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Abstract
Spinal pattern generators in quadrupedal animals can coordinate different forms of locomo-

tion, like trotting or galloping, by altering coordination between the limbs (interlimb coordina-

tion). In the human system, infants have been used to study the subcortical control of gait,

since the cerebral cortex and corticospinal tract are immature early in life. Like other ani-

mals, human infants can modify interlimb coordination to jump or step. Do human infants

possess functional neuronal circuitry necessary to modify coordinationwithin a limb (intra-

limb coordination) in order to generate distinct forms of alternating bipedal gait, such as

walking and running? We monitored twenty-eight infants (7–12 months) stepping on a

treadmill at speeds ranging between 0.06–2.36 m/s, and seventeen adults (22–47 years)

walking or running at speeds spanning the walk-to-run transition. Six of the adults were

tested with body weight support to mimic the conditions of infant stepping. We found that

infants could accommodate a wide range of speeds by altering stride length and frequency,

similar to adults. Moreover, as the treadmill speed increased, we observed periods of flight

during which neither foot was in ground contact in infants and in adults. However, while

adults modified other aspects of intralimb coordination and the mechanics of progression to

transition to a running gait, infants did not make comparable changes. The lack of evidence

for distinct walking and running patterns in infants suggests that the expression of different

functional, alternating gait patterns in humans may require neuromuscular maturation and a

period of learning post-independent walking.

Introduction
The spinal locomotor circuitry of quadrupedal animals is capable of coordinating a remarkably
wide repertoire of gait patterns in response to changes in afferent input [1–4]. For instance, spi-
nalized cats supported over a moving treadmill can step at a range of speeds and can even tran-
sition to different gaits, such as trotting or galloping, as the speed increases [5]. These animals
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can also coordinate their hind limbs to walk at different velocities on a split-belt treadmill. A
common rhythm was maintained between the legs up to a two- to three-fold speed differential;
at more extreme differentials, the limb on the fast belt would take two, three, or four strides
during one stride cycle of the slow limb [5]. In addition, spinalized cats and rats are capable of
modifying their gait patterns to avoid or accommodate a perturbation [6–9]. It is, therefore,
clear that spinal networks in quadrupeds can recognize changes in the environment via afferent
input and coordinate locomotor behavior appropriately to maintain forward progression.

Evidence from people with spinal cord injury suggests that spinal networks for bipedal
human locomotion are also responsive to changes in afferent input [10], although whether this
flexibility exists to the same degree as in quadrupeds is unclear. One informative model used to
study the subcortical control of bipedal walking is the human infant. When supported over a
moving treadmill or over ground, infants show a stepping behavior at birth that is thought to
be largely independent of volitional control [11–14], since anencephalic infants also show step-
ping [15]. In typically developing infants, the neocortex and descending motor tracts are
immature. The motor cortex is largely unmyelinated at birth and rapidly grows and develops
over the first two years of life [16]. 18FDG positron emission tomography shows that glucose
utilization increases in the sensorimotor cortex until approximately one year of age, when a
pattern resembling that of an adult is seen [17]. Axons comprising the corticospinal tract are
estimated to be 10 times smaller in diameter, and thus 10 times slower, than axons in the adult
[18], and histological evidence suggests that adult-like myelin does not appear until 2 years of
age [19–21]. Development of myelin occurs in a rostral-to-caudal direction, thus myelination
of the tracts extending to the lumbar spine occurs later in development than myelination of
cervical spine pathways. Positive Babinski reflexes, indicative of limited transmission in corti-
cospinal tracts, persist until ~18 months of age [22]. As in other animals, sensory input shapes
the motor pattern for stepping in infants, enabling them to step at different treadmill speeds
[12], in different directions [23], on a split-belt treadmill [24, 25], and during perturbations
imposed by external obstacles [26, 27]. The extent to which infants can also coordinate differ-
ent forms of bipedal gait, like walking and running, in response to changes in afferent input is,
however, unclear.

Interestingly, gait transitions with increasing locomotor speed in quadrupeds are mostly
accomplished by altering coordination between the limbs (interlimb coordination), with minor
changes in the coordination within a limb (intralimb coordination} [5, 28, 29]. Several studies
have shown that human infants are similarly capable of generating different forms of interlimb
coordination [24, 30–35]; individual infants show preferences for alternating (i.e., stepping) or
synchronous (i.e., jumping) interlimb coordination which can be influenced by training [31].
Speed-related gait transitions in human adults (i.e., walking to running) are not associated with
changes in interlimb coordination, but rather with changes in intralimb coordination. For
example, there is a sudden increase in the angle of maximum knee flexion during swing at the
walk-to-run transition [36, 37] and a large (~25%-40%) reduction in the support length (i.e.,
the distance travelled during the stance phase) [36]. Additionally, there are significant shifts in
the displacement of the center of mass during running, as compared to walking, which reflect a
switch from an ‘inverted pendulum’ gait (walking) to a spring-like mode of progression (run-
ning–for review, see [38, 39]). These changes in adult gait from walking to running are quite
different from the typical quadrupedal gait transitions that are characterized by changes in
interlimb coordination.

In this study, we evaluated whether infants possess functional neuronal circuitry necessary
to modify coordination within a limb (intralimb coordination) in order to generate distinct
forms of alternating bipedal gait, specifically walking and running. A previous study by our
group documented that several infants were able to step at treadmill speeds exceeding 1.0 m/s

Gait Transitions in Human Infants

PLOS ONE | DOI:10.1371/journal.pone.0148124 February 1, 2016 2 / 23



(comfortable walking speed for adults), and one infant continued stepping up to 2.0 m/s (near
the adult walk-to-run transition) [24], demonstrating that at least some infants could exceed
the speed at which a transition to running should occur. To a casual observer, these infants also
looked like they were running (S1 Video). The current study takes a more systematic approach
to determine how infants modify intralimb coordination to accommodate such a wide range of
speeds, and whether infants are truly capable of generating distinct walking and running pat-
tern at different speeds.

Materials and Methods

Subjects
A total of 28 infants who performed successful stepping at two or more different speeds during
the experimental trials were included in analysis. The infants ranged in age from 5.8–11.8
months (average age = 9.7±1.3 months) and were unable to walk independently. Infants were
recruited through local health clinics. Prior to the experiment, parents were instructed to prac-
tice the stepping response with their infant at home, as described in Yang et al. [12]. Practice
consisted of the parent supporting the infant to stand on a flat surface, like a table or floor. The
parent was instructed to move the infant forward until the infant took at least one stride. Once
the infant was able to perform ten consecutive strides (as assessed by a parent), an experiment
was scheduled. Seventeen adults (age 22–47 years; mean ± s.d. = 29.1 ± 7.6 years) were
recruited for comparison to mature running. Ethical approval for this study was obtained
through the Health Research Ethics Board, University of Alberta and Alberta Health Services,
Edmonton and through the Institutional Review Board at Stony Brook University. Informed
and written consent was obtained from adult participants or from a parent or legal guardian
prior to the experiment. All experiments were conducted in accordance with the Declaration of
Helsinki for experiments on humans.

Instrumentation
Most infants (n = 25) were studied while walking on a custom-built split-belt treadmill. The
two treadmill belts were driven by separate motors, which can be electrically coupled to run at
the same speed (tied-belt) or uncoupled to run separately (split-belt). In this experiment, the
two belts were always at the same speed (tied-belts). Vertical ground reaction forces were mea-
sured with force plates located under each treadmill belt. A Plexiglas partition (15 cm in height)
was placed between the two belts to ensure that the infant’s legs remained on separate belts.
Three infants were studied while walking on an adult treadmill without split belts (Gaitway
treadmill system, Kistler Instruments, Amherst, NY, USA); ground reaction forces were not
reported for these three infants. Adult walking and running were studied on a split-belt tread-
mill (Woodway USA Inc., Waukesha, WI) run with both belts moving at the same speed (i.e.
tied-belts). A partition between belts was not used for adult studies since the adult split-belt
treadmill was not instrumented with force plates.

Infant kinematic data were either provided by electrogoniometers (Biometrics Ltd., New-
port, UK) placed over the right knee and hip joints (n = 16), or by digitized video (n = 12 –
Vicon Motus, Denver, CO). To perform the video analysis, a digital video camera (Elura 50,
Canon, Tokyo, Japan) recorded the movement of the right side (sagittal plane) at 30 frames per
second. Markers were placed over the midline of the trunk above the iliac crest (pelvis), greater
trochanter (hip), knee joint line (knee), lateral malleolus (ankle), and fifth metatarsal (toe) on
the right leg (Fig 1B). The infants were dressed in black tights to enhance the contrast of the
white markers (2 cm in diameter). Adult motion capture was achieved using an Optotrak
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system (Northern Digital, Waterloo, ON, Canada), which sampled at 100Hz. Infra-red emit-
ting markers were placed bilaterally at the same landmarks as shown in Fig 1B.

Video, Optotrak, and analog signals were synchronized by a custom-made digital counter
that generated a 5V pulse (1Hz) and advanced an LED display (resolution 10ms) in view of the
camera. In addition, an output pulse from the Optotrak indicated the timing of the first and
last frame from that system. Force-plate signals were low-pass filtered at 30Hz and analog-to-
digital converted at 250Hz (Axoscope, Molecular Devices, Sunnyvale, CA).

Experimental procedures
The experimental session for each infant and adult participant was approximately 30 min—1
hour. Infants played on a mat while the transducers were applied. Once the infant was fully
instrumented, (s)he was placed on the treadmill with the feet on the moving belt. Infants who
walked on the split-belt treadmill were placed over the center of the two force plates, with one
leg on either side of the partition of the split-belt treadmill, with force plates measuring ground
reaction forces of each leg (Fig 1A). The infant was held under the arms from behind by one of

Fig 1. Experimental setup and explanation of measures. (A) Infants were held by an experimenter or
parent in the center of the treadmill, with one leg on either side of a Plexiglas partition separating the belts.
Forearm supports were provided for the person holding the infant to limit the possibility of imposing
movements on the infant. (B) Stick figure showing placement of markers in infants and adults. Limb angle is
defined as the angle formed between a vector from the hip to ankle and a vertical line. Positive limb angles
denote limb flexion. (C) Example stride cycles with periods of double-support. Solid lines show stance phase,
from foot contact (R or LFC) to toe-off (R or LTO). Spaces between lines indicate swing phase. Periods of
double-support at the end of right stance are shown by grey boxes. (D) Example stride cycles with periods of
flight (shown by open grey boxes).

doi:10.1371/journal.pone.0148124.g001
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the experimenters or a parent. Forearm supports were provided for the person holding the
infant to limit the possibility of imposing movements on the infant. The infant was encouraged
to support as much body weight as possible throughout the stride cycle. The experimenter/par-
ent holding the infant was instructed to only lift the infant up in order to prevent a fall or at the
end of a trial. Data analysis was terminated at the point when lifting occurred.

For infant participants, each experiment began with a trial at a slow-to-moderate speed
(0.3–0.6 m/s) to allow the infant to become accustomed to the treadmill. The order of subse-
quent speeds was chosen to test the widest range of speeds feasible for each infant. We
attempted to get at least one successful trial at< 0.3 m/s and, with infants who were happy to
perform several trials, we increased the treadmill speed until stepping stopped. Usually belt
speed was changed in between trials, when the infant was not in contact with the treadmill.
Occasionally, belt speed changed mid-trial; in these instances, any stepping that occurred dur-
ing the acceleration or deceleration phase were not included in analysis. Experiments ended
when sufficient data were collected, when the infant became irritable, or when (s)he stopped
stepping (i.e. let the feet drag behind and/or no longer supported any body weight).

In separate trials, seven adult participants were asked to either walk or run at a treadmill
speed of 2.0 m/s, which is near the walk-run transition speed. An additional four adults were
asked to walk and run across a range of overlapping speeds (walk speeds: 0.5, 1.0, 1.5, 2.0 m/s;
run speeds: 1.0, 1.5, 2.0, 2.5, 3.0 m/s). In a final set of adult experiments, the effects of body
weight support were evaluated in six adults who walked or ran across the same speed range
listed above (0.5–3.0 m/s). An external body weight support and harness system (ZeroG
dynamic gait and balance training system, Ashburn, VA, USA) was used to unload each partic-
ipant by 10% and 50% of his/her body weight (i.e., 10% or 50% body weight support or BWS).

Data analysis
For infant participants, the video record was reviewed off-line to identify successful trials. A
trial was considered successful if it included at least one sequence of six consecutive, continu-
ous steps (i.e. three strides on each side). Continuous stepping was defined as rhythmic move-
ment of the legs, without noticeable pauses in movement based on visual inspection (e.g., due
to dragging toes at end stance or due prolonged flexion of the limbs at end swing). A “stride”
was defined as a cyclic movement that included placement of the foot ahead of the hip marker.
In other words, all strides included in analysis showed active flexion of the limb. Interlimb
coordination during stepping sequences did not have to be strictly alternating (S1 Fig); how-
ever, sequences of bouncing (synchronous interlimb coordination) were excluded in order to
focus our analysis on changes in intralimb coordination during stepping at different speeds.
Relative proportions of synchronous and alternating interlimb coordination during infant
treadmill locomotion have been reported elsewhere [31].

Once the stepping sequences were identified, the onsets of stance and swing phases were
determined from the video. The onset of stance was defined as the time that the foot made con-
tact with the treadmill and started moving backwards with the treadmill belt. The onset of
swing was defined as the time that the toe marker changed from moving backward (stance
phase) to moving forward (swing phase). Digitized force plate and electrogoniometer data
were also used to assist in the identification of stance and swing phases. Sometimes discrepan-
cies between the video and analog data occurred due to toe drag at the beginning of swing,
which resulted in a non-zero force plate recording. In such cases, video of the experiment was
used to identify stance and swing phases.

For most of the adult participants (n = 10), the onset of stance and swing was identified
using force sensitive resistors (FSRs) placed under the heel and first metatarsal; signals
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from the FSRs corresponded to when the foot was in contact with the ground. FSRs were
not used for seven adult participants who were tested while walking and running under nor-
mal loading conditions; instead, the onset of stance and swing was determined by maximum
and minimum limb angle values, respectively. Limb angle is defined as the angle formed
between a vector from the hip to ankle marker relative to the vertical (Fig 1B). Limb angle is
positive when the limb is flexed forward of the hip (e.g. foot contact), 0° indicates a neutral
position under the trunk, and negative indicates limb extension. Comparison of limb and
knee angle traces from adult data in which limb angle was used to define ground contact
and limb and knee angle traces from adult data in which FSRs were used to define ground
contact indicated that both methods provided a comparable estimate of the onset of stance
and swing.

For both infants and adults, once the onset of swing and stance were identified in the digi-
tized data, data from each of these strides were analyzed using custom-written programs in
MatLab (MathWorks, Natick, MA). The phase relationship between the two legs during step-
ping was quantified as the time of right side foot contact, relative to the left side stride cycle,
and expressed as a percentage. Therefore, values near 50% would indicate alternating stepping
and values near 0 or 100% would indicate an in-phase pattern, such as jumping. The duration
of double support (or flight) was calculated as the time interval between end-stance on the
right side and onset of left foot contact (depicted by grey boxes in Fig 1C and 1D). A period of
flight was indicated by a negative value, indicating that foot-contact occurred after end-stance
on the contralateral leg (Fig 1D). To estimate loading during infant trials, the vertical ground
reaction force was averaged across the stance phase and normalized to the infant’s body
weight.

Maximum knee flexion during swing phase and the support were calculated for each stride
and averaged across strides within each trial at a constant speed. Support length was calculated
as the distance traveled by the ankle marker during stance phase, as the foot was moved back-
wards by the treadmill belt [36]. For this analysis, infant trials were defined as “walking” or
“running” based on whether a majority of strides showed a period of flight (i.e., trials in which
>50% of strides showed a period of flight were classified as “running”).

Since many infant trials included some strides with double support phases and some strides
with flight phases, an additional analysis was performed to more specifically examine differ-
ences between strides with a period of double support and flight. Joint angle excursion and cen-
ter of mass displacement over the stride cycle were examined in a subset of 10 infants from
whom we collected motion tracking data (from digitized video), and who also performed at
least one successful trial at a “transition speed”, defined as a speed at which 30–70% of strides
showed a period of flight. Data from double-support and flight strides taken at the same speed
(i.e. within the same trial) were averaged separately. These data were compared to averaged
stride data from adults who walked and ran at the same speed. To compare timing shifts in the
center of mass displacement between this subset of infants and adults, the height of the right
hip marker was used as an estimate of center of mass. Within subjects, the vertical position of
the hip marker was normalized to average height of the marker across each stride. This was
done so that displacement from the mean position could be compared across subjects of differ-
ent heights. A cross-correlation analysis was performed within-subjects on these hip height sig-
nals from averaged double-support and flight strides. Timing changes were quantified as the
phase lag at peak cross-correlation. Values near zero indicate little shift in timing. These analy-
ses were also performed to compare adult data between differing body weight support
conditions.
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Statistics
Pearson correlation coefficients were used to evaluate the relationship between gait speed and
kinematic parameters (max knee flexion and support length), and between gait speed and body
weight support in infants. To evaluate differences between kinematic parameters of strides
taken with a period of double-support (i.e., walking trial in adults) versus flight (i.e., running
trial in adults), t-tests were used. Two-way repeated measures ANOVAs (two body weight con-
ditions x two forms of gait) compared kinematic parameters during adult walking and running
trials performed under conditions of 10% and 50% body weight support. Significance was
determined as ρ<0.05.

Results
Infants were capable of stepping at speeds ranging between 0.06–2.36m/s. Alternating stepping
patterns were preserved across speeds; on average, the phase relationship between the two legs
during infant stepping was 51.45 ± 5.35%, indicating that the right side initiated stance approx-
imately half-way through the left side stride cycle. We also found that infants supported, on
average, roughly half of their own body weight during stepping (47.0 ± 16.9%). There was no
significant relationship between percent body weight support and treadmill speed (r2 = -0.04).

Fig 2A shows the number of successful trials across different speeds. For reference, adult
preferred walking speed is approximately 1.1–1.2m/s [40, 41] and the walk-run transition
occurs around 1.88–2.35m/s [42–45]. In Fig 2A, black bars indicate the number of trials where
the majority of strides showed a period of double-support (see also Fig 1C); white bars indicate
trials where the majority of strides had a period of flight (see also Fig 1D). Overall, most infants
stepped at speeds of up to 1.25m/s. Not as many successful trials were observed at speeds
exceeding 1.25m/s. This is likely due to a combination of factors, such as fatigue, irritability,
and an inability to continue stepping at increasing speeds. We were unable to define a maxi-
mum limit of stepping for individual infants due to this complex interaction between variables
affecting the infants’ willingness to continue participation. Nonetheless, many infants showed
periods of flight, a characteristic of running in adults, at speeds in excess of 0.75–1.0m/s (Fig
2B). Since many successful trials were obtained in which infants walked with a “walking” gait
(double-support strides) and a “running” gait (flight strides), we were able to compare and con-
trast these two forms of progression.

Overall, infants adapted to faster treadmill speeds by incorporating a period of flight into
the stride cycle (Fig 2B) and decreasing stride duration (Fig 2C). Fig 2D shows whether changes
in stride duration are explained primarily by changes in the duration of stance (extension) or
swing (flexion) phase–note that longer stride durations are associated with slower walking
speeds. At slower speeds, changes in stride duration were dominated by changes in the dura-
tion of stance phase (Fig 2D). However, at faster speeds, swing phase increased its dominance
(see insert in Fig 2D).

In this experiment, our objective was to test whether infants transition from walking to run-
ning in response to changes in afferent input (i.e. a faster moving treadmill belt). Given that
infants were supported during stepping, the presence of a flight phase is not necessarily indica-
tive of running, as it is in adults. Therefore, we examined additional kinematic parameters that
demarcate walking and running in adults, such as knee angle, support length, limb angle, and
center of mass displacement. Fig 3 shows kinematic data and forces during sequences of step-
ping at slow (0.55m/s) and fast (1.24m/s) speeds in an example infant (aged 10 months). The
stepping pattern at the slow speed showed periods of double support, as can be observed in the
force traces (overlapping forces between the right and left sides); stepping at the fast speed
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shows periods of flight. Despite the appearance of flight in the fast trial, kinematic measures
(knee and limb angle) are similar across speeds.

In adults, the amplitude of knee flexion during swing changed differently with speed
depending on whether the individual was walking or running. During running, knee flexion
increased with speed (r = 0.93), and values exceeded 90° of flexion at faster speeds. During
walking, knee flexion angle changed less across different speeds, maintaining a relatively con-
stant value of 65–75° of flexion (r = 0.52) (Fig 4B, also see [36]). Fig 4A shows maximum knee
flexion during the swing phase across different treadmill speeds in infants. Average values

Fig 2. Adaptation to treadmill speed: stride cycle modifications. (A) The number of trials that were analyzed at each treadmill speed is shown by the
height of each bar. Trials in which the majority of strides had a period of double support are shown in black; trials with a majority of flight strides are in white.
(B) Average double support duration for each successful trial shown in (A). Negative values indicate flight. Data were fit with a second order power function
(axb + c). (C) Average stride duration for each successful trial; data were fit with a second order power function, as described previously [11]. (D) Average
durations of stance (black) and swing (grey) change linearly with stride duration–the slope (b) of each line is shown beside the plots. Inserted plot shows data
from the highlighted region (stride duration = 0.55–1.25s; lines were re-fit to these data and recalculated slopes are shown in insert).

doi:10.1371/journal.pone.0148124.g002
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during trials in which the majority of strides had a period of double-support are shown in blue;
flight trials are shown in green. There was no significant correlation between treadmill speed
and knee angle for infants, for either double-support or flight trials (r< 0.1). Therefore, unlike
adult running, infants did not increase knee flexion with treadmill speed in trials with flight
strides.

Fig 4C and 4D show support length (distance traveled by the foot during stance phase) ver-
sus treadmill speed in infants and adults, respectively. During adult locomotion, support length
generally increased with treadmill speed (Fig 4D, also see [36]), similarly to what we observed
in infants (Fig 4C) (r> 0.98 for adult walking and running; r = 0.50 for infants, collapsing
across walking and running trials). However, a longer support length was used during walking,
compared to running at an equivalent speed (Fig 4D, also see [36]). Infants, on the other hand,
showed little difference in support length between double-support and flight trials at similar
speeds (Fig 4C).

One difference in the experimental protocol used for infants and adults in this study is that
the infants were provided with body weight support, whereas the adults bore full body weight.
To determine whether body weight support contributed to the differences we observed between
adult walking and running, we collected data from six adults who walked and ran at speeds
ranging from 0.5–3.0m/s while bearing 90% body weight (i.e. 10% Body Weight Support;
BWS) and while bearing 50% body weight. Fig 5A and 5B show significant correlations
between knee flexion angle during swing phase and running speed during both body weight
support conditions (r> 0.5). Similar to the no body weight support condition (Fig 4B), maxi-
mum knee flexion angle was relatively constant across speeds during the walking trials

Fig 3. Kinematic and force data from an infant stepping at slow (A) and fast (B) speeds. Black lines show data from right leg; grey lines show force
traces from left leg. Grey boxes show the duration of right leg stance phase and white spaces in between boxes show right leg swing phase. Limb angle is
defined in Fig 2. Positive limb and knee angles indicate flexion. GRF: Ground Reaction Forces; BW: BodyWeight.

doi:10.1371/journal.pone.0148124.g003
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(r� 0.1). Therefore, the observation that there is a stronger correlation between knee flexion
angle and gait speed during running trials versus walking trials is true regardless of the body
weight support condition. We also found similar trends in the correlation between support
length and gait speed across all conditions of body weight support. Fig 4D (0% body weight
support), Fig 5C (10% body weight support) and 5D (50% body weight support) all show

Fig 4. Adaptation to treadmill speed in infants and adults: changes in maximum knee flexion angle (A, B) and support length (C, D). In infants (left
column), trials in which the majority of strides had a period of double-support (DS) are in blue; trials that had mostly flight (FL) strides are in green. For adults
(right column), walking and running trials are shown in blue and green, respectively. Lines were fit to each dataset, except the infant knee angle data (A),
which were not significantly correlated with treadmill speed (r2 <0.03). For infant support length (C), a line was fit to all data (walking and running trials) since
the correlation between treadmill speed and support length was only significant when all data were included.

doi:10.1371/journal.pone.0148124.g004
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significant correlations between treadmill speed and support length during both walking and
running trials (p� 0.001). Additionally, support length was consistently reduced during run-
ning trials compared to walking trials at the same speed in all body weight support conditions
(Figs 4D, 5C and 5D; also see [36]).

In this study, we also wished to directly compare double-support and flight strides taken at
similar treadmill speeds in infants, to provide an analogous comparison to adult walking and
running at similar speeds. To this end, we identified a subset of ten infants who performed at
least one successful “transition trial”, defined as a trial in which 30–70% of strides showed a
period of flight. For each of these trials, kinematic data from strides that showed a period of
double-support were averaged separately from flight stride data as shown in Fig 6 (left

Fig 5. Adaptation to treadmill speed in adults who bore 90% body weight (i.e., 10% body weight support; A, C) and 50% body weight (B, D).Data are
as shown in Fig 4. Lines were fit to each dataset when changes in the parameter (max knee flexion: A, B; support length: C, D) were significantly correlated
with gait speed. Pearson correlation coefficients are reported for walking and running data in blue and green text, respectively (asterisks: p<0.05). BWS:
BodyWeight Support.

doi:10.1371/journal.pone.0148124.g005
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column). Data from seven adults who performed walking and running at the same speed
(2.0m/s) were collected and used for comparison (Fig 6, right column).

Fig 6. Comparison between kinematic variables known to change at the adult walk-run transition. Each infant plot (left) shows data from a subset of
10 infants who had at least one transition trial, defined as a trial in which 30–70% of strides had a period of flight. Double-support (DS-blue) and flight (FL-
green) strides were averaged separately. Adult plots (right) show data from 6 adults who walked (blue) and ran (green) at the same speed (2.0m/s). (A) Top:
averaged limb angle traces (± SEM across infants) for DS/walking and FL/running strides (foot-contact to foot-contact; normalized to the same cycle
duration). Bottom: averaged maximum limb flexion, extension, and range of motion (* p<0.05). (B) Knee angle is expressed as degrees of flexion (0° =
straight leg). Data are as shown in (A). (C) Hip height was used as an estimate of Center of Mass (CoM).

doi:10.1371/journal.pone.0148124.g006
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Fig 6A (top) shows limb angle averaged across double-support (blue) and flight (green)
strides for infants (left). Adult limb angle data averaged across walking (blue) and running
(green) are shown on the right. Shaded regions indicate one standard error. Each limb angle
trace starts and ends with foot contact. In adults, the transition from walking to running was
marked by a decrease in limb angle flexion at heel strike, and an overall decrease in limb range
of motion (Fig 6A, bottom right). In contrast, limb angle excursion was very similar during
double-support and flight strides in infants (Fig 6A, left). Similarly, clear differences were
observed in adult knee angle between walking and running; when running, adults showed
greater knee flexion during stance and swing phase (Fig 6B, right). Infant knee angle flexion,
however, was unchanged between double-support and flight strides (Fig 6B, left).

The final parameter we examined was hip height, which was used to estimate displacement
of the center of mass. Differences in adult walking and running were obvious. In walking, hip
height peaked at midstance on the right side (first peak) and then at midstance on the left side
(second peak), which suggests an “inverted pendulum”mode of progression (Fig 6C, right).
During running, peaks occurred at the end of stance on each side, when the body is launched
in the air, suggesting a spring-like gait [38, 46, 47]. Shifts in the timing of center of mass dis-
placement were quantified as the phase lag at the peak cross-correlation between double-sup-
port/walking and flight/running traces. For adults, the mean value was 0.37 ± 0.03 standard
deviations (range: 0.32–0.40), indicating that the signals were offset by 37% of a cycle. Infant
hip height data showed very little offset in timing between double-support and flight strides
(Fig 6C, left–phase lag = 0.09 ± 0.18). The phase lag between walking and running center of
mass displacement was significantly greater in adults than infants (ρ< 0.001).

We also examined the changes in the parameters shown in Fig 6 under different body
weight support conditions in adults (Fig 7). Adults walked at 2.0 m/s while bearing 90% (10%
BWS) or 50% (50% BWS) of their body weight. Although adults were provided with body
weight support during these trials, we still observed significant changes in maximum limb flex-
ion angle and limb range of motion between walking and running trials (Fig 7A; asterisks mark
main effects for gait type, ρ< 0.01). Furthermore, we found that adults with body weight sup-
port still showed differences in knee flexion angle between walking and running trials (Fig 7B,
ρ< 0.05). Both of these findings parallel the differences we reported between walking and run-
ning in adults without body weight support (Fig 6A and 6B, right column). Maximum limb
flexion was reduced during 50% BWS trials compared to 10% BWS trials (main effect for BWS
shown by # in Fig 7A, ρ = 0.02). None of the other limb or knee angle measurements were
affected by the amount of body weight support (ρ> 0.2).

The phase lag between walking and running vertical center of mass displacement was not
significantly different between trials with 10% and 50% BWS (ρ = 0.40). However, we also
noticed that the phase lag values during 10% BWS trials (0.25 ± 0.19, mean ± s.d.) and during
50% BWS trials (0.19 ± 0.21) appeared to be smaller and more variable than the phase lag val-
ues obtained from adults with no body weight support (0.37 ± 0.03). We examined individual
subject phase lag values for the adults tested with BWS (Table 1) and discovered that phase lags
varied between 0 (i.e., no significant shift in center of mass displacement between walking and
running trials) and 0.44 (i.e., a 44% offset in center of mass displacement between walking and
running trials). In contrast, phase lag in center of mass displacement for adults without body
weight support was more consistent (range: 0.32–0.40). Table 1 also displays phase lag values
for infants included in Fig 6C (right column) and shows that, similar to the adults with BWS,
the infants show phase lags between 0 and 0.44. Interestingly, phase lag values for infants and
adults with body weight support are either grouped around 0 or 0.4, indicating a bimodal dis-
tribution. Most of the infants (8/10) show phase lag values near 0, compared to 2/6 adults in
the 10% BWS condition and 3/6 adults in the 50% BWS condition.
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Discussion
A critical survival skill for most terrestrial, legged animals is the ability to locomote at different
speeds. Fast gaits can be necessary for securing food, avoiding becoming food, and evading
other life-threatening situations; slower gaits are often used during migrations and grazing or
gathering behaviors. A common strategy to minimize energy expenditure across a range of
speeds is to transition between different forms of gait [48]. Such gait transitions are marked by

Fig 7. Changes in kinematic variables at the walk-to-run transition in adults who bore 90% body weight (i.e., 10% body weight support; left column)
and 50% body weight (right column).Data are as shown in Fig 6. Asterisks (*) show significant main effects for gait (walk versus run) for each measure;
hash marks (#) show significant main effects for body weight support (10% versus 50%). BWS: BodyWeight Support.

doi:10.1371/journal.pone.0148124.g007
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a discontinuous change in locomotor coordination. Quadrupedal animals like horses and cats
tend to make gait transitions that involve changes in interlimb coordination to walk, trot, and
gallop [28, 49]; large, bipedal animals like ostriches and humans tend to alter intralimb coordi-
nation to walk or run [40, 50–52].

While infants are capable of altering interlimb coordination in order to step, jump, or even
cycle the two legs at different rates (i.e. on a split-belt treadmill) [24, 30–35], we did not find
evidence that infants altered intralimb coordination to produce distinct walking and running
patterns. Infants were clearly capable of accommodating a remarkably wide range of speeds,
but the gait that was used at fast speeds was a simply a faster version of the gait used at slow
speeds.

How fast were infants capable of stepping?
The infants in this study could accommodate a remarkably wide range of speeds, from 0.06 to as
high as 2.36m/s. For reference, preferred walking speed in young adults is around 1.1–1.2m/s
[40, 41] and the walk-run transition occurs around 1.88–2.35m/s [42–45]. This means that the
four successful infant trials that we collected above 1.75m/s (Fig 2A) occurred near or above
speeds at which adults would normally transition to running.

Given the smaller stature of infants compared to adults, it may be reasonable to assume that
treadmill speeds in the current experiment surpassed that at which a gait transition should
have occurred in infants. A more accurate way to estimate transition speed relative to size is to
use the Froude number, a dimensionless parameter used to normalize the same pendulum-like
motion (i.e., walking) in subjects of different height and under different loading conditions [40,

45, 48, 51, 53, 54]. The Froude number is calculated by the equation Fr ¼ v2

gL
where v is the

speed of locomotion, g is the acceleration of gravity, and L is leg length. In humans, the walk-

Table 1. Phase differences in vertical center of mass displacement during walking (double support strides) and running (flight strides) in infants
and adults with body weight support.

Participant Age (mo) Speed (m/s) BWS (%) Phase lag

I1 8.9 1.1 6.3 0

I2 10.3 1.2 43.1 0

I3 9.7 0.7 68.6 0

I4 10.4 0.9 57.1 0.44

I5 9.1 0.9 63.5 0.4

I6 9.1 0.9 57.6 0

I7 10.3 1.0 44.7 0

I8 9.1 0.5 64.8 0

I9 10.4 0.9 45.4 0

I10 9.5 0.8 —- 0.02

A1 Adult 2.0 10 / 50 0.38 / 0.44

A2 Adult 2.0 10 / 50 0.38 / 0

A3 Adult 2.0 10 / 50 0 / 0

A4 Adult 2.0 10 / 50 0.35 / 0.35

A5 Adult 2.0 10 / 50 0.37 / 0.32

A6 Adult 2.0 10 / 50 0 / 0

BWS, body weight support; mo, months. Adult phase lags are shown for trials with 10% and 50% BWS, separated by a forward slash (/). Bolded values

highlight phase lags between 0.32–0.44, which indicate differences in vertical center of mass displacement timing between walking (double support) and

running (flight). We did not obtain body weight support measurements from one infant (I10).

doi:10.1371/journal.pone.0148124.t001
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run transition occurs around Fr = 0.5 [40, 45, 48, 53]. It is therefore possible to estimate the
velocity at which a gait transition should have occurred in infants by using the equation v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fr � g � Lp
where Fr = 0.5. Average leg length for 9–10 month old infants (the mean age of our

infant participants) is 25cm [55]. Infants supported, on average, 47% of their body weight, thus
g = 0.47 × 9.81m / s2. This gives a value of v = 0.76m / s—well within the range of speeds tested
here. Altogether, this suggests that we did not observe gait transitions because infants were not
capable of making such transitions under these conditions, and not because we did not push
the treadmill speed high enough. Note that a period of flight started appearing around the
speed at which Fr = 0.5, yet other expected intralimb coordination changes accompanying a
gait transition were not observed.

Changes in gait to accommodate speed in infants
Without making gait transitions, how did infants accommodate the range of treadmill speeds?
We discovered that they adjusted gait parameters similarly to cats and human adults when
walking at different speeds. The relationship between stride cycle duration and treadmill speed
is fit by a power function, as previously described by Yang and colleagues [12], the parameters
of which are very similar to those reported for cats [28]. Changes in stride cycle duration were
largely driven by changes in the stance or support phase duration, which is also consistent with
findings from cats [28, 56], adult humans [36], and spinal cord injured humans [10]. In this
study, we also discovered that when stride cycle duration is very short (cadence is high), the
correlation between swing and stride cycle duration increases. This supports a CPG model
where either the flexor or extensor phase can dominate (as proposed in [57]). Overall, the simi-
larities between how human infants, human adults, and cats with and without spinal lesions
adjust gait cycle and phase durations in response to changes in sensory input suggest that these
modifications can be coordinated by spinal pattern generators interacting with peripheral
feedback.

Also similar to adults is our finding that human infants incorporated a period of flight into
stepping at speeds exceeding ~1.0m/s. While flight is commonly used to define a running gait
in adults, here we argue that this definition is insufficient for identifying gait transitions in
infants. For adults supporting all of their weight, achieving a period of flight requires the ability
to launch the body into the air at the end of each stance phase. Infants, on the other hand, were
supported by an experimenter during stepping. They were encouraged to bear as much weight
as possible (47% body weight, on average); nonetheless, it may be mechanically easier to
achieve a period of flight, since the experimenter would not let them fall. We therefore also
examined measures of intralimb coordination that abruptly change at the adult walk-to-run
transition, specifically knee flexion angle during swing and a decrease in support length.

Changes in intralimb coordination at the walk-to-run transition are related to a shift in the
mechanics of progression. Walking is well-described by an inverted pendulum model in which
changes in potential and kinetic energy of the center of mass are in opposite phases [38, 47,
58]. In the stance phase, the center of mass moves over a rigid strut (the leg). Once the center
of mass has reached its maximum height at mid-stance (i.e., maximum potential energy), the
body falls forward with gravity (i.e. losing potential energy phase while gaining kinetic energy)
and is caught by heel strike on the opposite side; the displacement of hip height, as an estimate
of center of mass displacement, is shown in Fig 6C (adult walking). Heel strike in walking
occurs when the knee is near full extension, resulting in a large support length (Fig 4D). Knee
flexion during swing is minimized to conserve energy (Fig 6B). In contrast, running is
described by a bouncing gait model in which potential and kinetic energy of the body rise and
fall at the same time [38, 47, 59]. In other words, the bouncing gait allows storage of spring
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potential energy during stance (i.e., in muscles and tendons), which is released and used to
achieve the height during the swing phase (Fig 6C, adult running). Foot contact occurs with
the knee more flexed than during walking to reduce ground reaction forces and to allow the
storage of spring potential energy in the leg muscles; this is associated with a decrease in sup-
port length (Fig 4D). Since swing needs to be fast, there is greater flexion of the knee to reduce
the moment arm (Fig 6B).

Across the wide range of speeds tested, infants did not change intralimb coordination in a
manner that would suggest a gait transition. There were no distinct shifts in knee angle or sup-
port length. As a group, infants also did not show changes in vertical center of mass displace-
ment that would indicate a change in mechanics of progression. From the hip height traces, it
appears that a peak in center of mass displacement occurs near mid-stance, which would sug-
gest that infant stepping is best described by an inverted-pendulum model (i.e. walking). How-
ever, other aspects of infant stepping more resemble adult running–the knee is flexed at heel
strike and throughout stance (Fig 6B), and limb flexion angle is reduced at heel strike (Fig 6A),
similar to adult running. Furthermore, other work has shown that infants aged 4–12 months
tend to lack a true heel strike and often walk on their toes [60], which is also more similar to
adult running. Based on these data, we suggest that infants show neither a mature walking pat-
tern, nor a mature running pattern. Rather, they use a pattern composed of some aspects of
each, and this is the pattern that they use across a range of different speeds.

Effects of body weight support on the emergence of gait transitions
Recently, it has been shown that the provision of body weight support affects the walk-to-run
transition in adults: this transition progresses more gradually when adults walk in simulated
reduced gravity conditions (<0.38g), compared to walking in normal conditions [45, 61]. To
determine if body weight support could influence the measures of interest in the current study,
six adults were tested across a range of speeds spanning the walk-to-run transition with 10%
and with 50% body weight support (Figs 5 and 7). Intralimb coordination in adults who walked
and ran with body weight support (Fig 5) appeared to be more variable than the data from
adults who walked and ran without body weight support (Fig 4). Regardless, body weight sup-
port did not conceal key changes in intralimb coordination that occur at the walk-to-run tran-
sition in adults. As in normal loading conditions, knee flexion angle during swing increased
with treadmill speed during running, whereas knee flexion remained relatively constant during
walking trials in the body weight support trials (Fig 5A and 5B). A direct comparison of walk-
ing and running at the same speed showed that knee flexion angle was greater during running
trials regardless of body weight support (compare Figs 6B and 7B). Support length was shorter
during running compared to walking at the same speed across all loading conditions (Figs 4D,
5C and 5D). Finally, we found that body weight support did not affect the reduction in limb
flexion angle that we observed at the walk-to-run transition (Figs 6A and 7A). Therefore, up to
50% body weight support did not completely erase signs of a gait transition in adults.

On the other hand, even low amounts of body weight support could alter the timing of cen-
ter of mass displacement in some, but not all, adults. All of the adults who walked and ran
under normal loading conditions showed a timing shift in vertical center of mass displacement:
the pattern of center of mass displacement was offset by ~40% of a cycle when comparing walk-
ing and running at the same speed (Fig 6C, Table 1). When body weight support was intro-
duced, this shift in center of mass displacement timing was absent in 2/6 adults in the 10%
BWS condition and 3/6 adults in the 50% BWS condition (Fig 7C, Table 1). This suggests that
some adults did not fundamentally change the mechanics of progression when they were asked
to walk or run at 2.0 m/s with body weight support. This finding agrees with other work that
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has suggested that loading at early stance is a critical for triggering a transition to running in
adult humans [62, 63].

Did the body weight support during infant stepping mask signs of the walk-to-run transi-
tion? One possibility is that the person supporting the infant could have imposed movements
on the infant, thus externally influencing vertical displacement of the center of mass. While we
cannot rule this out, it is interesting that our adult and infant participants showed a bimodal
distribution of center of mass displacement phasing: center of mass displacement was either
offset by ~40% of a cycle between walking and running strides, or there was no shift (~0%
phase lag) (Table 1). If the person holding the infant imposed his/her own movements on the
infant, an even distribution of phasing values across the full range (0–1) might be expected.

Perhaps a larger concern pertains to whether the body weight support experienced by the
infants masked the walk-to-run transition in the same way that body weight support in adults
partially masked the walk-to-run transition. Again, we cannot rule out this possibility. How-
ever, note that body weight support in adults only concealed abrupt changes associated with
the walk-to-run transition in the center of mass measure. Other differences in intralimb coor-
dination remained. As a group, infants neither changed center of mass nor intralimb coordina-
tion in a way that resembled a mature walk-to-run transition.

How significant are the findings from the two infants who showed timing shifts in center of
mass displacement (Table 1)? Little can be inferred from the data of two infants since infant
locomotion is variable. Additional data are needed to determine whether this finding is valid
and reliable, and also to compare infants who showed timing shifts to those who did not. The
weight of the evidence right now suggests that, as a group, the infants did not show evidence of
distinct walking and running gait patterns.

Development of gait and gait transitions in humans and other animals
As in human development, cats and rats are not born with the ability to walk independently.
The development of locomotion matures slowly over the first postnatal weeks. Rat pups, for
example, do not walk independently before post-natal day 14 (PN-14) [64, 65]; kittens walk
“imperfectly” at PN-31 and normal walking appears at PN-44, on average [66]. Before the
onset of independent locomotion, these neonatal animals can coordinate locomotor move-
ments when supported by the tail on a moving treadmill [56] or when stimulated by excitatory
neurotransmitters [67] or an olfactory stimulus [68]. Neonatal animals display both alternating
(i.e., walking) and synchronous (i.e., galloping) interlimb coordination even during air-step-
ping, when the limbs are completely unloaded [67]. The alternating pattern may appear slightly
earlier than the synchronous pattern in neonatal rats (PN-5 for alternating; PN-10 for synchro-
nous); nonetheless, both patterns emerge before these animals are independent walkers [67].
Following complete thoracic spinal cord transection at PN-6 –PN-17, kittens are still capable
of producing different forms of interlimb coordination, and can walk, trot and gallop [5]. Neo-
natal rats can also produce stepping movements with good interlimb coordination following
spinal cord transection, although aspects of intralimb coordination–specifically, coordination
of knee and ankle actions–may not completely recover [69]. Therefore, evidence from young
quadrupedal animals suggests that different forms of interlimb coordination can be coordi-
nated by spinal pattern generators and that experience with independent locomotion is not
essential for the emergence of these behaviors. Interestingly, refinement of intralimb coordina-
tion may require descending input from higher centers.

Similar to young quadrupeds, human infants do not need practice with independent step-
ping in order to produce different forms of interlimb coordination with the lower limbs. How-
ever, the maturation of locomotor patterns, like walking and running, which require
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modifications in intralimb coordination, may proceed at a slower rate. Whitall and Getchell
[46] found that newly-independent walkers do not use different energetic strategies for strides
with double-support and strides with flight; in fact, only after 9.5 months of independent walk-
ing were separate walking and running strategies observed. The emergence of distinct walking
and running gaits coincided with the development of stable coordination around the ankle,
which suggests that the ability to produce and/or regulate force by ankle extension may be the
rate-limiting step for the emergence of running [46]. This aligns with other reports showing
that coordination about the ankle is immature in early life; infants tend to walk on their toes
[14, 60] and a true heel-strike is not observed until 2 years of age [70]. This immature coordi-
nation about the ankle, specifically the immaturity of ankle extensor control, may prohibit the
emergence of a running gait.

Interestingly, walking and running in non-human bipeds do not mature at the same rate.
One to two days post-hatching, chicks show a running pattern similar to the pattern observed
at 14 days post-hatching; in other words, the running pattern was relatively mature very early
in life. The walking pattern, however, was immature at post-hatching day 2 compared to day
14 [71]. Specifically, there were significant differences in how the ankle and knee were coordi-
nated at day 2 and 14 [71]. Overall, our data along with findings in other experimental models
suggest that young bipedal animals do not show mature walking and running patterns.

Conclusions
It has been proposed that loading conditions trigger the transition to running in human adults
[62, 63]. If so, why would we expect gait transitions in weight-supported infants? First,
although there is almost certainly a biomechanical component to the adult walk-to-run transi-
tion, there are probably differences in the neural control of walking and running as well. Even
when we diminished the biomechanical drive to transition to a running gait by supporting the
adults’ body weight, we did not completely erase signs of a gait transition. The remaining dif-
ferences between walking and running in body weight support conditions may reflect the
retrieval of separate motor patterns for walking and running. Ogawa et al [72, 73] also found
evidence supporting distinct neural control for the two gait forms: using a well-studied split-
belt treadmill paradigm, they found that when human adults were trained on the split-belt
treadmill while walking, the learned motor behavior did not transfer completely to running
and vice-versa, suggesting limited overlap in the neural control of the two forms of gait. In the
present study, we found little evidence for distinct walking and running patterns in human
infants, even though these infants sometimes gave the superficial appearance of running at
high speeds (S1 Video). Taken together, the evidence suggests that walking and running are
controlled by distinct neuronal circuits that are not mature in infancy. The emergence of
mature walking and running patterns likely requires neuromuscular maturation, particularly
maturation of the control of ankle extensor muscles, and a period of learning during indepen-
dent, weight-bearing locomotion.

Supporting Information
S1 Fig. Histograms showing interlimb coordination of analyzed strides at different speeds.
Phasing was calculated as the time of right side foot contact relative to the left side stride cycle,
and expressed as a percentage. Values near 50% indicate alternating stepping and values near 0
or 100% indicate synchronous coordination, like bouncing. A-D show histograms for progres-
sively faster speed ranges.
(TIF)
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S1 Video. Example infant (female, 10 months old) stepping at 2.0 m/s.
(MPG)
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