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A generic cardiomyocyte ionic model, whose complexity lies between a simple phenomenological formulation and a biophysically
detailed ionic membrane current description, is presented.Themodel provides a user-defined number of ionic currents, employing
two-gate Hodgkin-Huxley type kinetics. Its generic nature allows accurate reconstruction of action potential waveforms recorded
experimentally from a range of cardiac myocytes. Using a multiobjective optimisation approach, the generic ionic model was
optimised to accurately reproduce multiple action potential waveforms recorded from central and peripheral sinoatrial nodes
and right atrial and left atrial myocytes from rabbit cardiac tissue preparations, under different electrical stimulus protocols and
pharmacological conditions. When fitted simultaneously to multiple datasets, the time course of several physiologically realistic
ionic currents could be reconstructed. Model behaviours tend to be well identified when extra experimental information is
incorporated into the optimisation.

1. Introduction

The electrical activity of cardiac myocytes, including action
potential (AP) waveforms and underlying membrane cur-
rents, has been extensively studied using a combination of
microelectrode recording and mathematical modelling tech-
niques [1]. The latter in particular has been utilised to pro-
vide amore quantitative and integrative understanding of the
underlying mechanisms of cardiac electric activity. Biophys-
ically detailed ionic models of cardiac cell electrophysiology
are able to accurately reproduce a large range of behaviours,
including membrane potential waveforms, specific ionic cur-
rents under voltage-clamp protocols, AP membrane current
dynamics, and Ca2+ alternans [2, 3]. However, the ever-
increasing number of variables in such models renders them
computationally expensive when integrated into higher-
dimensional tissue or whole heart simulations, limiting their
utility.

As an alternative, simplified phenomenological models
have been widely utilised in electrophysiological simulations
due to their minimal complexity and computational cost.The
first such generic model was the Fitzhugh-Nagumo (FHN)

formulation published in 1961 [4], simplifying the four-
variable Hodgkin-Huxley (HH) nerve axon model [5] into a
two-variable formulation by eliminating gating variables with
rapid time constants. Since its publication, FHN-type models
have been frequently used in multicellular tissue simulations
[6–9]. In 1998, Fenton and Karma published an improved
phenomenological model based on the biophysically detailed
Luo and Rudy [10] and Beeler and Reuter [11] ventricular
cell ionic models in order to simulate ventricular fibrillation
[12]. Given appropriate parameters, the ability of the three-
variable Fenton-Karma model to reproduce AP duration
restitution properties was shown to be comparable to bio-
physically detailed models [13]. By introducing an additional
variable to this model, the Fenton-Cherry modification was
also able to reproduce AP waveforms from pulmonary
vein and left atrial myocytes [14]. Despite the successful
application of these phenomenologicalmodels, their inherent
oversimplicity may restrict their utility, particularly when
simulating complex phenomena such as electrical remod-
elling during sustained arrhythmia [15] or the effects of selec-
tive ionic channel blockers [16]. For example, it is doubtful
whether such models can accurately reproduce the range
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of AP waveforms recorded from the same myocyte under
various electrical pacing frequencies or multiple degrees of
selective ion channel block by drugs, due to the small number
of membrane currents in these models.

Another significant challenge in cardiac single cell ionic
modelling lies in estimating the host of parameters governing
the kinetics and densities of the various membrane ion chan-
nels, pumps, and exchangers, as well as parameters governing
intracellular ionic cycling and buffering mechanisms, all
from readily available experimental data obtained in a given
myocyte. Given enough parameters, ionic models may only
be able to accurately reproduce ionic mechanisms under the
precise experimental conditions they were fitted to in the
first place. Models with modified parameters to fit another
set of experimental data may lose their original mechanisms
[3, 17], limiting their predictive utility. Moreover, the ever-
increasing complexity of such models makes parameter esti-
mation a highly difficult and time-consuming task. Although
previous studies have undertaken parameter optimisation in
cardiac ionic models [18, 19], these have all used a relatively
limited subset of parameters (typically maximummembrane
conductances only) to fitAP records.Until now, a very limited
number of optimisation algorithms have been successfully
used for large-scale optimisation of cardiac cell ionic models.

In response to these challenges, we have formulated a
simplifiedHH-type genericmodel to accurately reconstruct a
range of AP waveforms recorded from tissue-intact myocytes
in rabbit sinoatrial (SAN) and right and left atrial (RA,
LA) tissue preparations. The model structure is flexible and
modular and the optimised models are able to reproduce
complex behaviour such as the change inAPmorphology due
to selective ion channel block or high-frequency paced stim-
ulation. Model parameters were estimated using a computa-
tionally simple, multiobjective AP optimisation approach
based on a custom curvilinear-gradient method [20]. The
improvement in membrane current reconstruction gained
by optimising the model to simultaneously fit different AP
experimental waveforms was examined.

2. Methods

2.1. Generic Cell Model Formulations. Thegeneric form of the
model is given by
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𝑚

𝑑𝑡
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where 𝐸
𝑚
(mV) denotes the transmembrane potential, 𝑡(𝑠)

denotes time, 𝐶
𝑚
(𝜇F/cm2) is the specific membrane capaci-

tance, 𝑖
𝐿
(nA/cm2cm2) refers to the time-independent (leak-

age) current, 𝑖stim (nA/cm2cm2) is the applied stimulus, 𝑖
𝑗

(nA/cm2cm2) denotes the 𝑗th time-dependent ionic current
density, and𝑁 is the user-defined number of time-dependent
currents, the value of which depends on the complexity of the
data to which the model is to be fitted. The ability to set the
number of currents makes the model generic and modular.

The time-dependent currents are represented by a two-gate
HH scheme:
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(𝜇S/cm2) is themaximum ion channel conductance,
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are dimensionless gating variables, and 𝐸rev,j (mV)

is the reversal potential for membrane current 𝑗. The time-
independent leakage current is described by
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where 𝑔
𝐿
(𝜇S/cm2) and 𝐸rev,L (mV) are the maximum ion

channel conductance and reversal potential, respectively. For
the gating variables in (2), HH kinetics [5] are employed to
specify first order differential equations (ODEs):
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closing rates for the corresponding gating variable. These
rates are given by sigmoidal functions of the membrane
potential 𝐸

𝑚
:
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𝑚
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where 𝑘 (s−1), 𝑠 (mV−1), and 𝐸
50
(mV) are parameters specific

to each rate, with each 𝐸
50

parameter value shared between
the 𝛼 and 𝛽 pair for each gating variable.

Therefore in total, the generic model contains 2𝑁 + 1

ODEs and 12𝑁 + 2 parameters. In principle, the higher
the value of 𝑁, the more degrees of freedom and the more
complex are the electrophysiological behaviourswhich can be
reproduced, at the cost of decreased computational efficiency.

2.2. Parameter Optimisation. A custom curvilinear gradient-
based least-squares optimisation method, combining the
advantages of both Newton and steepest-descent methods
[20], was carried out on a standard desktop PC using
Matlab software (TheMathworks Inc., USA).The curvilinear
gradient method may be briefly described as follows: we
assume that an array of𝑚 × 1 data points d are to be fitted by
anODE system𝑓(p), where p is an 𝑛 × 1 array of parameters.
The 𝑚 × 1 residual array r between model and data is given
by

r (p) = f − d. (6)

In general, themodel output𝑓(p)will be a nonlinear function
of the parameter array p. However, the residual can be
linearized using the approximation:

r (Δp) = r0 + (
𝜕f
𝜕p
) ⋅ Δp

= r0 + J ⋅ Δp,
(7)
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where Δp is the 𝑛 × 1 array of parameter increments relative
to the current parameter set p, and r

0
is the array of residuals.

A least-squares scalar objective function,𝑄, to be minimised
is given by

𝑄 (Δp) = r(Δp)T ⋅ r (Δp)

= rT0 r0 + 2Δp
TJTr0 + Δp

TJTJΔp

= 𝑄
0
+ ΔpTG +

1

2
ΔpTHΔp,

(8)

where T denotes the transpose, J is the𝑚 × 𝑛 Jacobianmatrix,
Q
0
= rT
0
r
0
is the current objective value, G = 2JTr

0
denotes

the 𝑛 × 1 gradient of the objective at the current parameter
point p, and H = 2JTJ is the Hessian matrix. If the model is
well determined in its parameters, H will be nonsingular at
the global minimum for 𝑄.

Equation (8) represents a quadratic form in the parameter
increment vector Δp. The exact minimum of this quadratic
form will occur at

Δp = −H−1G (9)

and represents a full Newton step to the minimum objective
value. In practice, however, the least squares scalar objective
given by (8) will not be accurate for largeΔp, where the linear
approximation of the residual in (7) breaks down.WhenΔp is
sufficiently small, (8) will be accurate.We can however search
for the minimum objective along a curvilinear trajectory
through the 𝑛-dimensional parameter space given by the
curve of steepest descent of the quadratic form (8). This
trajectory is given by

L (𝛼) = (𝑒−H𝛼 − I)H−1G, (10)

where 𝛼 is a parameter between 0 and infinity, with 𝛼 = 0 cor-
responding to the current parameter location p and 𝛼 = inf
corresponding to the full Newton step mentioned previously.
When the objective minimum has been found along the tra-
jectory, the quadratic form (8) is recomputed, and another
search is performed along a new curvilinear path. The ap-
proach is iteratively carried out until the least square objective
is locally minimised. Full details of the method are described
inDokos and Lovell [20] including random restarts and itera-
tive reweighting to find the global least squares minimum. In
addition, some of the experimental AP waveforms recorded
in the present study exhibited stimulus artifacts which could
confound the optimisation process.These were effectively re-
moved by assigning a weight of zero to the residual between
model and data in these regions.

When optimising the model to fit multiple datasets
simultaneously, the residual in (6) was formed by appending
together the residuals of the model and the corresponding
individual datasets. As a result, the calculation of the Jacobian
matrix J in (7) was slightly modified. Three cases can be con-
sidered.

(i) Multiple data (𝑅 datasets) fitted using the assumption
that each dataset shares the same parameter values,

for example, fitting multiple AP data recorded from
the same cell in response to different pacing condi-
tions. J will be of size 𝑚 × 𝑛, where m is the total
number of data points across all records and n is the
number of optimised model parameters.

(ii) Multiple data (𝑅 datasets) fitted using the assumption
that each model uses a unique set of parameters to fit
each experimental dataset. Data-specific parameters
𝑥
1
to 𝑥
𝑅
, each of size 𝑛 × 1, are used for datasets 1 to

𝑅. This process is equivalent to performing multiple
single dataset optimisations independently, and then
J will be of size𝑚 × 𝑛𝑅.

(iii) Multiple data (𝑅 datasets) fitted using a combination
of both shared and data-specific parameters. This is
the case for the drug-specific and tissue-specific opti-
misation scenarios presented. For 𝑆 data-specific
parameters (i.e., 𝑆 parameters unique to each dataset),
J will be of size𝑚 × [𝑛 + (𝑅 − 1) × 𝑆].

Compared with single dataset fitting, more computa-
tional resources are required formultiobjective optimisations
due to the larger size of the Jacobianmatrix, as well as the fact
thatmore localminima are likely to be present in the objective
parameter space.

2.3. Cardiac Tissue Recordings. New Zealand White rabbits
(6–24 months old) were anesthetised with 5% isofluorane,
and 1000 IU of heparin was administered intravenously.
A thoracotomy was performed and the heart was rapidly
excised and placed in cold cardioplegia solution. SAN-RA or
LA appendage tissue preparations were dissected and placed
in a recording chamber, superfused with Tyrode’s solution
and oxygenated with 95% O

2
and 5% CO

2
to maintain the

pH at ∼7.4. Intracellular APs were recorded using sharp glass
microelectrodes (resistance 50–100MΩ). Recordings were
amplified (gain× 10) and filtered (low pass, cutoff 10 kHz)
using an Axoclamp 2B amplifier (Axon Instruments, USA)
and sampled at 20 kHz using a USB-6251 analog/digital con-
verter (National Instruments, USA) and a custom build
data acquisition software programmed in Labview (National
Instruments, USA). For the LA experiments, the tissue was
paced using a STG1002 stimulator (MultiChannel Systems,
Germany). Monophasic suprathreshold pulses, 2ms in dura-
tion, were delivered using Teflon coated bipolar stainless
steel electrodes (125 𝜇mdiameter). All experiments were con-
ducted in accordance with Australian animal research guide-
lines and were approved by the University of New South
Wales Animal Ethics and Care Committee.

3. Results

3.1. Results of Optimised Minimal Generic Model. A minimal
generic HH-type ionic model with two time-dependent
membrane currents, one inward and one outward, in addition
to a background leakage current was fitted to three consecu-
tive spontaneous APs recorded from central sinoatrial node
(cSAN), peripheral sinoatrial node (pSAN), and RA tissue-
intact myocytes from rabbit sinoatrial tissue preparations.
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Optimised APs along with the corresponding ionic currents
are shown in Figure 1. Lists of optimised parameter values and
initial values for all model variables for each cell are given in
Tables 1 and 2. In accordance with the data, the pSANmodel-
generated APs exhibited a faster upstroke, a more positive
overshoot, and more negative maximum diastolic potential
compared to the cSAN. Both types of SAN APs exhibited a
slow depolarisation (pacemaker) phase which was absent in
the RA cell, and, as a result, stimulus pulses of 2ms duration
and 30 𝜇A/cm2 amplitude were applied to trigger APs in the
RA model. There was a gradual transition in the shape of the
AP and ionic current waveforms from central SAN to
atrial tissue. In particular, the transient spike of the inward
current (ionic current 1) was nearly absent in the cSAN
model and progressively increased both in magnitude and
upstroke rate frompSAN toRA.The rootmean square (RMS)
error between the optimised models and data was 1.02mV,
1.53mV, and 1.69mV for cSAN, pSAN, and RA myocytes,
respectively.

To assess the generalizability of the HH generic model
and optimisation procedure in fitting a wide range of AP
waveforms, five separate spontaneous AP recordings from
each of the previous myocyte types were fitted using the
three-current version of the genericmodel. Stimulus pulses of
2ms duration and variable amplitude were used to excite the
atrial models. The five sets of data comprised one group des-
cribed previously (Group 1), plus an additional four sets
(Groups 2–5) for each of the three myocyte types (cSAN,
pSAN, and RA). Despite the inherent variation between APs
recorded from the same myocyte type in different tissue pre-
parations, the generic model was able to fit each dataset using
only an inward, an outward, and one background membrane
current (Figure 2). The RMS error for each cell type (𝑛 = 5,
mean± standard deviation)was 1.43±0.38mV(cSAN), 2.14±
0.75mV (pSAN), and 2.49 ± 1.39mV (RA). Compared with
the fits shown in Figure 1 (Group 1), the mean RMS is mar-
ginally increased for all three cell types, likely due to the fact
that unsmoothed experimental datasets (with mean peak-
to-peak noise levels of ±0.96mV) were used in fitting data
Groups 3–5. Nonetheless, the model was able to reproduce
the variability in AP waveform from the same cell type in
different preparations.

3.2. Multiobjective Action Potential Optimisation

3.2.1.Multidataset Optimisation with Shared Parameters (Uni-
formly Paced Left Atrial Data). The generic model was also
optimised to simultaneously fit twomorphologically different
LA AP waveforms from the same cell, recorded in response
to stimulation at pacing intervals (PIs) of 400ms and 200ms
(Figure 3(a)), using a single set of parameters. A total of five
time-dependent ion currents and one leakage current were
required to simultaneously fit the two sets of data, with results
shown in Figure 3. Stimulus pulses of 2ms duration and
13 𝜇A/cm2 in amplitude were used to elicit APs in the model.
For a PI of 200ms, the model generated AP characteristics
and corresponding time-dependent ionic currents revealed
beat-to-beat variations. Parameter values and initial values
of all model variables are listed in Tables 3 and 4. The RMS

errors between the optimised model and corresponding
experimental data were 2.01mV (PI = 400ms) and 3.22mV
(PI = 200ms).This optimisedmodel was then used to predict
theAPs elicited at a PI of 300ms, a dataset whichwas not used
in the optimisation process. The additional experimental
dataset can be reproduced with an RMS error of 2.46mV
(Figure 3, PI = 300ms).

To test the reliability of the previous multiple-dataset
based optimisation, two additional optimisation runs were
carried out utilising the same LA paced data mentioned pre-
viously. Both optimisation runs started with the same stimu-
lation settings, but used randomly generated initial parameter
values. Iterations were terminated when the RMS error
betweenmodel and experimental data reached a similar value
to that obtained earlier. The resulting RMS errors between
the optimised models and corresponding data were 2.01 and
2.40mV (PI = 400ms), 3.25 and 3.26mV (PI = 200ms), and
2.58 and 2.91mV (PI = 300ms) for optimisation runs 2 and 3,
respectively.

Although model-generated APs from each optimisation
run are almost identical, parameter values displayed signifi-
cant variation between each run (see Tables 3 and 4 for a list
of parameters and initial values for model parameters). The
maximumrelative difference (as a percentage ofmean param-
eter value) is approximately 170% and the mean relative dif-
ference is 19%, indicating that model parameters cannot be
uniquely identified, even when they are obtained frommulti-
ple dataset optimisations. Interestingly, despite the random-
ness of the initial parameter values for each optimisation run,
the corresponding time-dependent ionic current waveforms
are nearly identical and physiologically reasonable, except for
differences in their scaling (Figure 3(b)).

3.2.2. Multidataset Optimisation with Shared Parameters
(Randomly Paced Left Atrial Data). A rabbit left atrial (LA)
tissue preparation was electrically paced at uniform frequen-
cies with a pacing interval (PI) of 200ms and 400ms, as well
as randomly paced, and APs responses were recorded from
the samemyocyte (𝑛 = 1) for each pacing protocol.The pulse
amplitude and duration were fixed for all protocols. A
sequence of 100 random pulses was generated from a normal
distribution of PIs, with mean and standard deviation of
275ms and 69ms, respectively. A sequence of seven pulses
was selected andused in optimisation. In addition toAP alter-
nans observed at a PI of 200ms, more significant beat-beat
variations in AP morphology were demonstrated in the ran-
domly paced dataset, as shown in Figure 4 (lower panel).

Using the generic ionic model, a total of seven time-
dependent membrane currents and one leakage current were
required to fit the multiple datasets simultaneously using a
single set of parameter values (Table 5 lists the shared para-
meters), with distinct variable initial values for each dataset
(Table 6). Stimulus pulses of 2ms duration and 30 𝜇A/cm2 in
amplitude were used to excite the model at the appropriate
PI.The optimisedmodel was able to accurately reproduce the
experimental AP waveforms, even for the random-paced
protocol (Figure 4). RMS errors between the optimised
model and corresponding experimental data were 2.94mV
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Figure 1: Optimisation based on single AP dataset. (a) Top panels: optimised model generated APs overlaid with experimental APs recorded
from central sinoatrial node (cSAN), peripheral sinoatrial node (pSAN), and right atrial (RA) intact myocytes from rabbit sinoatrial tissue
preparations. Lower panels: corresponding ionic and leakage currents generated by each cell model. (b) Phase plot (𝑑𝑉/𝑑𝑡 versus𝑉) of model
APs overlaid with experimental data.The experimental voltage derivatives were obtained from first order finite differencing of the membrane
voltage data.
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Table 1: Parameter values for single AP dataset-based optimisation.

Parameter Description cSAN pSAN RA
𝑔
1

Maximum 𝐼
1
conductance (𝜇S/cm2) 95.71 60.29 33.55

𝐸rev,1 Reversal potential of 𝐼
1
(mV) −91.74 −92.80 −97.71

𝑘
𝛼𝑝1

Maximum value of 𝛼
𝑝1
(s−1) 4932.74 4990.73 3099.16

𝑠
𝛼𝑝1

Slope value for 𝛼
𝑝1
(mV−1) −1.84 −2.92 −0.10

𝑘
𝛽𝑝1

Maximum value of 𝛽
𝑝1
(s−1) 15.26 41.15 4477.72

𝑠
𝛽𝑝1

Slope value for 𝛽
𝑝1
(mV−1) 2.48 5.00 0.15

𝐸
𝛼𝛽𝑝1

𝐸
50
value for 𝛼

𝑝1
and 𝛽

𝑝1
(mV) −30.44 −62.41 −77.65

𝑘
𝛼𝑞1

Maximum value of 𝛼
𝑞1
(s−1) 1.40 6.61 170.9

𝑠
𝛼𝑞1

Slope value for 𝛼
𝑞1
(mV−1) −3.86 −2.09 −0.01

𝑘
𝛽𝑞1

Maximum value of 𝛽
𝑞1
(s−1) 7.92 7.81 0.01

𝑠
𝛽𝑞1

Slope value for 𝛽
𝑞1
(mV−1) 0.10 0.92 0.19

𝐸
𝛼𝛽𝑞1

𝐸
50
value for 𝛼

𝑞1
and 𝛽

𝑞1
(mV) −36.17 −53.46 −80.46

𝑔
2

Maximum 𝐼
2
conductance (𝜇S/cm2) 17722.1 17966.7 9962.91

𝐸rev,2 Reversal potential of 𝐼
2
(mV) 11.38 6.98 14.54

𝑘
𝛼𝑝2

Maximum value of 𝛼
𝑝2
(s−1) 0.44 2.80 300.89

𝑠
𝛼𝑝2

Slope value for 𝛼
𝑝2
(mV−1) −4.98 −4.99 −0.20

𝑘
𝛽𝑝2

Maximum value of 𝛽
𝑝2
(s−1) 3851.95 4612.17 4030.31

𝑠
𝛽𝑝2

Slope value for 𝛽
𝑝2

(mV−1) 0.26 0.70 0.02
𝐸
𝛼𝛽𝑝2

𝐸
50
value for 𝛼

𝑝2
and 𝛽

𝑝2
(mV) −47.98 −70.14 −51.73

𝑘
𝛼𝑞2

Maximum value of 𝛼
𝑞2
(s−1) 4.36 9.95 16.86

𝑠
𝛼𝑞2

Slope value for 𝛼
𝑞2

(mV−1) 3.51 3.04 0.20
𝑘
𝛽𝑞2

Maximum value of 𝛽
𝑞2
(s−1) 43.47 62.65 52.61

𝑠
𝛽𝑞2

Slope value for 𝛽
𝑞2
(mV−1) −4.47 −4.67 −0.18

𝐸
𝛼𝛽𝑞2

𝐸
50
value for 𝛼

𝑞2
and 𝛽

𝑞2
(mV) −36.24 −69.46 −75.74

𝑔
𝐿

Maximum 𝐼
𝐿
conductance (𝜇S/cm2) 3.70 4.00 1.74

𝐸rev,𝐿 Reversal potential of 𝐼
𝐿
(mV) −42.59 −69.32 −58.98

Table 2: Initial variable values for single AP dataset-based optimi-
sation.

Variable cSAN pSAN RA
𝐸
𝑚
(mV) −55.65 −74.09 −81.35

𝑝
1

0.23 0.063 0.79
𝑞
1

0.07 0.28 0.39
𝑝
2

0 0 0
𝑞
2

0.47 0.38 0.30

(PI = 400ms), 3.51mV (PI = 200ms), and 3.91mV (randomly
paced). Figure 5 illustrates the corresponding membrane
currents generated by the optimised model when paced with
the three protocols. Note that the generic model structure of
Figures 4 and 5 is different from that of Figure 3 in respect
of the total number of equations and parameters, since the
number of time-dependent currents is not the same. The
increase in the number of currents in the generic model of
Figures 4 and 5 was necessitated by the requirement that
the optimised model fit three AP datasets simultaneously, as
opposed to the two AP datasets of Figure 3.

3.2.3. Multidataset Optimisation with Combined Shared and
Data-Specific Parameters

(i) Drug-Specific Case. The generic ionic model was simulta-
neously fitted to two spontaneous peripheral sinoatrial node
(pSAN) AP datasets from Kodama et al. [21]: a control set of
APs and the AP response following the application of E-4031,
a specific blocker of rapid delayed-rectifier potassium (𝑖Kr)
channels. To fit the generic model to both datasets, four time-
dependent currents and one leakage current were required.
Current 𝑖

3
was chosen to correspond to 𝑖Kr. Furthermore, it

was assumed that E-4031 acts to only alter themaximum con-
ductance of 𝑖Kr channels, without modulating their kinetics.
Therefore during optimisation, only one pharmacological-
specific parameter 𝑔

3
, the maximum conductance of the

𝑖Kr(𝑖3), was optimised to have a distinct value for each of the
two datasets. All other model parameter values were shared
between the datasets, since any AP waveshape variation was
assumed to be due to the blocking effect of E-4031 on 𝑖Kr
alone. The optimised pSAN model was spontaneously active
and AP fits to both datasets are shown in Figure 6, with RMS
error between the model and corresponding data being
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Table 3: Parameter values for LA multidataset-based optimisation.

Parameter Description Run 1 Run 2 Run 3
𝑔
1

Maximum 𝐼
1
conductance (𝜇S ⋅ cm−2) 3044.83 1926.84 4547.51

𝐸rev,1 Reversal potential of 𝐼
1
(mV) 5.00𝑒 − 4 2.50𝑒 − 2 9.54𝑒 − 2

𝑘
𝛼𝑝1

Maximum value of 𝛼
𝑝1
(s−1) 4483.62 4425.83 4619.86

𝑠
𝛼𝑝1

Slope value for 𝛼
𝑝1
(mV−1) −9.21𝑒 − 2 −7.72𝑒 − 2 −5.16𝑒 − 2

𝑘
𝛽𝑝1

Maximum value of 𝛽
𝑝1
(s−1) 0.21 11.60 20.29

𝑠
𝛽𝑝1

Slope value for 𝛽
𝑝1
(mV−1) 0.196 0.197 0.199

𝐸
𝛼𝛽𝑝1

𝐸
50
value for 𝛼

𝑝1
and 𝛽

𝑝1
(mV) −28.97 −41.00 9.25

𝑘
𝛼𝑞1

Maximum value of 𝛼
𝑞1
(s−1) 1375.78 2117.98 1076.29

𝑠
𝛼𝑞1

Slope value for 𝛼
𝑞1
(mV−1) −0.20 −0.194 −0.196

𝑘
𝛽𝑞1

Maximum value of 𝛽
𝑞1
(s−1) 4761.23 3987.49 4844.62

𝑠
𝛽𝑞1

Slope value for 𝛽
𝑞1
(mV−1) 3.20𝑒 − 3 8.00𝑒 − 4 2.80𝑒 − 3

𝐸
𝛼𝛽𝑞1

𝐸
50
value for 𝛼

𝑞1
and 𝛽

𝑞1
(mV) 21.57 27.50 15.69

𝑔
2

Maximum 𝐼
2
conductance (𝜇S ⋅ cm−2) 42.24 29.84 66.49

𝐸rev,2 Reversal potential of 𝐼
2
(mV) −80.00 −80.00 −80.14

𝑘
𝛼𝑝2

Maximum value of 𝛼
𝑝2
(s−1) 115.88 19.19 82.99

𝑠
𝛼𝑝2

Slope value for 𝛼
𝑝2
(mV−1) −0.136 −0.117 −0.132

𝑘
𝛽𝑝2

Maximum value of 𝛽
𝑝2
(s−1) 217.08 164.94 283.28

𝑠
𝛽𝑝2

Slope value for 𝛽
𝑝2
(mV−1) 0.20 0.20 0.20

𝐸
𝛼𝛽𝑝2

𝐸
50
value for 𝛼

𝑝2
and 𝛽

𝑝2
(mV) −65.89 −68.28 −60.91

𝑘
𝛼𝑞2

Maximum value of 𝛼
𝑞2
(s−1) 1210.40 985.06 1311.51

𝑠
𝛼𝑞2

Slope value for 𝛼
𝑞2
(mV−1) −0.20 −0.193 −0.20

𝑘
𝛽𝑞2

Maximum value of 𝛽
𝑞2
(s−1) 2603.48 2516.13 3055.08

𝑠
𝛽𝑞2

Slope value for 𝛽
𝑞2
(mV−1) 4.00𝑒 − 4 1.15𝑒 − 2 1.20𝑒 − 3

𝐸
𝛼𝛽𝑞2

𝐸
50
value for 𝛼

𝑞2
and 𝛽

𝑞2
(mV) −99.87 −97.95 −71.00

𝑔
3

Maximum 𝐼
3
conductance (𝜇S ⋅ cm−2) 7192.04 4338.65 3904.66

𝐸rev,3 Reversal potential of 𝐼
3
(mV) 51.31 37.11 59.56

𝑘
𝛼𝑝3

Maximum value of 𝛼
𝑝3
(s−1) 64.45 129.11 79.20

𝑠
𝛼𝑝3

Slope value for 𝛼
𝑝3
(mV−1) −0.09 −9.41𝑒 − 2 −0.104

𝑘
𝛽𝑝3

Maximum value of 𝛽
𝑝3
(s−1) 4309.81 4587.86 4598.48

𝑠
𝛽𝑝3

Slope value for 𝛽
𝑝3
(mV−1) 2.44𝑒 − 2 3.61𝑒 − 2 2.73𝑒 − 2

𝐸
𝛼𝛽𝑝3

𝐸
50
value for 𝛼

𝑝3
and 𝛽

𝑝3
(mV) −39.76 −39.20 −39.52

𝑘
𝛼𝑞3

Maximum value of 𝛼
𝑞3
(s−1) 252.37 439.94 365.37

𝑠
𝛼𝑞3

Slope value for 𝛼
𝑞3
(mV−1) 9.78𝑒 − 2 0.118 0.10

𝑘
𝛽𝑞3

Maximum value of 𝛽
𝑞3
(s−1) 8.01 8.38 5.46

𝑠
𝛽𝑞3

Slope value for 𝛽
𝑞3
(mV−1) −0.106 −0.073 −0.176

𝐸
𝛼𝛽𝑞3

𝐸
50
value for 𝛼

𝑞3
and 𝛽

𝑞3
(mV) −96.83 −99.51 −95.50

𝑔
4

Maximum 𝐼
4
conductance (𝜇S ⋅ cm−2) 39997.9 39857.1 38120.4

𝐸rev,4 Reversal potential of 𝐼
4
(mV) 72.48 62.36 75.24

𝑘
𝛼𝑝4

Maximum value of 𝛼
𝑝4
(s−1) 2392.17 2330.46 1884.15

𝑠
𝛼𝑝4

Slope value for 𝛼
𝑝4
(mV−1) −0.159 −0.15 −0.161

𝑘
𝛽𝑝4

Maximum value of 𝛽
𝑝4
(s−1) 4999.04 4995.38 4938.09

𝑠
𝛽𝑝4

Slope value for 𝛽
𝑝4
(mV−1) 0.173 0.189 0.166

𝐸
𝛼𝛽𝑝4

𝐸
50
value for 𝛼

𝑝4
and 𝛽

𝑝4
(mV) −48.04 −48.21 −48.04

𝑘
𝛼𝑞4

Maximum value of 𝛼
𝑞4
(s−1) 46.66 48.78 22.51

𝑠
𝛼𝑞4

Slope value for 𝛼
𝑞4
(mV−1) 0.132 0.125 0.124

𝑘
𝛽𝑞4

Maximum value of 𝛽
𝑞4
(s−1) 1309.81 1172.17 1677.50

𝑠
𝛽𝑞4

Slope value for 𝛽
𝑞4
(mV−1) −0.18 −0.1.86 −0.16

𝐸
𝛼𝛽𝑞4

𝐸
50
value for 𝛼

𝑞4
and 𝛽

𝑞4
(mV) −73.25 −74.12 −64.6
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Table 3: Continued.

Parameter Description Run 1 Run 2 Run 3
𝑔
5

Maximum 𝐼
5
conductance (𝜇S ⋅ cm−2) 3577.89 4188.07 3353.90

𝐸rev,5 Reversal potential of 𝐼
5
(mV) 5.51 3.62 7.54

𝑘
𝛼𝑝5

Maximum value of 𝛼
𝑝5
(s−1) 1943.58 1303.25 1115.88

𝑠
𝛼𝑝5

Slope value for 𝛼
𝑝5
(mV−1) −0.199 −0.20 −0.197

𝑘
𝛽𝑝5

Maximum value of 𝛽
𝑝5
(s−1) 42.81 57.75 38.07

𝑠
𝛽𝑝5

Slope value for 𝛽
𝑝5
(mV−1) 1.68𝑒 − 2 1.16𝑒 − 2 1.33𝑒 − 2

𝐸
𝛼𝛽𝑝5

𝐸
50
value for 𝛼

𝑝5
and 𝛽

𝑝5
(mV) 26.49 20.86 30.38

𝑘
𝛼𝑞5

Maximum value of 𝛼
𝑞5
(s−1) 433.93 668.38 497.48

𝑠
𝛼𝑞5

Slope value for 𝛼
𝑞5
(mV−1) 4.00𝑒 − 4 1.06𝑒 − 2 1.50𝑒 − 3

𝑘
𝛽𝑞5

Maximum value of 𝛽
𝑞5
(s−1) 1244.48 884.84 985.96

𝑠
𝛽𝑞5

Slope value for 𝛽
𝑞5
(mV−1) −0.176 −9.46𝑒 − 2 −4.68𝑒 − 2

𝐸
𝛼𝛽𝑞5

𝐸
50
value for 𝛼

𝑞5
and 𝛽

𝑞5
(mV) −98.74 −92.40 −97.38

𝑔
𝐿

Maximum 𝐼
𝐿
conductance (𝜇S ⋅ cm−2) 107.47 123.02 92.50

𝐸rev,𝐿 Reversal potential of 𝐼
𝐿
(mV) −99.98 −99.93 −99.89
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Figure 2: Generic model fits to a range of APs recorded frommanymyocytes. Optimisedmodels overlaid with five recorded intact tissue APs
from each of rabbit central SAN (cSAN), peripheral SAN (pSAN), and right atrial (RA) myocytes. Each single dataset was separately fitted
with two time-dependent membrane currents and one leakage current. The average and standard deviation of the root mean square (RMS)
error of the fits is also shown.
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Figure 3: Multiple-dataset optimisation and validation of generic model to fit APs in response to uniform pacing at different frequencies.
ExperimentalAPswere obtained by pacing a left atrial intactmyocyte at three different pacing intervals (PIs).Model optimisationwas repeated
three times (runs 1, 2, and 3), each starting at randomized initial parameter values. AP fits obtained for each run were very similar. (a) Three
groups of optimised AP fits in response to pacing at intervals (PIs) of 400, 200, and 300ms. The generic model with five time-dependent
currents and one leakage current was simultaneously fitted to the first two datasets (PI = 400ms and 200ms) using a single set of model
parameters. The optimised model was validated by its ability to reproduce AP responses to pacing at a PI of 300ms, a dataset not used in
the model optimisation. (b) Plots of model generated time-dependent currents for each pacing protocol for each optimisation run. Note the
marked AP and membrane current beat-to-beat variations at PI = 200ms.
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Figure 4: Multiple-dataset generic model fits to APs recorded in response to uniform and random pacing protocols. From top to bottom: AP
fits in response to uniform pacing at intervals of 400 and 200ms and a sequence of random pacing intervals (PIs). The random sequence was
generated from a normal distribution of mean 275ms and standard deviation 69ms.The generic model with seven time-dependent currents
and one leakage current was simultaneously fitted to all three experimental datasets using a single set of model parameters.
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Figure 5: Reconstructed membrane currents of the optimised
model in Figure 4. From top to bottom: membrane currents in
response to stimulation at pacing intervals (PIs) of 400, 200ms and
a random sequence of PIs.

2.79mV (control) and 3.91mV (E-4031). Optimised param-
eter and initial values of model variables are given in Tables 7
and 8. Under control conditions, the optimised 𝑔

3
value was

2438.40 𝜇S/cm2 but was reduced to 1562.28𝜇S⋅cm−2 under
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Figure 6: Drug-specific multiobjective optimisation. Top and bot-
tom panels illustrate the optimised model (solid traces) overlaid
with experimental AP data (dashed traces) of peripheral sinoatrial
node (pSAN) APs under control conditions (a) and in the presence
of 0.1 𝜇M E-4031, a selective blocker of 𝑖Kr channels (b).

the action of E-4031. Model-generated membrane currents
corresponding to these fits are shown in Figures 7(a) and
7(b). The amplitude of 𝑖Kr (𝑖3) in the E-4031 model is evi-
dently reduced from a mean peak value of 19.26 𝜇A/cm2 to
12.73 𝜇A/cm2, resulting in a prolongation of repolarization
and a decreased maximum diastolic potential. Note that
membrane currents 𝑖

1
, 𝑖
2
, 𝑖
4
, and 𝑖

𝐿
, which are not directly

affected by E-4031, still exhibit differences between the two
simulations due to the voltage dependency of each current
and its corresponding interaction with 𝑖Kr.
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Table 4: Initial model variable values for LA multidataset-based
optimisation.

Run 1 Run 2 Run 3
Variable (PI = 400ms)
𝐸
𝑚
(mV) −80.32 −79.26 −79.86

𝑝
1

0.99 0.95 0.70
𝑞
1

0 0 0
𝑝
2

0.07 2.70𝑒 − 2 2.20𝑒 − 2

𝑞
2

0.45 0.46 0.11
𝑝
3

6.00𝑒 − 4 0 3.00𝑒 − 4

𝑞
3

0.87 0.84 0.92
𝑝
4

2.70𝑒 − 3 4.40𝑒 − 3 2.2𝑒 − 3

𝑞
4

0.11 8.90𝑒 − 2 0.126
𝑝
5

4.00𝑒 − 3 0 2.00𝑒 − 4

𝑞
5

0.16 0.31 0.264
Variable (PI = 200ms)
𝐸
𝑚
(mV) −77.80 −77.80 −78.61

𝑝
1

0.99 0.99 0.72
𝑞
1

0 0 0
𝑝
2

0.90 0.90 2.70𝑒 − 2

𝑞
2

0.42 0.42 0.133
𝑝
3

1.80𝑒 − 3 1.80𝑒 − 3 4.00𝑒 − 4

𝑞
3

0.64 0.64 0.883
𝑝
4

6.90𝑒 − 3 6.90𝑒 − 3 2.70𝑒 − 3

𝑞
4

5.70𝑒 − 2 5.70𝑒 − 2 0.102
𝑝
5

8.10𝑒 − 3 8.10𝑒 − 3 1.50𝑒 − 3

𝑞
5

3.50𝑒 − 2 3.50𝑒 − 2 0.26
Variable (PI = 300ms)
𝐸
𝑚
(mV) −80.40 −82.14 −79.96

𝑝
1

0.99 0.52 0.69
𝑞
1

0 0 0
𝑝
2

6.60𝑒 − 2 4.50𝑒 − 2 2.20𝑒 − 2

𝑞
2

0.45 0.45 0.109
𝑝
3

6.00𝑒 − 3 5.00𝑒 − 4 3.00𝑒 − 4

𝑞
3

0.87 0.93 0.922
𝑝
4

2.60𝑒 − 3 2.90𝑒 − 3 2.20𝑒 − 3

𝑞
4

0.113 0.14 0.128
𝑝
5

2.00𝑒 − 4 6.00𝑒 − 4 1.00𝑒 − 4

𝑞
5

0.16 0.27 0.264

(ii) Tissue-Specific Case. Spatial heterogeneity in AP wave-
forms is evident throughout the atria, likely due to the dif-
ferential expression of ion channels from sinoatrial node
(SAN) to atrial regions [19]. APs were recorded from central
sinoatrial node (cSAN) and right atrial (RA) tissue-intact
myocytes in one rabbit SAN preparation (𝑛 = 1 for each cell
type). For this case of tissue-specific optimisation, parameters
for the maximum conductance (𝑔

𝑗
) of each membrane cur-

rent (an indicator of ion channel density)were set as data-spe-
cific parameters. Each cell type possessed distinct values
for the 𝑔

𝑗
, while all remaining parameters were shared: the

assumption being that ion channels with the same kinetic
properties are present throughout the whole tissue.

Figure 8 shows the fitted APs for both regions. The cSAN
model was spontaneously active, whilst the atrial model
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Figure 7: Reconstructed membrane currents for the drug-specific
optimisation. Four time-dependent currents and one leakage cur-
rent were included in themodel. 𝑖Kr (𝑖3), which was partially blocked
by E-4031, is shown as a thick red dashed line.
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Figure 8: Tissue-specific multiobjective optimisation. Top and
bottom panels illustrate the optimised model (solid traces) overlaid
with experimental AP data (dashed traces), representing central
sinoatrial node (cSAN) and right atrial (RA) APs recorded from the
same tissue preparation.

was stimulated with rectangular pulses of 2ms duration and
22𝜇A/cm2 amplitude. A total of seven time-dependent cur-
rents and one leakage current were required to fit both data-
sets simultaneously. The RMS errors between the optimised
models and corresponding data were 1.78mV (cSAN) and
2.48mV (RA). Values of all optimised parameters and initial
variables are given in Tables 9 and 10. Significant channel
density differences (maximum conductances) exist between
cSAN andRA, which contribute to the difference inAPwave-
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Table 5: Parameter values for random-paced LA optimisation.

Parameter Description 𝐼
1

𝐼
2

𝐼
3

𝐼
4

𝐼
5

𝐼
6

𝐼
7

𝐼
𝐿

𝑔 Maximum conductance (𝜇S/cm2) 3791.62 1112.87 24.99 334.03 5211.15 615.19 39984.07 12.96
𝐸rev Reversal potential (mV) −99.82 −90.46 −60.73 −27.89 53.14 30.14 73.64 −82.72
𝑘
𝛼𝑝

Maximum value of 𝛼
𝑝
(s−1) 4680.75 2452.15 4309.86 1351.75 20.51 3406.11 1547.59

𝑠
𝛼𝑝

Slope value for 𝛼
𝑝
(mV−1) −7.40𝑒 − 2 −0.19 −0.16 −0.20 −8.40𝑒 − 2 −0.19 −0.19

𝑘
𝛽𝑝

Maximum value of 𝛽
𝑝
(s−1) 1577.04 17.13 1882.61 97.24 1035.90 4991.79 4097.16

𝑠
𝛽𝑝

Slope value for 𝛽
𝑝
(mV−1) 0.17 3.6𝑒 − 2 0 2.10𝑒 − 4 1.8𝑒 − 4 7.40𝑒 − 2 0.15

𝐸
𝛼𝛽𝑝

𝐸
50
value for 𝛼

𝑝
and 𝛽

𝑝
(mV) −99.90 22.84 14.65 −64.50 7.32 −43.38 −72.40

𝑘
𝛼𝑞

Maximum value of 𝛼
𝑞
(s−1) 8.78 133.46 201.88 1342.22 967.19 230.35 4.50

𝑠
𝛼𝑞

Slope value for 𝛼
𝑞
(mV−1) 0 1.20𝑒 − 3 0.19 0.20 0.20 0.17 0.19

𝑘
𝛽𝑞

Maximum value of 𝛽
𝑞
(s−1) 4976.46 1285.70 3.7𝑒 − 3 2100.13 145.50 19.01 1159.70

𝑠
𝛽𝑞

Slope value for 𝛽
𝑞
(mV−1) 0 −0.11 −3.1𝑒 − 2 −0.16 −3.40𝑒 − 2 −0.19 −0.19

𝐸
𝛼𝛽𝑞

𝐸
50
value for 𝛼

𝑞
and 𝛽

𝑞
(mV) −67.02 −94.50 −21.182 −100 0.32 −100 −99.88
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Figure 9:Model-generatedmembrane currents corresponding to the tissue-specific optimisation of Figure 8. Seven time-dependent currents
and one leakage current were included in the model. All model parameters were shared between the two cell types, with the exception of the
maximum membrane conductance for each of the ionic currents (i.e., 𝑔

1
–𝑔
7
and 𝑔L, a total of eight parameters).
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Table 6: Initial variable values for random-paced optimisation.

Variable 400ms 200ms Random
𝐸
𝑚
(mV) −78.79 −77.96 −77.96

𝑝
1

0.99 0.99 0.99
𝑞
1

0.004 0.0014 0.0014
𝑝
2

0.000008 0.13 0.13
𝑞
2

0.0430 0.074 0.074
𝑝
3

0 0 0
𝑞
3

1 1 1
𝑝
4

0.82 0.74 0.74
𝑞
4

0.00940 0.0073 0.0073
𝑝
5

0.00009 0.000031 0.000031
𝑞
5

0.98 0.99 0.99
𝑝
6

0.00056 0.00094 0.00094
𝑞
6

0.32 0.1 0.1
𝑝
7

0.18 0.17 0.17
𝑞
7

0.00035 0.000095 0.000095

form. Comparison of cSAN and RA membrane currents is
plotted in Figure 9, with a separate panel for each current
from both cell types. Interestingly, ionic currents with the
same kinetic parameters can display a very different time
course for each cell type, due to the direct effect of the dif-
ferences in 𝑔

𝑗
and the indirect effects of voltage dependency

in each current.

4. Discussion

In this study, a generic ionic model was optimised using
a custom curvilinear gradient algorithm to fit a range of
cardiac APs.Themodel was fitted to either single AP traces or
simultaneously to multiple AP waveforms recorded from
tissue-intact myocytes under different experimental condi-
tions in rabbit SAN and/or atrial tissue preparations. AP
waveforms could be well reproduced by the generic model,
whose complexity lies intermediate between simple pheno-
menological formulations and biophysically detailed ionic
models. Complex experimental data could be reproduced by
the addition of extra ionic currents into the model. A major
improvement over existing modelling approaches is that
model parameters have been adjusted to accurately reproduce
AP waveforms recorded under different pacing or pharma-
cological conditions from the same myocyte, reproducing
complex AP characteristics while retaining physiologically
realistic membrane current waveforms.

Membrane current kinetics of the generic model were
expressed in terms of two first-order gates (p and q). It is pos-
sible to incorporate more complex activation kinetics such
as raising the gating variables to powers greater than one.
Such a modification would, in principle, allow fits to sig-
moidal time courses of activation during voltage clamps: a
property of many membrane currents [22]. Surprisingly, our
fits to multiple AP data did not require sigmoidal kinetics
for the membrane currents, as would be the case if we were
to reproduce voltage-clamp data. However if desired, voltage-
clamp data could be included as an additional dataset to be

fitted alongside the other AP records simultaneously. Even
if the data required membrane currents to reproduce a sig-
moidal onset of activation, this could still be achieved with
the simplified kinetic structure of our genetic model. For
example, we have fitted the Hodgkin and Huxley (HH) [5]
𝑖K (𝑛4 kinetics) and 𝑖Na (m

3 h kinetics) membrane currents
in response to a voltage step from −60mV to +40mV, using a
total of two generic currents (for 𝑖K) and four generic currents
(for 𝑖Na) respectively (not shown), indicating that even with
highly simplified kinetics, the generic model is still able to
reproduce a wide range of experimental data. The modeller
can decide whether to amalgamate any generic currents
obtained with our method into more complex formulations,
as a first step towards formulating a more biophysically
detailed model if desired.

Compared with previous studies using simplified cell for-
mulations such as the Fitzhugh-Nagumo or Fenton-Cherry
models [4, 14, 23], our generic model could accurately repro-
duce spontaneousAPwaveforms recorded fromcSAN, pSAN
as well as paced AP waveforms from RA and LA myocytes.
Although previously published phenomenological models
were able to reproduce restitution curves and reasonable AP
waveforms, we regard it necessary to reproduce accurate AP
morphologies inmodelling electrophysiological dynamics [3,
24, 25]. With our approach, a user-defined number of mem-
brane currents can be defined, providing higher flexibil-
ity in reproducing even more complex electrophysiological
dynamics. In order to retain the simplified nature of the
model, additional ionic currents were included only when
necessary (i.e., the target RMS error could not be achieved).
Moreover, because of the similar formulation of each ionic
current, many of these can be recombined if they are found to
follow similar time course profiles during optimisation, facili-
tating the process of model reduction. It is important to note
that prior to optimisation, we make no assumptions as to the
ionic identity of each current, but allow the fitting process
to determine the current density and kinetics based solely
on the AP data. The only exception was for the drug-specific
scenario (Figures 6 and 7), where, prior to optimisation, the
maximum conductance of current 𝑖

3
was chosen as the only

parameter to be altered by E-4031, effectively preidentifying
this current with 𝑖Kr for this optimisation run only. We could
equally have chosen any other conductance parameter in the
model. Although 𝑖

3
is preidentified with 𝑖Kr in this case, 𝑖

3

does not necessarily correspond to this membrane current
for the other optimisations results of this study. The generic
model approach outlined here provides a promising tool for
tissue or whole-heart simulations due to its simplified nature
and, therefore, computational efficiency.

Our multidataset-based optimisation results suggest that
multiobjective experimental AP data can improve ionic
model optimisation and predictive power of the model, pro-
vided the additional data includes information not present
in the original dataset(s). Model optimisation using multiple
data with similar AP characteristics, such as AP duration or
amplitude, will tend to simplymaintain the number and loca-
tion of local minima on the objective surface. However,
introducing additional datasets with extra information will
smooth the objective surface by reducing the amplitude of
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Table 7: Parameter values for drug-specific optimisation.

Parameter Description 𝐼
1

𝐼
2

𝐼
3

𝐼
4

𝐼
𝐿

𝑔 Maximum conductance (𝜇S/cm2) 97 127.61 2438.40 (Control) 12279.67 13.58
1562.28 (E-4031)

𝐸rev Reversal potential (mV) −55.54 −97.79 −79.96 43.39 −99.56
𝑘
𝛼𝑝

Maximum value of 𝛼
𝑝
(s−1) 4988.66 3178.26 3128 2545.56

𝑠
𝛼𝑝

Slope value for 𝛼
𝑝
(mV−1) −8.40𝑒 − 2 −6.80𝑒 − 3 −0.2 −9.386𝑒 − 2

𝑘
𝛽𝑝

Maximum value of 𝛽
𝑝
(s−1) 2383.24 4828.39 72.52 1965.64

𝑠
𝛽𝑝

Slope value for 𝛽
𝑝
(mV−1) 0.19 1.70𝑒 − 3 1.14𝑒 − 2 2.40𝑒 − 4

𝐸
𝛼𝛽𝑝

𝐸
50
value for 𝛼

𝑝
and 𝛽

𝑝
(mV) −89.62 16.61 9.81 7.38

𝑘
𝛼𝑞

Maximum value of 𝛼
𝑞
(s−1) 587.81 85.64 162.53 0.83

𝑠
𝛼𝑞

Slope value for 𝛼
𝑞
(mV−1) −0.1 −1.50𝑒 − 5 2.54𝑒 − 2 0.2

𝑘
𝛽𝑞

Maximum value of 𝛽
𝑞
(s−1) 4049.79 920.57 185.48 12.01

𝑠
𝛽𝑞

Slope value for 𝛽
𝑞
(m𝑉−1) 1.90𝑒 − 2 0.184 −0.14 −7𝑒 − 4

𝐸
𝛼𝛽𝑞

𝐸
50
value for 𝛼

𝑞
and 𝛽

𝑞
(mV) −84.76 −17.22 −99.92 −22.4

Table 8: Initial variable values for drug-specific optimisation.

Variable Control E-4031
𝐸
𝑚
(mV) −76.90 −68.10

𝑝
1

0.94 0.98
𝑞
1

0.17 0.14
𝑝
2

0.37 0.37
𝑞
2

0.03 0
𝑝
3

0.04 0
𝑞
3

0.22 0.03
𝑝
4

0 0.004
𝑞
4

0.08 0.085

any “surface ripple,” since each parameter point on the surface
must now fit multiple data (see Figure 10). In addition, new
datasets with distinct “information” will introducemore local
minima onto the objective surface, making its topology more
complex and thus confounding the search for the global
optimum. We found that for multiple data optimisation, it
was much more challenging to fit all datasets simultaneously,
particularly if there were stringent constraints on parameters
and parameter values were shared between the datasets. At
the same time, the credibility of the ionic model is enhanced
by its ability to simultaneously reproduce data obtained under
variable experimental conditions

In addition, reconstructed membrane currents of the
optimised models were found to follow physiologically real-
istic waveforms in SAN and atrial rabbit myocytes, consistent
with current profiles predicted in existing biophysically
detailed models [26, 27]. It is important to note that mem-
brane currents with unrealistic time course profiles may
perfectly reproduce a single AP record dataset, but these will
generally fail to simultaneously reproduce multiple experi-
mental data.Our results suggest that themultiobjective fitting
approach can be used to accurately reconstruct underlying
membrane current dynamics, since the additional informa-
tion provided by the multiple data was important for their
accurate reconstruction.

From the experimental APs recorded in response to
pacing at uniform and random intervals, it can be seen that
for both the PI = 200ms and random paced datasets, there
was some beat-beat variation in the time course of underlying
membrane currents (Figure 5). At high pacing frequencies, a
second AP is elicited shortly after the previous one, having a
reduced AP duration and refractory period due to the reduc-
tion in magnitude of inward ionic currents. The generic
model was optimised to simultaneously fit AP responses to
regular and random pacing and could therefore reproduce
this AP alternans at higher rates, which is important in under-
standing and simulating the pathophysiological mechanisms
underlying reentrant activity and electrical remodelling in
atrial fibrillation [28].

Many electrophysiological studies have employed dyna-
mic AP clamp in the presence of selective ion channel block-
ers to visualise the time course of ionic currents underlying
the AP. However, these methods suffer from the limitation
that it is not currently possible to simultaneously visualise all
membrane currents present in a given myocyte. An alterna-
tive approach may be to use integrative ionic model simula-
tions which can reproduce cellular electrophysiological
behaviour under multiple experimental conditions. The
generic model of this study was optimised to fit multiple AP
records recorded during control conditions and also under
the influence of a selective ion channel blocker (E-4031). It
was assumed that in the two conditions, all model parameters
shared identical values, with the exception of the maximum
membrane conductance of the blocked 𝑖Kr current. We have
found that fitting to a single AP dataset does not provide
unique reconstructions of the time course of underlying
membrane currents. Nevertheless, the membrane currents
reconstructed using the multiobjective drug-specific optimi-
sation of the present study reveal remarkably similar time
course profiles to other existing biophysically detailed mod-
els. For example, rabbit SAN [29, 30] and rabbit atrial [26, 30]
single cell ionic models display a similar time course to our
𝑖Kr, suggesting that this optimised current has been appropri-
ately constrained by the drug-specific data optimisation. In
contrast, some experimental AP-clamp data [31, 32] indicate
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Table 9: Parameter values for tissue-specific optimisation.

Parameter Description 𝐼
1

𝐼
2

𝐼
3

𝐼
4

𝐼
5

𝐼
6

𝐼
7

𝐼
𝐿

𝑔
Maximum conductance (𝜇S/cm2) 1577.21 1154.71 24.99 1014.53 2469.15 1376.76 15.83 10.08

cSAN (upper)/RA (lower) 7526.58 66.55 76.99 50.00 2591.45 370.33 39997.86 4.30𝑒 − 2

𝐸rev Reversal potential (mV) −99.65 −97.08 −60.94 −29.09 63.89 30.66 80.96 −91.40
𝑘
𝛼𝑝

Maximum value of 𝛼
𝑝
(s−1) 4843.48 2636.70 4265.53 1197.10 25.37 3472.10 2083.24

𝑠
𝛼𝑝

Slope value for 𝛼
𝑝
(mV−1) −9.09𝑒 − 2 −0.168 −0.131 −0.1.99 −8.54𝑒 − 2 −18.05𝑒 − 2 −0.196

𝑘
𝛽𝑝

Maximum value of 𝛽
𝑝
(s−1) 2227.67 18.19 1505.24 138.93 1448.56 4999.96 4601.00

𝑠
𝛽𝑝

Slope value for 𝛽
𝑝
(mV−1) 0.175 2.65𝑒 − 2 2.76𝑒 − 4 0.21𝑒 − 3 7.27𝑒 − 5 8.52𝑒 − 2 0.158

𝐸
𝛼𝛽𝑝

𝐸
50
value for 𝛼

𝑝
and 𝛽

𝑝
(mV) −96.10 −1.19 23.46 −61.64 −0.127 −43.024 −56.47

𝑘
𝛼𝑞

Maximum value of 𝛼
𝑞
(s−1) 19.74 19.48 357.63 1068.00 1118.86 620.38 78.65

𝑠
𝛼𝑞

Slope value for 𝛼
𝑞
(mV−1) −4.23𝑒 − 3 2.6𝑒 − 3 0.198 0.20 0.20 18.47𝑒 − 2 0.195

𝑘
𝛽𝑞

Maximum value of 𝛽
𝑞
(s−1) 4974.17 1236.21 209.24 2699.34 303.27 64.29 455.47

𝑠
𝛽𝑞

Slope value for 𝛽
𝑞
(mV−1) 1.13𝑒 − 4 −0.117 −2.55𝑒 − 2 −0.177 −1.99𝑒 − 2 −0.187 −0.181
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Table 10: Initial variable values for tissue-specific optimisation.

Variable cSAN RA
𝐸
𝑚
(mV) −69.08 −79.93

𝑝
1

0.996 0.97
𝑞
1

0.0036 0.0035
𝑝
2

0.208 0.093
𝑞
2

0.0088 0.009
𝑝
3

0 0
𝑞
3

0.847 0.87
𝑝
4

0.77 0.32
𝑞
4

0.0008 0.0072
𝑝
5

0.0001 0.000032
𝑞
5

0.946 0.95
𝑝
6

0.0068 0.0009
𝑞
6

0.398 0.84
𝑝
7

0.0366 0.0047
𝑞
7

0.0021 0.015

a slower onset of 𝑖Kr, suggesting that we have not accurately
isolated the time course of this current component, perhaps
through inclusion of an 𝑖to component. Additional datasets
for use with multiobjective optimisation, such as, for exam-
ple, voltage-clamp data in the presence of the drug, may
further help inmore accurately identifying the kinetics of this
current.

The generic model approach outlined here could also be
used to simulate the effects of antiarrhythmic drugs on whole
heart or tissue simulations, due to the computational simplic-
ity of the model.The approach could even be used with phar-
macological agents known to havemultiple effects, such as the
partial block of more than one current. The user would only
need to specify which model parameters are shared between
datasets and which are drug-specific.

The tissue-specific optimisation approach also allowed
the generic model to be fitted to heterogeneous APs from
different myocyte types in the same tissue preparation. It was
assumed in this case that all model parameters were shared
between datasets, except the maximum membrane conduc-
tance of each current. As was the case for the drug-specific
optimisation, the reconstructed generic currents in themodel
resembled known profiles of ionic currents, based on their
similarity to current profiles obtained from biophysically
detailed models of cSAN and atrial rabbit myocytes, as well
as published data of pharmacologically isolated ionic currents
obtained using the dynamic AP clamp technique [33–38] (see
Figure 11). In addition, comparison of the magnitudes of 𝑖Na
and 𝑖to (𝑖7 and 𝑖3, resp.) between SAN and atrial myocytes is
in agreementwith experimental data from isolated right atrial
preparations [39, 40].

Furthermore, the excellent AP fits obtained for the tissue-
specific case (Figure 8) indicate that this multiobjective opti-
misation approach could also provide an extension to previ-
ously published gradient models of cardiac tissue electrical
activity, particularly models of SAN-atrial interaction. Com-
pared with Lovell et al.’s work [29], all kinetic model param-
eters were shared by each dataset in this study; therefore any

spatial regional differences are only reflected through varia-
tion in maximal membrane conductances. Compared to the
gradient model published by Zhang et al. [30], the tissue-
specific model of this study could accurately fit SAN and RA
APs by optimising shared kinetic parameters. Comparedwith
the work of Syed et al. [19] and Dastgheib et al. [18], who only
optimised maximum ion channel conductance parame-
ters [18, 19], all model parameters were included in the
tissue-specific optimisation of Figure 8. We believe that esti-
mating only conductance parameters while fixing ion chan-
nel kinetics parameters will excessively limit the parameter
search space, reducing the accuracy ofmodel fits, particularly
when optimising against multiple datasets.

Like most existing models, our generic model has certain
limitations, representing compromiseswhich are necessary to
achieve simplified and computationally efficient descriptions
of membrane current kinetics. While the model can accu-
rately fit multiple AP data, we have not incorporated intra-
cellular calcium cycling, changes in intracellular ion concen-
trations, metabolites, or ionic pumps and exchangers. These
changes, if present, would impact the AP waveshape through
our reconstructed membrane currents, which we assume
to simply consist of two first-order voltage-dependent (𝑝 and
𝑞) gating processes. It is also important to note that optimisa-
tion of nonlinear models, particularly those with large num-
bers of parameters, may lead to nonunique parameter esti-
mates. The generic model of this study is no exception. The
symmetrical nature of the membrane current formulations
indicates that the parameters of any two membrane currents
can be interchanged to produce identical AP waveforms,
due to the identical formulations for each current. A similar
argument would hold for the 𝑝, 𝑞 gating variables: their
kinetic parameters can be interchanged within any current
due to their symmetrical formulations. From such simple
considerations, it can be concluded that parameters of the
generic model cannot be uniquely determined, unless non-
symmetrical upper/lower bounds are imposed on individual
parameters. However, we found the model currents can con-
verge to similar waveforms, regardless of the initial parameter
values used. These results indicate that the additional infor-
mation provided by the multiple data was important for
accurate reconstruction of membrane currents. In general,
this was not possible when fitting themodel to single datasets,
even though the AP record itself could be well fitted [20, 41].
In other words, model behaviours, as opposed to parameters,
tend to be well identified when extra experimental informa-
tion is incorporated into the optimisation.

5. Conclusion

Wehave presented a generic model of cardiac electrical activ-
ity, capable of accurately reproducing action potential wave-
forms frommultiple experimental data in any givenmyocyte.
Furthermore, we have shown that our generic ionic model
and multiobjective optimisation approach described in this
study can provide an effective and efficient means to recon-
struct the profiles of hidden ionic currents underlying the AP.
Multiobjective fitting to multiple AP datasets appears to
provide stringent constraints on the dynamics of underlying
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membrane currents, yielding reconstructed membrane cur-
rent time course profiles in agreement with existing studies.
The generic approach will allow the efficient computation of
complex electrophysiological dynamics in whole heart simu-
lations andwill provide a valuable tool in elucidating the ionic
mechanisms underlying cardiac electrical activity.
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