were classified by our 3D CNN. We also implement a novel optimization method to detect
acute hemorrhage on CT scans. The proposed 3D CNN can automatically detect important normal
and abnormal features of cerebral anatomy without handcrafting, or significant data pre-processing.
Computational costs were also modest, which will add to straightforward implementation. Results from
classification experiments demonstrated that the 3D CNN outperforms previously published methods in
detecting abnormal brain scans with hemorrhage, with higher sensitivity and recall. Our 3D CNN can be
applied to other volumetric medical data and can be used to expedite and improve patient care.
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