
TYPE Original Research

PUBLISHED 29 September 2022

DOI 10.3389/fnins.2022.944262

OPEN ACCESS

EDITED BY

Markus Diesmann,

Helmholtz Association of German

Research Centres (HZ), Germany

REVIEWED BY

Cyrille Mascart,

Cold Spring Harbor Laboratory,

United States

Mingyuan Meng,

The University of Sydney, Australia

*CORRESPONDENCE

Lingfei Mo

lfmo@seu.edu.cn

SPECIALTY SECTION

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

RECEIVED 15 May 2022

ACCEPTED 30 August 2022

PUBLISHED 29 September 2022

CITATION

Mo L and Tao Z (2022) EvtSNN:

Event-driven SNN simulator optimized

by population and pre-filtering.

Front. Neurosci. 16:944262.

doi: 10.3389/fnins.2022.944262

COPYRIGHT

© 2022 Mo and Tao. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

EvtSNN: Event-driven SNN
simulator optimized by
population and pre-filtering

Lingfei Mo* and Zhihan Tao

FutureX Lab, School of Instrument Science and Engineering, Southeast University, Nanjing, China

Recently, spiking neural networks (SNNs) have been widely studied by

researchers due to their biological interpretability and potential application

of low power consumption. However, the traditional clock-driven simulators

have the problem that the accuracy is limited by the time-step and the

lateral inhibition failure. To address this issue, we introduce EvtSNN (Event

SNN), a faster SNN event-driven simulator inspired by EDHA (Event-Driven

High Accuracy). Two innovations are proposed to accelerate the calculation

of event-driven neurons. Firstly, the intermediate results can be reused in

population computing without repeated calculations. Secondly, unnecessary

peak calculations will be skipped according to a condition. In the MNIST

classification task, EvtSNN took 56 s to complete one epoch of unsupervised

training and achieved 89.56% accuracy, while EDHA takes 642 s. In the

benchmark experiments, the simulation speed of EvtSNN is 2.9–14.0 times that

of EDHA under di�erent network scales.

KEYWORDS

spiking neural network (SNN), event-driven, acceleration, simulator, unsupervised

learning

1. Introduction

Spiking neural networks (SNNs) (Maass, 1997) have attracted increasing attention

because of their characteristics, including preferable biological interpretability and low-

power processing potential (Akopyan et al., 2015; Shen et al., 2016; Davies et al., 2018;

Moradi et al., 2018; Pei et al., 2019; Li et al., 2021; Pham et al., 2021). Compared to

traditional artificial neural networks (ANNs), SNNs increase the time dimension so that

they naturally support information processing in the temporal domain. To introduce the

extra time dimension into the calculation, twomethods are usually adopted: clock-driven

and event-driven. The idea of clock-driven is to discretize the time and update the state

of all neurons in each timestamp. The clock-driven method is widely used in the existing

SNN frameworks (simulators) (Goodman and Brette, 2008; Hazan et al., 2018; Stimberg

et al., 2019) because it is simulated by the iterative method which can be compatible

with the differential equations of most neuron models. However, this method has two

problems that cannot be ignored. Firstly, there is a conflict between simulation accuracy

and calculation speed. The smaller the time step, the higher the simulation accuracy

and the larger the calculation amount. Secondly, lateral inhibition cannot be effective

on other neurons that fire lately in the same time slice.

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.944262
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.944262&domain=pdf&date_stamp=2022-09-29
mailto:lfmo@seu.edu.cn
https://doi.org/10.3389/fnins.2022.944262
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.944262/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Mo and Tao 10.3389/fnins.2022.944262

In the event-driven method, the state of neurons is updated

when spikes are received, which means that the sparsity of spikes

can be fully utilized to reduce computations. The realization

of event-driven simulation on hardware (Davies et al., 2018;

Li et al., 2021) has the ability of parallel computing and the

potential of low-power processing, but it is costly and less

flexible than software. Our team previously proposed an event-

driven software simulation framework EDHA (Event-Driven

High Accuracy), whose core task is to maintain the pulse priority

queue (Mo et al., 2021). During the simulation, the earliest spike

is popped from the queue, and then postsynaptic neurons are

updated independently. However, the high complexity of its

single update limits the overall simulation speed.

In this paper, an event-driven software simulator named

EvtSNN (Event SNN) is introduced, which includes two

contributions. To begin with, neurons are clustered into

populations, which means that intermediate results can be

reused. In addition, pre-filtering is adopted to avoid unnecessary

calculations according to the condition. After rewriting the

framework code with the C++ programming language and

combining these two innovations, the simulation speed of

EvtSNN has been greatly improved. In the ablation experiment

task, the processing capacity of EvtSNN(C++) reached 117.8 M

spikes × fan-outs/s, which was 13 times that of EDHA(java). In

the unsupervised training task ofMNIST, the network (784–400)

took 56 s to train one epoch with an accuracy of 89.59%, which

is 11.4 times faster than EDHA.

In Section 2, we describe the related work, including

unsupervised learning and supervised learning, as well as clock-

driven and event-driven simulation. In Section 3, the principle

of EDHA is reviewed, and two innovations are proposed

to accelerate the event-driven simulation. Section 4 contains

several comparison experiments and results. And the discussion

is in Section 5. Finally, Section 6 summarizes the current work.

2. Related works

The learning methods of SNN mainly include supervised

learning and unsupervised learning. Supervised learning is

similar to the traditional ANN, which can be trained by the

gradient back-propagation (BP) method. However, the spike

is non-differentiable, so ANN to SNN (Sengupta et al., 2019;

Deng and Gu, 2021) or surrogate gradient (Neftci et al., 2019) is

often used to handle this problem. Unsupervised learning refers

to the learning style of neurons in biology, which has better

biological interpretability. Similar to EDHA, EvtSNN pays more

attention to biological interpretability, and currently mainly

supports unsupervised learning rules, such as the spike time-

dependent plasticity (STDP) (Masquelier and Kheradpisheh,

2018) learning rule.

Most SNN simulators need to deal with the temporal

dimension. Clock-driven and event-driven approaches are

often used to deal with this problem. Owing to high model

compatibility, the clock-driven method is mostly used in

software SNN simulation frameworks, such as Brian (Goodman

and Brette, 2008), Brian2 (Stimberg et al., 2019), and BindsNET

(Hazan et al., 2018), etc. Brian and Brian2 were frameworks

based on code generation, which can specify the neuron dynamic

equation and synapse update rule to generate corresponding

codes. On the other hand, BindsNET was based on PyTorch

(Paszke et al., 2019) and implemented the behaviors of neurons

and synapses by writing code. Its advantage is that Graphics

Processing Unit (GPU) acceleration can be conveniently carried

out based on PyTorch. Although with high model compatibility,

the clock-driven method also has some problems. Firstly, the

existence of time-slice limits the simulation accuracy, and the

calculations increase inversely with the decrease of time-step.

Secondly, when using lateral inhibition, multiple neurons in

the same layer can activate in a time step, leading to multiple

winning neurons that are unfavorable for training.

The event-driven method is mostly used in Field

Programmable Gate Array (FPGA) and Application Specific

Integrated Circuit (ASIC). FPGA is an expensive and flexible

chip with limited resources, which is suited for laboratory

prototype validation and not for actual deployment (Pham et al.,

2021). Some researchers have made ASIC for simulating SNN,

such as DYNAPs (Moradi et al., 2018), TrueNorth (Akopyan

et al., 2015), and Loihi (Davies et al., 2018), etc. The power

consumption of these is at the milliwatt level, but they have

expensive costs for design, and it is not convenient to add

new functions.

Event-driven simulation can take advantage of the sparsity of

spike events and neural connections. EDHA is an event-driven

framework proposed by our team earlier, whose core task is to

maintain the spike priority queue. Without the concept of time-

slice, it solves the problems of lateral suppression failure and the

conflict between accuracy and speed in the clock-drivenmethod.

However, there are large calculations in the update of neurons in

EDHA, which limits the overall simulation speed. Therefore, two

innovations have been proposed to solve this problem.

3. Methods

3.1. Workflow of EDHA framework

The SNN simulation framework needs to deal with

additional time dimensions. The clock-driven method is similar

to polling, while the event-driven method calculates only when

pulse events are received.

As an event-driven simulation framework, the core task of

EDHA is to maintain the spike priority queue. The specific

steps are as follows: (1) take out the earliest spike event that

should be issued from the priority queue; (2) update the neurons

which are connected behind the fired neuron (i.e., post-synaptic

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2022.944262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Mo and Tao 10.3389/fnins.2022.944262

neurons); (3) adjust the priority queue elements according to the

predicted spike information. Figure 1 is a flow chart of the above

processing details.

3.2. Neuron and synapse model

The leaky integrate-and-fire (LIF) model (Gerstner et al.,

2014; Mo et al., 2021) was adopted in this paper, which is

represented by Equations (1) and (2). δ(t) in the formula is the

impulse function, and other parameters are explained in Table 1.

It should be noted that there is no dependence on membrane

potential in Equation (2), which facilitates the derivation of

other formulas.







dv
dt

= −
v
τv

+ gE v < vth

v = vreset v ≥ vth
(1)











dgE
dt

= −
gE
τg

+ C
∑

i,j
wiδ(t − ti,j) v < vth

gE = 0 v ≥ vth

(2)

The adaptive threshold method is often used to avoid a few

neurons firing too frequently. It is increased by the fixed item

(θ) at each fire, and otherwise exponentially decays toward θ0

with a time constant (τθ ). It is more difficult to generate new

spikes after increasing the threshold, which is beneficial for other

neurons’ learning (Masquelier and Kheradpisheh, 2018). Owing

to large τθ , the decay of vth in a short time can be ignored in

practice, which simplifies some calculations.

The plasticity synaptic model is an important part of

unsupervised learning. Like EDHA, the STDP learning rule was

employed in this paper, see formula (3) (Mo et al., 2021). In

which σ+ and σ− are the amplitude constants of LTP and LTD,

τ+ and τ− are the time constant, and tpre and tpost are the firing

time of the pre-/post-synaptic neuron.

1w =











σ+ · e
−

tpost−tpre
τ+ tpre < tpost

σ− · e
−

tpre−tpost
τ− tpre > tpost

(3)

3.3. Update steps of neuron

In step (2) of the event-driven framework workflow, there

are three sub-steps: (a) calculate the current state according

to the update interval, (b) handle the currently input spike

event, and (c) estimate the potential pulse based on the current

state. Figure 2 shows the diagram of the above three sub-steps,

and the formula of each step is related to the neuron model.

It is important to note that the neuron’s membrane potential

may continue to increase for some time after receiving a single

spike, so sub-step (c) is required to estimate the potential pulse

of neurons.

Unless received spike or activated, v and gE will not change

instantaneously, and Equations (4) and (5) are obtained. T

represents the time of the currently received spike. At any time

from T to the next pulse received, the state can be solved by

the above two equations, which is the computing formula in

sub-step (a).

v(T + 1t) = v(T) · e
−

1t
τv + gE(T) ·

τgτv

τg − τv
(e
−

1t
τg − e

−
1t
τv )

(4)

gE(T + 1t) = gE(T) · e
−

1t
τg (5)

In sub-step (b), the influence of the pulse on the current state

is calculated. According to Equation (1) and (2), v is unchanged

and gE increases by Cwi,j instantaneously when received spike.

In sub-step (c), the neuron needs to estimate whether it can

generate a new spike according to current states. After receiving

the spike, the conductance of the neuron increases, which

indirectly promotes the increase of the membrane potential, and

it is difficult to predict the precise timing of the pulse firing.

Instead, the method of calculating the peak value of voltage was

adopted. If the peak exceeds the threshold, combined Equation

(4), the dichotomy method was employed to calculate the exact

spike time (Mo et al., 2021).

Here are the details of solving peak membrane potential.

Equation (1) shows that the membrane potential is affected

by the self-attenuation term and conductance. The voltage will

increase when the conductance is large and plays a leading role.

In the case no subsequent spikes are received, the conductance

gE decays exponentially to 0. In other words, if the conductance

is large enough, the voltage will rise first and then fall, and

reach the peak during this period. In other cases, potential

decreases monotonically under the influence of attenuation

term. According to Equation (4), the extreme point t
′

and the

corresponding peak membrane potential were obtained, i.e.,

Equations (6) and (7).

t
′

=
τgτv

τg − τv
· [ln(

τg

τv
)+ ln(1−

τg − τv

τgτv
·
v(T)

gE(T)
)] (6)

vmax =







gE(T)τv[
τg

τv
(1−

τg−τv

τvτg
·
v(T)
gE(T)

)]
−

τv
τg−τv t

′

> 0

v(T) else
(7)

In the above formula, there is a large computational

complexity in sub-step (a) and (c), which is the bottleneck in

the whole simulate computation. However, it is found that two

points can be optimized in the actual calculation. First, there

are many same 1t of postsynaptic neurons (fan-outs), which

means the decay factors can be reused. Second, the complicated

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2022.944262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Mo and Tao 10.3389/fnins.2022.944262

FIGURE 1

The computational flow chart of EDHA and EvtSNN, which core task is to maintain the spike priority queue.

TABLE 1 Explanation and experimental value of the parameters in the LIF neuron model.

Parameter Explanation Section 4.1 Section 4.2 Section 4.3

v Membrane potential

gE Excitatory conductance

τv The leaky time constant of voltage 20 20 50

τg The leaky time constant of conductance 1 5 5

C Conductivity gain coefficient 1 1,000/(N·Fr) Variable

wi Weight connect to presynaptic neuron i Rand (0, 0.3) 1 Rand (0.45, 0.55)

ti,j The time of jth spike of presynaptic neuron i

vth Activation threshold of neuron

vreset Reset potential after fire 0 0 0

θ0 Adaptive threshold baseline 40 100 75

θ Increment of adaptive threshold 0.5 0.5 2.5

τθ Time constant of adaptive threshold 1e7 1e7 1e7

calculation in sub-step (c) can be omitted if the neuron will

not be activated in the current state. Therefore, in the following

sections, the two innovations of population computing and pre-

filtering were proposed, which avoid repeated calculation and

unnecessary calculation, respectively.

3.4. Population computing

The supported connection style in EDHA was the fine-

grained (one-to-one) connection between neurons, and it

is extremely flexible. However, the coarse-grained (layer-to-

layer) connection is usually adopted due to its convenience.

Furthermore, all neurons in the population will be updated

when they receive a spike so that they have the same update

interval. According to Equations (4) and (5), the decay factors

of neurons in the population can be reused due to the same

update interval.

To cooperate with the population, the local priority queue

was introduced, which sorted the pulses in the population

and provided the earliest spike to the global queue. It slightly

increases the complexity of the program and reduces some

flexibility. However, using the concept of the population to

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2022.944262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Mo and Tao 10.3389/fnins.2022.944262

FIGURE 2

Event-driven neuron updated diagram. The neuron is updated when a spike is received, which consists of three sub-steps: updating states,

processing the input spike, and predicting the potential spike.

manage multiple neurons achieves high cohesion and low

coupling, which is beneficial to follow-up work.

In addition, due to the introduction of the concept of

population, the simulation could support more operations, such

as the delayed update of the adaptive threshold. In EDHA,

neurons update the threshold when receiving a spike, but

usually, the threshold change is very small. The delay update

threshold has little effect on the simulation accuracy while

avoiding a lot of exponential calculations.

3.5. Pre-filtering

In sub-step (c), the peak potential is calculated according to

the current state. In most cases, the peak potential of the neuron

will not exceed the threshold after receiving the spike, which

means that many peak calculations are unnecessary. Therefore,

the judgment condition of pre-screening was proposed to filter

out unnecessary calculations at a low cost.

At time tf , the membrane potential increases to vth, and

inequality (8) can be derived. This inequality is a necessary

condition for activation. If the current conductance does not

meet this condition, it means that the neuron will not generate a

spike in the future unless more input events are received.

v
′

(tf ) = −
v(tf )

τv
+ gE(tf ) ≥ 0 (8)

Inequality (8) can be used as the condition of pre-filtering,

but it does not involve other information. For example, when

the difference between v and vth is large, a greater gE is required

to boost v. When voltage attenuation is neglected, it is easy to get

the contribution of conductance to the potential which is shown

in inequation (9). After integration and arranging, inequality

(10) is obtained, which reflects the contribution of conductance

to membrane potential. Combining inequality (8), the judgment

condition (11) can be obtained finally.

dv

dt
= −

v

τv
+ gE ≤ gE (9)

1v ≤

∫

gE dt =

∫

−τg
dgE

dt
dt = −τg1gE (10)

gE(T) ≥ gE(tf )+
v(tf )− v(T)

τg
≥

vth
τv

+
vth − v(T)

τg
(11)

Inequation (11) is also an essential condition for the neuron

to activate and then emit a spike. If the current state does not

meet this condition, no pulse will be generated in the future

(unless more input events are received), which means that

complicated peak calculations can be ignored. This inequality

makes use of most information, such as voltage, threshold, and

two time-constants (the “leak” terms τv and τg), and it is a good

pre-filtering condition. Figure 3 shows the pre-filtering effect,

and only a few cases (the purple solid dots) need to calculate the

peak value, thus avoiding unnecessary computational overhead.

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2022.944262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Mo and Tao 10.3389/fnins.2022.944262

FIGURE 3

E�ect of conductance pre-filtering. The peak value needs to be

calculated only when the updated conductance is greater than

the condition.

3.6. Method summary

In this section, the principle of the event-driven simulator

EDHA is reviewed, and two innovations are proposed to

optimize the problem of a large amount of calculation in a

single update, which is shown in Figure 4. Based on EDHA and

the above two optimizations, we propose the new simulation

algorithm, named EvtSNN.

4. Experiments and results

In this section, Brian2 (python), BindsNET (python), and

EDHA (java) were selected as comparison frameworks. To

be fair, each framework was tested on the central processing

unit (CPU) platform with one thread. The test platform is a

workstation with Intel Xeon Silver 4215R@3.2 GHz CPU and

the operating system is Ubuntu20.04. The parameters used

in the experiments are shown in Table 1. The test programs

of this section are shown in http://www.snnhub.com/FutureX-

Lab/EvtSNN-exe.

In Brian2 simulator, one can specify different device

as the backend, including runtime (cython or numpy),

cpp_standalone, genn and so on. For the cpp_standalone and

genn backends, they can avoid repeating compilation by setting

build_on_run to False, but this approach cannot adjust the

parameters of the next run according to the simulation results of

this run. The runtime (cython) is the relatively fastest backend

when the simulation time is short, and it is also selected as

the default backend of Brian2 in the follow-up experiments.

Furthermore, without changing the network structure and

parameters, an empty function could be used tomask before_run

after run(0ms), which can avoid generating duplicate code,

named Brian2*.

4.1. Performance test

The network structure used in the test included an input

neuron layer (200 neurons), an output neuron layer (200

neurons), and fully connected synapses. With a 10 Hz average

fire rate and 10,000 ms simulation time, there were 20 k

spikes in total. For testing, we used the algorithm described in

Bautembach et al. (2020) for generating the input spikes to the

networks.

Table 2 shows the performance test results of the above

four simulators. It can be seen that the simulation time of

the clock-driven framework changes inversely with dt. When

dt was reduced from 1.0 to 0.01 ms, the simulation accuracy

was improved, but the simulation time was increased to nearly

100 times. Thanks to no time-step limitation, the event-driven

simulator has extremely high simulation accuracy, which was

almost the same as the output spikes of the clock-driven

simulator with dt = 0.01 ms (∼511). And the computation

of event-driven simulator is only affected by the number

of spikes and neuron fan-outs. According to Table 2, the

processing capacity of EvtSNN reached 20 k×200/0.033958 s =

117.8 M spikes×fan-outs/second. Compared with EDHA, the

performance of EvtSNN has greatly improved without loss of

simulation accuracy.

In addition, we compare the results of Brian2 and BindsNET

using GPU acceleration. Among them, Brian2GeNN (GPU)

takes a long time to compile, and when dt is reduced from 1.0

to 0.01 ms the time-consuming increment of Brian2GeNN is

similar to that of Brian2 (CPU), whichmeans that the processing

capacity of Brian2GeNN has not been significantly improved. At

the same time, the speed of BindsNET-GPU is not as fast as that

of BindsNET (CPU). It can be seen that in some cases, such as

small networks and sparse pulses, using the GPU does not make

the SNN simulation faster.

4.2. Benchmarking

The amount of computation of event-driven simulation

is related to the number of spikes and neuron fan-outs.

Theoretically, when the number of neurons in each layer

increases and the firing rate of the input layer remains, the

time-consuming increases in square trend. In this section,

the simulation experiments of different scale networks were

designed. The time step (dt) of Brian2 and BindsNET was set

to 1.0 ms.

The structure of the network was two neuron layers, which

were fully connected. We marked the number of neurons in

both layers as N and the firing frequency of the input layer

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2022.944262
http://www.snnhub.com/FutureX-Lab/EvtSNN-exe
http://www.snnhub.com/FutureX-Lab/EvtSNN-exe
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Mo and Tao 10.3389/fnins.2022.944262

FIGURE 4

The optimization principle of innovation points. Population computing uses the hidden information of the same update interval to reuse decay

factors to avoid repeated calculations. Pre-filtering adopts a low-cost judgment condition to filter out unnecessary calculations to reduce the

average time-consuming.

as Fr. Under different N and Fr, we recorded the execution

time of simulating the network for 1,000 ms. To avoid spike

number drastic change, the impact factor of weight (i.e., C)

changed inversely according to N and Fr, thus stabilizing the

firing frequency of the output layer.

The experimental results are shown in Figure 5. The

horizontal and vertical coordinates of the chart were logarithmic

coordinates, which could easily see the time-consuming

growth trend. As predicted by the previous theory, the time

consumption of the four simulators increased approximately

square with the increase of the number of neurons (purple

dotted baseline). Without the learning rule, in the case of small

network scale (e.g., hundreds of neurons), the fastest simulator

was EvtSNN, otherwise, it was Brian2*. When Fr increased

(e.g., 20 Hz), compared with the clock-driven simulator,

the performance of EvtSNN and EDHA decreased relatively.

EvtSNN was the fastest framework at different N and Fr when

using the STDP learning rule. The speed of EvtSNN is 2.9–14.0

times that of EDHA under the same calculation flow.

Brian2* performs better when it comes to large-scale

network simulation, but the following points should be noted.

Firstly, the statistical time taken by Brain2* does not include

the time taken to generate the code, so it appears to be faster.

In many cases it is necessary to change the run parameters, at

which point Brian2 needs to recompile the code, so the extra

time taken to compile cannot be ignored. Secondly, the input

layer in the benchmark experiments had the same frequency

of pulse delivery for each neuron, and there was no channel

TABLE 2 Performance test results of simulators.

Simulator Method dt (ms) Time-

consuming

(s)

Output

spikes

BindsNET Clock-driven 1.0 2.353 499

0.1 22.486 508

0.01 231.169 510

BindsNET-GPU Clock-driven 1.0 4.068 499

0.1 38.851 508

0.01 383.747 510

Brian2 Clock-driven 1.0 0.667 587

0.1 3.169 519

0.01 30.284 511

Brian2* Clock-driven 1.0 0.312 587

0.1 3.035 519

0.01 29.915 511

Brian2GeNN Clock-driven 1.0 19.630 587

0.1 21.787 519

0.01 49.443 511

EDHA Event-driven None 0.439 510

EvtSNN(ours) Event-driven None 0.034 511

sparsity, so the event-driven framework, EvtSNN, did not take

full advantage of sparse computation. Finally, the time step(dt)

of the clock-driven framework in the benchmark experiments

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2022.944262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Mo and Tao 10.3389/fnins.2022.944262

FIGURE 5

Benchmark simulation results. (A–D) No learning rule, the firing frequency of input layer neurons is 2, 5, 10, and 20 Hz, respectively. (E–H) Using

the STDP learning rule, the firing frequency is 2, 5, 10, and 20 Hz, respectively.

is 1.0 ms, and decreasing dt for higher simulation accuracy will

increase the time consumption inversely; whereas EvtSNN has

no time step limitation and has a fixed time consumption and

high simulation accuracy.

4.3. Unsupervised training task on MNIST
dataset

In this section, the performances of several simulation

frameworks were compared on the unsupervised training

task of MNIST. The network mainly included the input

neuron layer, output neuron layer, feature synapses layer, and

suppression layer, which was inspired by Diehl’s paper (Diehl

and Cook, 2015). In EDHA and EvtSNN, the suppression

layer was replaced by direct lateral inhibition, because it

can be efficiently realized by the event-driven framework,

and the network structure after modification is shown

in Figure 6. The training code for Brian2 and BindsNET

come from https://github.com/zxzhijia/Brian2STDPMNIST and

https://github.com/BindsNET/bindsnet, respectively.

The MNIST dataset is image style data with 28 × 28 input

pixels and 60,000 training samples (LeCun et al., 1998). Before

being fed to the spike neural network, the image data should

be encoded in spikes format. In EDHA, to reduce the number

of input spikes and the amount of event-driven calculation, the

time encoding method was adopted, and each pixel was coded

into at most one pulse. The average pulse number of samples

FIGURE 6

Unsupervised training network structure. Input images are

encoded into spikes and then fed into the spiking neural

network. The network includes an input layer and an output

layer (excitation layer), there are synapses with learnable weights

between them. Any neuron in the output layer has inhibitory

connections with fixed weights to the others to achieve lateral

inhibition.

encoded in time encoding is far less than that of frequency

coding, which can greatly reduce the calculation and speed up

the simulation of the event-driven framework.

Unsupervised training configuration, simulation time, and

training results are shown in Table 3. The number of neurons

in the input layer is the same as the number of image pixels,

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2022.944262
https://github.com/zxzhijia/Brian2STDPMNIST
https://github.com/BindsNET/bindsnet
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Mo and Tao 10.3389/fnins.2022.944262

TABLE 3 Comparison of simulators performance in task of MNIST unsupervised training (1 epoch).

Simulator dt(ms) Encodemethod Sample duration (ms) Average spikes Accuracy (%) Training time (s)

Brian2 0.5 Frequency 350 2285.64 87.90 1.538E+05

Brian2* 0.5 Frequency 350 2285.64 87.90 1.479E+04

BindsNET 0.5 Frequency 250 1632.60 90.10 8.274E+04

BindsNET-GPU 0.5 Frequency 250 1632.60 88.58 3.288E+04

EDHA None Frequency 350 2285.64 89.71 9.128E+03

EDHA None Time 100 136.54 88.86 6.418E+02

EvtSNN(ours) None Frequency 350 2285.64 89.19 4.790E+02

EvtSNN(ours) None Time 100 136.54 89.59 5.637E+01

FIGURE 7

(A) Weight visualization after 1 epoch of unsupervised learning on the MNIST training set. (B) Confusion matrix for classification on the MNIST

test set. The network size used for training and testing is 784–400.

which is 784. The more neurons in the output layer, the better

the expressive ability of the network. When the output layer

has 400 neurons, the network training speed is fast and the

classification accuracy is acceptable. After one epoch of training,

the test accuracy of four simulators was similar. Training on the

EvtSNN framework took only 56 s, which was much faster than

other frameworks. In this task, EDHA and EvtSNN use the same

parameters, the latter is 11.4 times faster (with time encoding)

and 19.1 times faster (with frequency encoding) than the former.

Figure 7A is the weight visualization after 1 epoch of training. It

can be seen that the features of the image have been learned by

the network and stored in the weights. Figure 7B is the confusion

matrix on the test set, with an accuracy of 89.59%.

After turning on the GPU, with the support of PyTorch for

GPU, the speed of BindsNET-GPU is 2.5 times faster than that of

BindsNET. In this experiment, it is necessary to judge whether

the network has pulse output after inputting the sample, so

Brian2GeNN needs to compile and run to obtain the simulation

results. However, each compilation takes tens of seconds, which

is a considerable overhead, so no relevant experiments have

been done.

As shown in Figure 8, when the number of neurons in

the output layer is increased, the classification accuracy of the

network will be improved. Similar to the results of Diehl and

Cook (2015), our network can achieve 95.16% accuracy when

using 6,400 neurons, which demonstrates the feasibility of event-

driven simulation combined with time coding.

5. Discussion

5.1. Simulation accuracy

In the experiment of Section 4.1, the membrane potential

of neurons during the simulation of Brian2 and EvtSNN were

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2022.944262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Mo and Tao 10.3389/fnins.2022.944262

FIGURE 8

Classification accuracy of MNIST under di�erent output layer

scales. We use the EvtSNN framework combined with time

coding for simulation, and the accuracy is no less than the Brian

framework and frequency coding in Diehl’s paper.

FIGURE 9

Voltage curves of neurons in Brian2 and EvtSNN simulations.

The clock-driven framework Brian2 has higher simulation

accuracy when using smaller time steps (e.g., dt = 0.01 ms), and

its voltage is close to the result of the event-driven framework

EvtSNN. When using a larger time step (e.g., dt = 1 ms), the

simulation accuracy of Brian2 decreases and leads to changes in

the firing pattern.

recorded and plotted, as shown in Figure 9. It can be seen that

the voltage variation trend in the two simulations is basically

the same, but sometimes there are small errors that affect spike

delivery. Interestingly, even if the pulses do not match, the

voltage will tend to be consistent after a while. This may be

due to the decay of membrane potential. As time passes, the

subsequent state is mainly affected by the input pattern rather

than the initial state.

The simulation accuracy of the clock-driven method is

limited by the time step, which may cause a small number

of spike mismatches. However, in most cases, there are

similar voltage curves in clock-driven (Brian2) and event-driven

(EvtSNN) simulation, and the overall spike pattern is not much

different, which means that the error of clock-driven simulation

could be ignored many times. To sum up, there are some

simulation errors in the clock-driven method, which can be

ignored in most cases; the precision of the event-driven method

can be very high, and it can use network sparsity to reduce the

amount of calculation, which has a higher potential.

5.2. Quantitative analysis of sub-steps
acceleration

In this section, a dynamic code analysis tool (Clion Profiler)

was employed to count the time-consuming of each part.

With the 10 kHz sampling frequency and 100 times repeated

tasks (same as Section 4.1), the simulation time-consuming

composition is shown in Figure 10. Population computing

reduces the calculation time of sub-step (a) from 77.75 to 34.34

ms, while pre-filtering reduces the time consumption of sub-step

(c) from 76.3 to 0.86ms. It can be seen that the accelerating effect

of pre-filtering is commendable so that the time consumption

of sub-step (c) can be neglected. Even poor filtering in extreme

cases does not slow down the overall simulation because its

computational overhead is negligible.

5.3. Acceleration ability in multi-scale
network

To measure the contribution of each innovation in different

network scales, we combined the benchmark and ablation

experiment, and the results are shown in Figure 11. Firstly,

the acceleration effect of population calculation and pre-

filtering under different network scales is relatively stable,

reducing the time consumption by about 25 and 35%,

respectively compared with EvtSNN (base). Secondly, when

the average input frequency (Fr) of the neuron group is

higher than the output frequency, the delayed update term

can have some acceleration effect, otherwise, it will have

a negative effect. In addition, after code optimization and

rewriting, the speed of EvtSNN (base) is 2.6–4.5 times

that of EDHA under the same calculation flow. Finally,

EvtSNN using all optimization items is 2.9–14.0 times faster

than EDHA.

5.4. Limitations

Of course, there are some limitations to our framework.

First, as an event-driven framework, EvtSNN has poor

model compatibility, requiring the derivation of time-domain

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2022.944262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Mo and Tao 10.3389/fnins.2022.944262

FIGURE 10

Time-consuming components in simulation. Using Pre-filtering (+filter) avoids unnecessary computation and can significantly reduce the

time-consuming of sub-step (c). Enabling population computing (+popu) avoids repeated calculations and speeds up sub-step (a). (A) EvtSNN

(base), (B) EvtSNN (+filter), (C) EvtSNN (+filter+popo).

FIGURE 11

Time-consuming comparison chart. (A–C) EvtSNN time-consuming reduction after enabling popu, lazy, and filter, respectively. (D,E)

Time-consuming comparison of EvtSNN and EDHA with none/all optimizations.

equations and the solution of spike firing time. Secondly,

the pre-filtering formulation is only used for the neuronal

model used. However, pre-filtering formulas for other

neuronal models can draw on the derivation process in this

paper (3.5).

6. Conclusion and future work

Based on the SNN event-driven framework EDHA, a

simulator named EvtSNN is introduced. In this paper,

two innovations are proposed to speed up the simulation

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2022.944262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Mo and Tao 10.3389/fnins.2022.944262

without any accuracy loss. Firstly, repeated calculations

are avoided according to the hidden information of the

population. Secondly, the unnecessary calculation is filtered

by the conditions derived from differential inequality. In

the benchmark experiment, without the learning rule, the

EvtSNN was the fastest in small network scale simulation

(hundreds of neurons). EvtSNN always kept the lead when

using the STDP learning rule. In the unsupervised training

task of MNIST, EvtSNN only took 56 s to complete one

epoch and reached 89.59% accuracy, which is 11.4 times faster

than EDHA.

Our work can be further improved. Firstly, large-scale

network simulation can be optimized in combination with the

clock-drivenmethod. Secondly, multithreading acceleration and

parallel computing can be used with the single-layer parallel

structure of Inception (Szegedy et al., 2015; Meng et al., 2021)

for population-level concurrent acceleration.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further inquiries

can be directed to the corresponding author/s.

Author contributions

LM proposed the idea of EvtSNN. ZT implemented

the code of the EvtSNN framework and performed the

experiments. Both authors participated in the writing of

the manuscript.

Funding

This work was sponsored by the Blue Project for the

University of Jiangsu Province 2021.

Acknowledgments

We would like to thank all the members of FutureX LAB of

Southeast University for their help and support.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,
et al. (2015). TrueNorth: design and tool flow of a 65 mW 1 million neuron
programmable neurosynaptic chip. IEEE Trans. Comput. Aided Design Integr.
Circuits Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396

Bautembach, D., Oikonomidis, I., Kyriazis, N., and Argyros, A. (2020).
“Faster and simpler SNN simulation with work queues,” in Proceedings of the
International Joint Conference on Neural Networks (Glasgow: Institute of Electrical
and Electronics Engineers Inc.). doi: 10.1109/IJCNN48605.2020.9206752

Davies, M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., et al.
(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE
Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Deng, S., andGu, S. (2021).Optimal Conversion of Conventional Artificial Neural
Networks to Spiking Neural Networks. Available online at: http://arxiv.org/abs/2103.
00476

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit
recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci.
9:99. doi: 10.3389/fncom.2015.00099

Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. (2014). Neuronal
Dynamics: From Single Neurons to Networks and Models of Cognition. Cambridge:
Cambridge University Press. doi: 10.1017/CBO9781107447615

Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural
networks in python. Front. Neuroinformatics 2:5. doi: 10.3389/neuro.11.005.2008

Hazan, H., Saunders, D. J., Khan, H., Patel, D., Sanghavi, D. T., Siegelmann,
H. T., et al. (2018). BindsNET: a machine learning-oriented spiking neural

networks library in python. Front. Neuroinformatics 12:89. doi: 10.3389/fninf.2018.
00089

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proc. IEEE 86, 2278–2323.
doi: 10.1109/5.726791

Li, S., Zhang, Z., Mao, R., Xiao, J., Chang, L., and Zhou, J. (2021). A fast
and energy-efficient SNN processor with adaptive clock/event-driven computation
scheme and online learning. IEEE Trans. Circuits Syst. I 68, 1543–1552.
doi: 10.1109/TCSI.2021.3052885

Maass, W. (1997). Networks of spiking neurons: the third
generation of neural network models. Neural Netw. 10, 1659–1671.
doi: 10.1016/S0893-6080(97)00011-7

Masquelier, T., and Kheradpisheh, S. R. (2018). Optimal localist and
distributed coding of spatiotemporal spike patterns through STDP and
coincidence detection. Front. Comput. Neurosci. 12:74. doi: 10.3389/fncom.2018.
00074

Meng, M., Yang, X., Bi, L., Kim, J., Xiao, S., and Yu, Z. (2021). High-
parallelism Inception-like spiking neural networks for unsupervised feature
learning. Neurocomputing 441, 92–104. doi: 10.1016/j.neucom.2021.02.027

Mo, L., Chen, X., and Wang, G. (2021). Edha: Event-driven high
accurate simulator for spike neural networks. Electronics 10:2281.
doi: 10.3390/electronics10182281

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2018). A scalable multicore
architecture with heterogeneous memory structures for dynamic neuromorphic

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2022.944262
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/IJCNN48605.2020.9206752
https://doi.org/10.1109/MM.2018.112130359
http://arxiv.org/abs/2103.00476
http://arxiv.org/abs/2103.00476
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1017/CBO9781107447615
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.3389/fninf.2018.00089
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/TCSI.2021.3052885
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.3389/fncom.2018.00074
https://doi.org/10.1016/j.neucom.2021.02.027
https://doi.org/10.3390/electronics10182281
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Mo and Tao 10.3389/fnins.2022.944262

asynchronous processors (DYNAPs). IEEE Trans. Biomed. Circuits Syst. 12, 106-
122. doi: 10.1109/TBCAS.2017.2759700

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient
learning in spiking neural networks: bringing the power of gradient-based
optimization to spiking neural networks. IEEE Signal Process. Mag. 36, 51–63.
doi: 10.1109/MSP.2019.2931595

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al.
(2019). “PyTorch: an imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems, Vol. 32 (Vancouver, BC).

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S., et al. (2019). Towards
artificial general intelligence with hybrid Tianjic chip architecture. Nature 572,
106–111. doi: 10.1038/s41586-019-1424-8

Pham, Q. T., Nguyen, T. Q., Hoang, P. C., Dang, Q. H., Nguyen, D. M., and
Nguyen, H. H. (2021). “A review of SNN implementation on FPGA,” in 2021
International Conferenceon Multimedia Analysis and Pattern Recognition, MAPR

2021 - Proceedings (Hanoi: Institute of Electrical and Electronics Engineers Inc.).
doi: 10.1109/MAPR53640.2021.9585245

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in
spiking neural networks: VGG and residual architectures. Front. Neurosci. 13:95.
doi: 10.3389/fnins.2019.00095

Shen, J., Ma, D., Gu, Z., Zhang, M., Zhu, X., Xu, X., et al. (2016).
Darwin: a neuromorphic hardware co-processor based on Spiking Neural
Networks. Sci. China Inform. Sci. 59, 1–5. doi: 10.1007/s11432-015-
5511-7

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and
efficient neural simulator. eLife 8:e47314. doi: 10.7554/eLife.47314.028

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al.
(2015). “Going deeper with convolutions,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (Boston, MA: IEEE
Computer Society), 1–9. doi: 10.1109/CVPR.2015.7298594

Frontiers inNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2022.944262
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1109/MAPR53640.2021.9585245
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1007/s11432-015-5511-7
https://doi.org/10.7554/eLife.47314.028
https://doi.org/10.1109/CVPR.2015.7298594
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	EvtSNN: Event-driven SNN simulator optimized by population and pre-filtering
	1. Introduction
	2. Related works
	3. Methods
	3.1. Workflow of EDHA framework
	3.2. Neuron and synapse model
	3.3. Update steps of neuron
	3.4. Population computing
	3.5. Pre-filtering
	3.6. Method summary

	4. Experiments and results
	4.1. Performance test
	4.2. Benchmarking
	4.3. Unsupervised training task on MNIST dataset

	5. Discussion
	5.1. Simulation accuracy
	5.2. Quantitative analysis of sub-steps acceleration
	5.3. Acceleration ability in multi-scale network
	5.4. Limitations

	6. Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


