
RESEARCH ARTICLE

Scalable Parameter Estimation for Genome-

Scale Biochemical Reaction Networks
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Abstract

Mechanistic mathematical modeling of biochemical reaction networks using ordinary differ-

ential equation (ODE) models has improved our understanding of small- and medium-scale

biological processes. While the same should in principle hold for large- and genome-scale

processes, the computational methods for the analysis of ODE models which describe hun-

dreds or thousands of biochemical species and reactions are missing so far. While individual

simulations are feasible, the inference of the model parameters from experimental data is

computationally too intensive. In this manuscript, we evaluate adjoint sensitivity analysis for

parameter estimation in large scale biochemical reaction networks. We present the

approach for time-discrete measurement and compare it to state-of-the-art methods used in

systems and computational biology. Our comparison reveals a significantly improved

computational efficiency and a superior scalability of adjoint sensitivity analysis. The compu-

tational complexity is effectively independent of the number of parameters, enabling the

analysis of large- and genome-scale models. Our study of a comprehensive kinetic model of

ErbB signaling shows that parameter estimation using adjoint sensitivity analysis requires a

fraction of the computation time of established methods. The proposed method will facilitate

mechanistic modeling of genome-scale cellular processes, as required in the age of omics.

Author Summary

In this manuscript, we introduce a scalable method for parameter estimation for genome-

scale biochemical reaction networks. Mechanistic models for genome-scale biochemical

reaction networks describe the behavior of thousands of chemical species using thousands

of parameters. Standard methods for parameter estimation are usually computationally

intractable at these scales. Adjoint sensitivity based approaches have been suggested to

have superior scalability but any rigorous evaluation is lacking. We implement a

toolbox for adjoint sensitivity analysis for biochemical reaction network which also sup-

ports the import of SBML models. We show by means of a set of benchmark models that

adjoint sensitivity based approaches unequivocally outperform standard approaches for

large-scale models and that the achieved speedup increases with respect to both the
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number of parameters and the number of chemical species in the model. This demon-

strates the applicability of adjoint sensitivity based approaches to parameter estimation for

genome-scale mechanistic model. The MATLAB toolbox implementing the developed

methods is available from http://ICB-DCM.github.io/AMICI/.

Introduction

In the life sciences, the abundance of experimental data is rapidly increasing due to the advent

of novel measurement devices. Genome and transcriptome sequencing, proteomics and meta-

bolomics provide large datasets [1] at a steadily decreasing cost. While these genome-scale

datasets allow for a variety of novel insights [2, 3], a mechanistic understanding on the genome

scale is limited by the scalability of currently available computational methods.

For small- and medium-scale biochemical reaction networks mechanistic modeling con-

tributed greatly to the comprehension of biological systems [4]. Ordinary differential equation

(ODE) models are nowadays widely used and a variety of software tools are available for

model development, simulation and statistical inference [5–7]. Despite great advances during

the last decade, mechanistic modeling of biological systems using ODEs is still limited to pro-

cesses with a few dozens biochemical species and a few hundred parameters. For larger models

rigorous parameter inference is intractable. Hence, new algorithms are required for massive

and complex genomic datasets and the corresponding genome-scale models.

Mechanistic modeling of a genome-scale biochemical reaction network requires the formu-

lation of a mathematical model and the inference of its parameters, e.g. reaction rates, from

experimental data. The construction of genome-scale models is mostly based on prior knowl-

edge collected in databases such as KEGG [8], REACTOME [9] and STRING [10]. Based on

these databases a series of semi-automatic methods have been developed for the assembly of

the reaction graph [11–13] and the derivation of rate laws [14, 15]. As model construction is

challenging and as the information available in databases is limited, in general, a collection of

candidate models can be constructed to compensate flaws in individual models [16]. For all

these model candidates the parameters have to be estimated from experimental data, a chal-

lenging and usually ill-posed problem [17].

To determine maximum likelihood (ML) and maximum a posteriori (MAP) estimates for

model parameters, high-dimensional nonlinear and non-convex optimization problems have

to be solved. The non-convexity of the optimization problem poses challenges, such as local

minima, which have to be addressed by the selection of optimization methods. Commonly

used global optimization methods are multi-start local optimization [18], evolutionary and

genetic algorithms [19], particle swarm optimizers [20], simulated annealing [21] and hybrid

optimizers [22, 23] (see [18, 24–26] for a comprehensive survey). For ODE models with a few

hundred parameters and state variables multi-start local optimization methods [18] and

related hybrid methods [27] have proven to be successful. These optimization methods use the

gradient of the objective function to establish fast local convergence. While the convergence of

gradient based optimizers can be significantly improved by providing exact gradients (see e.g.

[18, 28, 29]), the gradient calculation is often the computationally most demanding step.

The gradient of the objective function is usually approximated by finite differences. As this

method is neither numerically robust nor computationally efficient, several parameter estima-

tion toolboxes employ forward sensitivity analysis. This decreases the numerical error and

computation time [18]. However, the dimension of the forward sensitivity equations increases

linearly with both the number of state variables and parameters, rendering its application for
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genome-scale models problematic. In other research fields such as mathematics and engineer-

ing, adjoint sensitivity analysis is used for parameter estimation in ordinary and partial differ-

ential equation models. Adjoint sensitivity analysis is known to be superior to the forward

sensitivity analysis when the number of parameters is large [30]. Adjoint sensitivity analysis

has been used for inference of biochemical reaction networks [31–33]. However, the methods

were never picked up by the systems and computational biology community, supposedly due

to the theoretical complexity of adjoint methods, a missing evaluation on a set of benchmark

models, and an absence of an easy-to-use toolbox.

In this manuscript, we provide an intuitive description of adjoint sensitivity analysis for

parameter estimation in genome-scale biochemical reaction networks. We describe the end

value problem for the adjoint state in the case of discrete-time measurement and provide an

user-friendly implementation to compute it numerically. The method is evaluated on seven

medium- to large-scale models. By using adjoint sensitivity analysis, the computation time for

calculating the objective function gradient becomes effectively independent of the number of

parameters with respect to which the gradient is evaluated. Furthermore, for large-scale mod-

els adjoint sensitivity analysis can be multiple orders of magnitude faster than other gradient

calculation methods used in systems biology. The reduction of the time for gradient evaluation

is reflected in the computation time of the optimization. This renders parameter estimation

for large-scale models feasible on standard computers, as we illustrate for a comprehensive

kinetic model of ErbB signaling.

Methods

In this section we introduce the model class and the corresponding estimation problem. Subse-

quently, gradient calculation using finite differences, forward sensitivity analysis and adjoint

sensitivity analysis is described and the theoretical complexity as well as some aspects of the

numerical implementation are discussed.

Mathematical model and experimental data

We consider ODE models for biochemical reaction networks,

_x ¼ f ðx; yÞ; xðt0Þ ¼ x0ðyÞ; ð1Þ

in which xðt; yÞ 2 Rnx is the concentration vector at time t and y 2 Rny denotes the parameter

vector. Parameters are usually kinetic constants, such as binding affinities as well as synthesis,

degradation and dimerization rates. The vector field f : Rnx � Rny 7!Rnx describes the tempo-

ral evolution of the concentration of the biochemical species. The mapping x0 : Rny 7!Rnx

provides the parameter dependent initial condition at time t0.

As available experimental techniques usually do not provide measurements of the concen-

tration of all biochemical species, we consider the output map h : Rnx � Rny 7!Rny . This

map models the measurement process, i.e. the dependence of the output (or observables)

yðt; yÞ 2 Rny at time point t on the state variables and the parameters,

yðt; yÞ ¼ hðxðt; yÞ; yÞ: ð2Þ

The i-th observable yi can be the concentration of a particular biochemical species (e.g. yi = xl)
as well as a function of several concentrations and parameters (e.g. yi = θm(xl1 + xl2)).

We consider discrete-time, noise corrupted measurements

�yij ¼ yiðtj; yÞ þ �ij; �ij � N ð0; s2

ijÞ; ð3Þ
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yielding the experimental data D ¼ fðð�yijÞ
ny
i¼1; tjÞg

N
j¼1

. The number of time points at which mea-

surements have been collected is denoted by N.

Remark: For simplicity of notation we assume throughout the manuscript that the noise

variances, s2
ij, are known and that there are no missing values. However, the methods we will

present in the following as well as the respective implementations also work when this is not

the case. For details we refer to the S1 Supporting Information.

Maximum likelihood (ML) estimation

We estimate the unknown parameter θ from the experimental data D using ML estimation.

Parameters are estimated by minimizing the negative log-likelihood, an objective function

indicating the difference between experiment and simulation. In the case of independent, nor-

mally distributed measurement noise with known variances the objective function is given by

JðyÞ ¼
1

2

Xny

i¼1

XN

j¼1

�yij � yiðtj; yÞ
sij

 !2

; ð4Þ

where yi(tj, θ) is the value of the output computed from Eqs (1) and (2) for parameter value θ.

The minimization,

y
�
¼ arg min

y2Y
JðyÞ; ð5Þ

of this weighted least squares J yields the ML estimate of the parameters.

The optimization problem Eq (5) is in general nonlinear and non-convex. Thus, the objec-

tive function can possess multiple local minima and global optimization strategies need to be

used. For ODE models multi-start local optimization has been shown to perform well [18]. In

multi-start local optimization, independent local optimization runs are initialized at randomly

sampled initial points in parameter space. The individual local optimizations are run until the

stopping criteria are met and the results are collected. The collected results are visualized by

sorting them according to the final objective function value. This visualization reveals local

optima and the size of their basin of attraction. For details we refer to the survey by Raue et al.
[18]. In this study, initial points are generated using latin hypercube sampling and local opti-

mization is performed using the interior point and the trust-region-reflective algorithm imple-

mented in the MATLAB function fmincon.m. Gradients are computed using finite

differences, forward sensitivity analysis or adjoint sensitivity analysis.

Finite differences

A näive approximation to the gradient of the objective function with respect to θk is obtained

by finite differences,

@J
@yk
�

Jðyþ a ekÞ � Jðy � b ekÞ
aþ b

; ð6Þ

with a, b� 0 and the kth unit vector ek. In practice forward differences (a = �, b = 0), backward

differences (a = 0, b = �) and central differences (a = �, b = �) are widely used. For the computa-

tion of forward finite differences, this yields a procedure with three steps:

Step 1 The state trajectory x(t, θ) and output trajectory y(t, θ) are computed.

Step 2 The state trajectories x(t, θ(k)) and the output trajectories y(t, θ(k)) are computed for the

perturbed parameters θ(k) = θ + �ek for k = 1, . . ., nθ.
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Step 3 The objective function gradient elements @J
@yk

, are computed from the output trajectory

y(t, θ) and the perturbed output trajectory y(t, θ(k)) for k = 1, . . ., nθ.

In theory, forward and backward differences provide approximations of order � while cen-

tral differences provide more accurate approximations of order �2, provided that J is suffi-

ciently smooth. In practice the optimal choice of a and b depends on the accuracy of the

numerical integration [18]. If the integration accuracy is high, an accurate approximation of

the gradient can be achieved using a, b� 1. For lower integration accuracies, larger values of

a and b usually yield better approximations. A good choice of a and b is typically not clear a
priori (cf. [34] and the references therein).

The computational complexity of evaluating gradients using finite differences is affine lin-

ear in the number of parameters. Forward and backward differences require in total nθ + 1

function evaluations. Central differences require in total 2nθ function evaluations. As already a

single simulation of a large-scale model is time-consuming, the gradient calculation using

finite differences can be limiting.

Forward sensitivity analysis

State-of-the-art systems biology toolboxes, such as the MATLAB toolbox Data2Dynamics [7],

use forward sensitivity analysis for gradient evaluation. The gradient of the objective function is

@J
@yk
¼
Xny

i¼1

XN

j¼1

�yij � yiðtj; yÞ
s2
ij

 !

syi;kðtjÞ; ð7Þ

with syi;kðtÞ : ½t0; tN � 7!R denoting the sensitivity of output yi at time point t with respect to

parameter θk. Governing equations for the sensitivities are obtained by differentiating Eqs (1)

and (2) with respect to θk and reordering the derivatives. This yields

_sxk ¼
@f
@x

sxk þ
@f
@yk

; sxkðt0Þ ¼
@x0

@yk

syi;k ¼
@hi

@x
sxk þ

@hi

@yk

ð8Þ

with sxkðtÞ : ½t0; tN � 7!R
nx denoting the sensitivity of the state x with respect to θk. Note that

here and in the following, the dependencies of f, h, x0 and their (partial) derivatives on t, x and θ
are not stated explicitly but have the to be assumed. For a more detailed presentation we refer

to the S1 Supporting Information Section 1.

Forward sensitivity analysis consists of three steps:

Step 1 The state trajectory x(t, θ) and output trajectory y(t, θ) are computed.

Step 2 The state sensitivities sxkðtÞ and the output sensitivities sykðtÞ are computed using the

state trajectory x(t, θ) for k = 1, . . ., nθ.

Step 3 The objective function gradient elements @J
@yk

, are computed from the output sensitivities

sykðtÞ and the output trajectory y(t, θ) for k = 1, . . ., nθ.

Step 1 and 2 are often combined, which enables simultaneous error control and the reuse of

the Jacobian [30]. The simultaneous error control allows for the calculation of accurate and

reliable gradients. The reuse of the Jacobian improves the computational efficiency.

The number of state and output sensitivities increases linearly with the number of parame-

ters. While this is unproblematic for small- and medium-sized models, solving forward

Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks
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sensitivity equations for systems with several thousand state variable bears technical chal-

lenges. Code compilation can take multiple hours and require more memory than what is

available on standard machines. Furthermore, while forward sensitivity analysis is usually

faster than finite differences, in practice the complexity still increases roughly linearly with the

number of parameters.

Adjoint sensitivity analysis

In the numerics community, adjoint sensitivity analysis is frequently used to compute the gra-

dients of a functional with respect to the parameters if the function depends on the solution of

a differential equation [35]. In contrast to forward sensitivity analysis, adjoint sensitivity analy-

sis does not rely on the state sensitivities sxkðtÞ but on the adjoint state p(t).
The calculation of the objective function gradient using adjoint sensitivity analysis consists

of three steps:

Step 1 The state trajectory x(t, θ) and output trajectory y(t, θ) are computed.

Step 2 The trajectory of the adjoint state p(t) is computed.

Step 3 The objective function gradient elements @J
@yk

, k = 1, . . ., nθ, are computed from the state

trajectory x(t, θ), the adjoint state trajectory p(t) and the output trajectory y(t, θ).

Step 1 and 2, which are usually the computationally intensive steps, are independent of the

parameter dimension. The complexity of Step 3 increases linearly with the number of parame-

ters, yet the computation time required for this step is typically negligible.

The calculation of state and output trajectories (Step 1) is standard and does not require

special methods. The non-trivial element in adjoint sensitivity analysis is the calculation of the

adjoint state pðtÞ 2 Rnx (Step 2). For discrete-time measurements—the usual case in systems

and computational biology—the adjoint state is piece-wise continuous in time and defined by

a sequence of backward differential equations. For t> tN, the adjoint state is zero, p(t) = 0.

Starting from this end value the trajectory of the adjoint state is calculated backwards in time,

from the last measurement t = tN to the initial time t = t0. At the time points at which measure-

ments have been collected, tN, . . ., t1, the adjoint state is reinitialised as

pðtjÞ ¼ lim
t!tþj

pðtÞ þ
Xny

i¼1

@hi

@x

� �T �yij � yiðtjÞ
s2
ij

; ð9Þ

which usually results in a discontinuity of p(t) at tj. Starting from the end value p(tj) as defined

in Eq (9) the adjoint state evolves backwards in time until the next measurement point tj−1 or

the initial time t0 is reached. This evolution is governed by the time-dependent linear ODE

_p ¼ �
@f
@x

� �T

p: ð10Þ

The repeated evaluation of Eqs (9) and (10) until t = t0 yields the trajectory of the adjoint state.

Given this trajectory, the gradient of the objective function with respect to the individual

parameters is

@J
@yk
¼ �

Z tN

t0

pT
@f
@yk

dt �
X

i;j

@hi

@yk

�yij � yiðtjÞ
s2
ij

� pðt0Þ
T @x0

@yk
: ð11Þ

Accordingly, the availability of the adjoint state simplifies the calculation of the objective
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function to nθ one-dimensional integration problems over short time intervals whose union is

the total time interval [t0, tN].

Algorithm 1: Gradient evaluation using adjoint sensitivity analysis

% State and output
Step 1 Computestate and outputtrajectories using Eqs (1) and (2).

% Adjointstate
Step 2.1 Set end valuefor adjointstate, 8t > tN: p(t) = 0.
for j = N to 1 do

Step 2.2 Computeend valuefor adjointstateaccordingto the jth measure-
ment using Eq (9).

Step 2.3 Computetrajectoryof adjointstateon time intervalt = (tj−1, tj]
by solvingEq (10).

end

% Objectivefunctiongradient
for k = 1 to nθ do

Step 3 Evaluationof the sensitivity @J/@θk usingEq (11).
end

Pseudo-code for the calculation of the adjoint state and the objective function gradient is

provided in Algorithm 1. We note that in order to use standard ODE solvers the end value

problem Eq (10) can be transformed in an initial value problem by applying the time transfor-

mation τ = tN − t. The derivation of the adjoint sensitivities for discrete-time measurements is

provided in the S1 Supporting Information Section 1.

The key difference of the adjoint compared to the forward sensitivity analysis is that the

derivatives of the state and the output trajectory with respect to the parameters are not explic-

itly calculated. Instead, the sensitivity of the objective function is directly computed. This

results in practice in a computation time of the gradient which is almost independent of the

number of parameters. A visual summary of the different sensitivity analysis methods is pro-

vided in Fig 1. Besides the procedures also the computational complexity is indicated.

Implementation

The implementation of adjoint sensitivity analysis is non-trivial and error-prone. To render

this method available to the systems and computational biology community, we imple-

mented the Advanced Matlab Interface for CVODES and IDAS (AMICI). This

toolbox allows for a simple symbolic definition of ODE models (1) and (2) as well as the

automatic generation of native C code for efficient numerical simulation. The compiled

binaries can be executed from MATLAB for the numerical evaluation of the model and the

objective function gradient. Internally, the SUNDIALS solvers suite is employed [30], which

offers a broad spectrum of state-of-the-art numerical integration of differential equations. In

addition to the standard functionality of SUNDIALS, our implementation allows for param-

eter and state dependent discontinuities. The toolbox and a detailed documentation can be

downloaded from http://ICB-DCM.github.io/AMICI/.

Results

In the following, we will illustrate the properties of adjoint sensitivity analysis for biochemical

reaction networks. For this purpose, we study several models provided in the BioPreDyn

benchmark suite [27] and from the curated branch of the Biomodels Database [37]. We com-

pare adjoint sensitivity analysis with forward sensitivity analysis and finite differences

Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks
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regarding accuracy, computational efficiency and scalability for a set of medium- to large-scale

models.

Investigated models

For the comparison of different gradient calculation methods, we consider a set of standard

models from the Biomodels Database [37] and the BioPreDyn benchmark suite [27]. From the

biomodels database we considered models for the regulation of insulin signaling by oxidative

stress (BM1) [38], the sea urchin endomesoderm network (BM2) [39], and the ErbB sigaling

pathway (BM3) [40]. From BioPreDyn benchmark suite we considered models for central car-

bon metabolism in E. coli (B2) [41], enzymatic and transcriptional regulation of carbon metab-

olism in E. coli (B3) [42], metabolism of CHO cells (B4) [43], and signaling downstream of

EGF and TNF (B5) [44]. Genome-wide kinetic metabolic models of S. cerevisiae and E.coli
(B1) [45] contained in the BioPreDyn benchmark suite and the Biomodels Database [15, 45]

were disregarded due to previously reported numerical problems [27, 45]. The considered

models possess 18-500 state variable and 86-1801 parameters. A comprehensive summary

regarding the investigated models is provided in Table 1.

To obtain realistic simulation times for adjoint sensitivities realistic experimental data is

necessary (see S1 Supporting Information Section 3). For the BioPreDyn models we used the

data provided in the suite, for the ErbB signaling pathway we used the experimental data

Fig 1. Illustration of gradient calculation using finite differences, forward sensitivity analysis and adjoint sensitivity equations for a model of

mRNA transfection. (a) Sketch and mathematical formulation of the mathematical model of mRNA transfection presented by [36]. The intracellular

release of mRNA at time point tr is modeled using the Dirac delta distribution δ. (b) Illustration of finite differences, forward sensitivity analysis and adjoint

sensitivity analysis for the model of mRNA transfection: (top) Step 1: simulation of model; (middle) Step 2: intermediate step for gradient calculation; and

(bottom) Step 3: calculation of gradient from intermediate results. For all methods, Step 1 and 2 involve numerical simulation (the direction indicated by the

arrow) and are computationally demanding, while Step 3 is computationally negligible.

doi:10.1371/journal.pcbi.1005331.g001
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provided in the original publication and for the remaining models we generated synthetic data

using the nominal parameter provided in the SBML definition.

In the following, we will compare the performance of forward and adjoint sensitivities for

these models. As the model of ErbB signaling has the largest number of state variables and is of

high practical interest in the context of cancer research, we will analyze the scalability of finite

differences and forward and adjoint sensitivity analysis for this model in greater detail. More-

over, we will compare the computational efficiency of forward and adjoint sensitivity analysis

for parameter estimation for the model of ErbB signaling.

Scalability of gradient evaluation using adjoint sensitivity analysis

The evaluation of the objective function gradient is the computationally demanding step in

deterministic local optimization. For this reason, we compared the computation time for finite

differences, forward sensitivity analysis and adjoint sensitivity analysis and studied the scalabil-

ity of these approaches at the nominal parameter θ0 which was provided in the SBML defini-

tions of the investigated models.

For the comprehensive model of ErbB signaling we found that the computation times for

finite differences and forward sensitivity analysis behave similarly (Fig 2a). As predicted by the

theory, for both methods the computation time increased linearly with the number of parame-

ters. Still, forward sensitivities are computationally more efficient than finite differences, as

reported in previous studies [18].

Adjoint sensitivity analysis requires the solution to the adjoint problem, independent of the

number of parameters. For the considered model, solving the adjoint problem a single time

takes roughly 2-3-times longer than solving the forward problem. Accordingly, adjoint sensi-

tivity analysis with respect to a small number of parameter is disadvantageous. However,

adjoint sensitivity analysis scales better than forward sensitivity analysis and finite differences.

Indeed, the computation time for adjoint sensitivity analysis is almost independent of the

number of parameters. While computing the sensitivity with respect to a single parameter

takes on average 10.09 seconds, computing the sensitivity with respect to all 219 parameters

takes merely 14.32 seconds. We observe an average increase of 1.9 � 10−2 seconds per additional

parameter for adjoint sensitivity analysis which is significantly lower than the expected 3.24

seconds for forward sensitivity analysis and 4.72 seconds for finite differences. If the sensitivi-

ties with respect to more than 4 parameters are required, adjoint sensitivity analysis outper-

forms both forward sensitivity analysis and finite differences. For 219 parameters, adjoint

sensitivity analysis is 48-times faster than forward sensitivities and 72-times faster than finite

differences.

To ensure that the observed speedup is not unique to the model of ErbB signaling (BM3)

we also evaluated the speedup of adjoint sensitivity analysis over forward sensitivity analysis

Table 1. List of investigated models and their properties.

ID Parameters State Variables Model Type Time Points Data Points Ref

B2 116 18 Metabolic 51 110 [41]

B3 178 47 Metabolic/Gene Reg. 161 7567 [42]

B4 117 34 Metabolic 12 156 [43]

B5 86 26 Signaling 16 960 [44]

BM1 383 104 Signaling 10 120 [38]

BM2 1801 431 Gene Reg. 21 3780 [39]

BM3 219 500 Signaling 21 105 [40]

doi:10.1371/journal.pcbi.1005331.t001

Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks
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on models B2-5 and BM1-2. The results are presented in Fig 2b and 2c. We find that for all

models, but model B3, gradient calculation using adjoint sensitivity is computationally more

efficient than gradient calculation using forward sensitivities (speedup > 1). For model B3 the

backwards integration required a much higher number of integration steps (4 � 106) than the

forward integration (6 � 103), which results to a poor performance of the adjoint method. One

reason for this poor performance could be that, in contrast to other models, the right hand

side of the differential equation of model B3 consists almost exclusively of non-linear, non-

mass-action terms.

Excluding model B3 we find an polynomial increase in the speedup with respect to the

number of parameters nθ (Fig 2b), as predicted by theory. Moreover, we find that the product

Fig 2. Comparison of gradient computation times for finite differences and forward and adjoint sensitivity analysis.

(a) Scaling of computation time with respect to the number of parameters for the model of ErbB signaling (BM3). Computation

time for finite differences and forward sensitivity equations increases roughly linearly. Computation time for adjoint sensitivity

analysis is almost independent of the number of parameters but possesses a higher initial cost. Adjoint sensitivity analysis is 48

times faster than forward sensitivity analysis when considering all parameters. (b,c) Speedup when using adjoint sensitivity

analysis over forward sensitivity analysis for gradient computation evaluated for all investigated models compared against nθ
and nx � nθ. Regression curves (dashed lines) have been fitted to the results of all models excluding B3, which seems to be an

outlier. All computations were performed on a MacBook Pro with an 2.9 GHz Intel Core i7 processor.

doi:10.1371/journal.pcbi.1005331.g002
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nθ � nx, which corresponds to the size of the system of forward sensitivity equations, is an even

better predictor (R2 = 0.99) than nθ alone (R2 = 0.83). This suggest that adjoint sensitivity anal-

ysis is not only beneficial for systems with a large number of parameters, but can also be bene-

ficial for systems with a large number of state variables. As we are not aware of any similar

observations in the mathematics or engineering community, this could be due to the structure

of biological reaction networks.

Our results suggest that adjoint sensitivity analysis is an excellent candidate for parameter

estimation in large-scale models as it provides good scaling with respect to both, the number

of parameters and the number of state variables.

Accuracy and robustness of gradients computing adjoint sensitivity

analysis

Efficient local optimization requires accurate and robust gradient evaluation [18]. To assess

the accuracy of the gradient computed using adjoint sensitivity analysis, we compared this gra-

dient to the gradients computed via finite differences and forward sensitivity analysis. Fig 3

visualizes the results for the model of ErbB signaling (BM3) at the nominal parameter θ0 which

was provided in the SBML definition. The results are similar for other starting points.

The comparison of the gradients obtained using finite differences and adjoint sensitivity

analysis revealed small discrepancies (Fig 3a). The median relative difference (as defined in

S1 Supporting Information Section 2) between finite differences and adjoint sensitivity anal-

ysis is 1.5 � 10−3. For parameters θk to which the objective function J was relatively insensitive,

@J/@θk< 10−2, there are much higher discrepancies, up to a relative error of 2.9 � 103.

Forward and adjoint sensitivity analysis yielded almost identical gradient elements over sev-

eral orders of magnitude (Fig 3b). This was expected as both forward and adjoint sensitivity

analysis exploit error-controlled numerical integration for the sensitivities. To assess numeri-

cal robustness of adjoint sensitivity analysis, we also compared the results obtained for high

and low integration accuracies (Fig 3c). For both comparisons we found the similar median

relative and maximum relative error, namely 2.6 � 10−6 and 9.3 � 10−4. This underlines the

Fig 3. Comparison of the gradients computed using adjoint sensitivity equations with gradients computed using finite differences and forward

sensitivity equations with default accuracies (absolute error < 10−16, relative error < 10−8). Each point represents the absolute value of one gradient

element. Points on the diagonal indicate a good agreement. (a) Forward finite differences with � = 10−3 vs. adjoint sensitivities. (b) Forward sensitivities vs.

adjoint sensitivities. (c) Adjoint sensitivities with high accuracies (absolute error < 10−32, relative error < 10−16) and default accuracies (absolute

error < 10−16, relative error < 10−8).

doi:10.1371/journal.pcbi.1005331.g003
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robustness of the sensitivitity based methods and ensures that differences observed in Fig 3a

indeed originate from the inaccuracy of finite differences.

Our results demonstrate that adjoint sensitivity analysis provides objective function gradi-

ents which are as accurate and robust as those obtained using forward sensitivity analysis.

Optimization of large-scale models using adjoint sensitivity analysis

As adjoint sensitivity analysis provides accurate gradients for a significantly reduced compu-

tational cost, this can boost the performance of a variety of optimization methods. Yet, in

contrast to forward sensitivity analysis, adjoint sensitivities do not yield sensitivities of

observables and it is thus not possible to approximate the Hessian of the objective function

via the Fisher Information Matrix [46]. This prohibits the use of possibly more efficient New-

ton-type algorithms which exploit second order information. Therefore, adjoint sensitivities

are limited to quasi-Newton type optimization algorithms, e.g. the Broyden-Fletcher-Gold-

farb-Shanno (BFGS) algorithm [47, 48], for which the Hessian is iteratively approximated

from the gradient during optimization. In principle, the exact calculation of the Hessian and

Hessian-Vector products is possible via second order forward and adjoint sensitivity analysis

[49, 50], which possess similar scaling properties as the first order methods. However, both

forward and adjoint approaches come at an additional cost and are thus not considered in

this study.

To assess whether the use of adjoint sensitivities for optimization is still viable, we com-

pared the performance of the interior point algorithm using adjoint sensitivity analysis with

the BFGS approximation of the Hessian to the performance of the trust-region reflective algo-

rithm using forward sensitivity analysis with Fisher Information Matrix as approximation of

the Hessian. For both algorithms we used the MATLAB implementation in fmincon.m. The

employed setup of the trust-region algorithm is equivalent to the use of lsqnonlin.mwhich

is the default optimization algorithm in the MATLAB toolbox Data2Dynamics [7], which was

employed to win several DREAM challenges. For the considered model the computation time

of forward sensitivities is comparable in Data2Dynamics and AMICI. Therefore, we expect

that Data2Dynamics would perform similar to the trust-region reflective algorithm coupled to

forward sensitivity analysis.

We evaluated the performance for the model of ErbB signaling based on 100 multi-starts

which were initialized at the same initial points for both optimization methods. For 41 out of

100 initial points the gradient could not be evaluated due numerical problems. These optimiza-

tion runs are omitted in all further analysis. To limit the expected computation to a bearable

amount we allowed a maximum of 10 iterations for the forward sensitivity approach and 500

iterations for the adjoint sensitivity approach. As the previously observed speedup in gradient

computation was roughly 48 fold, we expected this setup should yield similar computation

times for both approaches.

We found that for the considered number of iterations, both approaches perform similar in

terms of objective function value compared across iterations (Fig 4a and 4b). However, the

computational cost of one iteration was much cheaper for the optimizer using adjoint sensitiv-

ity analysis. Accordingly, given a fixed computation time the interior-point method using

adjoint sensitivities outperforms the trust-region method employing forward sensitivities and

the FIM (Fig 4c and 4d). In the allowed computation time, the interior point algorithm using

adjoint sensitivities could reduce the objective function by up to two orders of magnitude (Fig

4c). This was possible although many model parameters seem to be non-identifiable (see S1

Supporting Information Section 4), which can cause problems.
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To quantify the speedup of the optimization using adjoint sensitivity analysis over the

optimization using forward sensitivity analysis, we performed a pairwise comparison of

the minimal time required by the adjoint sensitivity approach to reach the final objective

function value of the forward sensitivity approach for the individual points (Fig 4e). The

median speedup achieved across all multi-starts was 54 (Fig 4f), which was similar to the 48

fold speedup achieved in the gradient computation. The availability of the Fisher Informa-

tion Matrix for forward sensitivities did not compensate for the significantly reduced com-

putation time achieved using adjoint sensitivity analysis. This could be due to the fact that

adjoint sensitivity based approach, being able to carry out many iterations in a short time-

frame, can build a reasonable approximation of the Hessian approximation relatively fast.

Fig 4. Comparison of optimization speed using forward and adjoint sensitivities for the model of ErbB signaling. For local optimization using

forward sensitivity analysis (trust-region method) and local optimization using adjoint sensitivity analysis (interior-point method) we quantified the

computation time across 100 local optimization runs with different initial conditions. For 41 out of 100 initial points the gradient could not be evaluated due

to numerical problems. These optimization runs are omitted in all further analysis. (a,c) Comparison of objective function value with respect to iteration

number and computation time. The hulls and medians computed for both methods are depicted as shaded areas and solid lines. (b,d) Pairwise

comparison of objective function value after 10 iterations and 5 hours for both methods. Each dot corresponds to one initial point for the optimization. The

coloring indicates which method performed better. (e) Pairwise comparison of the time required to reach the final objective function value achieved in the

forward approach. For the adjoint approach the equivalent time is the minimal time to reach the same objective function value. Each dot corresponds to

one initial point for the optimization. (f) Histogram of speedup by using adjoint sensitivity analysis over forward sensitivity analysis for individual initial

points, computed from (e). All computations were performed on a linux cluster. Runs with same initial conditions were carried out on the same computation

node.

doi:10.1371/journal.pcbi.1005331.g004
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In summary, this application demonstrates the applicability of adjoint sensitivity analysis

for parameter estimation in large-scale biochemical reaction networks. Possessing similar

accuracy as forward sensitivities, the scalability is improved which results in an increased opti-

mizer efficiency. For the model of ErbB signaling, optimization using adjoint sensitivity analy-

sis outperformed optimization using forward sensitivity analysis.

Discussion

Mechanistic mathematical modeling at the genome scale is an important step towards a

holistic understanding of biological processes. To enable modeling at this scale, scalable

computational methods are required which are applicable to networks with thousands of

compounds. In this manuscript, we present a gradient computation method which meets

this requirement and which renders parameter estimation for large-scale models signifi-

cantly more efficient. Adjoint sensitivity analysis, which is extensively used in other research

fields, is a powerful tool for estimating parameters of large-scale ODE models of biochemical

reaction networks.

Our study of several benchmark models with up to 500 state variables and up to 1801

parameters demonstrated that adjoint sensitivity analysis provides accurate gradients in a

computation time which is much lower than for established methods and effectively indepen-

dent of the number of parameters. To achieve this, the adjoint state is computed using a piece-

wise continuous backward differential equation. This backward differential equation has the

same dimension as the original model, yet the computation time required to solve it usually is

slightly larger. As a result, finite differences and forward sensitivity analysis might be more effi-

cient if the sensitivities with respect to a few parameters are required. The same holds for alter-

natives like complex-step derivative approximation techniques [51] and forward-mode

automatic differentiation [28, 52]. For systems with many parameters, adjoint sensitivity anal-

ysis is advantageous. A scalable alternative might be reverse-mode automatic differentiation

[28, 53], which remains to be evaluated for the considered class of problems.

For the model of ErbB signaling we could show that adjoint sensitivity based optimization

outperforms forward sensitivity based optimization, which is the standard in most systems

biology toolboxes. With the availability of the MATLAB toolbox AMICI the adjoint sensitivity

based approach becomes accessible for other researchers. AMICI allows for the fully auto-

mated generation of executables for adjoint or forward sensitivity analysis from symbolic

model definitions. This way, the toolbox is easy-to-use and can easily be integrated with exist-

ing toolboxes. Also other MATLAB toolboxes for computational modeling, e.g. AMIGO [6],

Data2Dynamics [7], MEIGO [54] and SBtoolbox2 [55] could be extended to exploit adjoint

sensitivity analysis. In addition to adjoint sensitivity analysis, these MATLAB toolboxes could

exploit forward sensitivity analysis available via AMICI, as AMICI yields computation times

comparable to those of tailored numerical methods such as odeSD [56] (S1 Supporting Infor-

mation Section 5) or Data2Dynamics [7]. Moreover AMICI comes with detailed documenta-

tion and is already now used by several research labs.

Our study of the model of ErbB signaling suggests that for the available data, a large number

of parameters remains non-identifiable. While novel technologies provide rich dataset, we

expect that non-identifiability will remain a problem. In particular if merely relative measure-

ments are available, as the case for many measurement techniques, additional unknown scal-

ing factors need to be introduced. These scaling factors are, in combination with initial

conditions and total abundances, often the source of practical and structural non-identifiabi-

lites [18]. Fortunately, for a broad range of biological questions, these information are not nec-

essary and also state-of-the-art methods optimization seem to work reasonably well in the
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presence of non-identifiabilities. For the considered model of EreB signaling, we were able to

achieve a significant decrease in the objective function value, despite the non-identifiability of

parameters. This demonstrates that gradient based optimization is still feasible for large-scale

problems. Yet, we believe that convergence of the optimizer could be improved by regularizing

the objective function by integrating prior knowledge, possibly in a Bayesian framework [57],

from databases such as SABIO-RK [58] or BRENDA [59].

Beyond the use in optimization, gradients computed using adjoint sensitivity analysis will

also facilitate the development of more efficient uncertainty analysis methods. Riemann mani-

fold Langevin and Hamiltonian Monte Carlo methods [60, 61] exploit the first and second

order local structure of the posterior distribution and profit from more efficient gradient eval-

uation. The same holds for novel emulator-based sampling procedures [62] and approaches

for posterior approximation [63]. By exploiting the proposed approach, rigorous Bayesian

parameter estimation for models with hundreds of parameters could become a standard tool

instead of an exception [64, 65].

In conclusion, adjoint sensitivity analysis will facilitate the development of large- and

genome-scale mechanistic models for cellular processes as well as other (multi-scale) biological

processes [66]. This will complement available statistical analysis methods for omics data [67]

by providing mechanistic insights and render a holistic understanding feasible.

Supporting Information

S1 Supporting Information. Supplementary notes regarding sensitivity analysis and addi-

tional numerical examples. This document provides a detailed derivation of forward and

adjoint sensitivity analysis and one additional numerical example for the comparision to the

MATLAB toolbox odeSD.

(PDF)

S1 Code. MATLAB code. This zip-file contains the MATLAB code for the simulation and

application examples presented in the paper. We provide implementations of all models,

parameter estimation to allow everybody to reproduce the results.

(ZIP)
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36. Leonhardt C, Schwake G, Stögbauer TR, Rappl S, Kuhr JT, Ligon TS, et al. Single-cell mRNA transfec-

tion studies: Delivery, kinetics and statistics by numbers. Nanomedicine: Nanotechnology, Biology, and

Medicine; 2014; 10(4):679–688.

37. Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, et al. BioModels Database: An

enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol;

2010; 4:92. doi: 10.1186/1752-0509-4-92 PMID: 20587024

38. Smith GR, Shanley DP. Computational modelling of the regulation of Insulin signalling by oxidative

stress. BMC Syst Biol; 2013; 7(1):1. doi: 10.1186/1752-0509-7-41
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