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Abstract

Objectives Biomass subpopulations in mammalian

cell culture processes cause impurities and influence

productivity, which requires this critical process

parameter to be monitored in real-time.

Results For this reason, a novel soft sensor concept

for estimating viable, dead and lysed cell concentra-

tion was developed, based on the robust and cheap

in situ measurements of permittivity and turbidity in

combination with a simple model. It could be shown

that the turbidity measurements contain information

about all investigated biomass subpopulations. The

novelty of the developed soft sensor is the real-time

estimation of lysed cell concentration, which is

directly correlated to process-related impurities such

as DNA and host cell protein in the supernatant. Based

on data generated by two fed-batch processes the

developed soft sensor is described and discussed.

Conclusions The presented soft sensor concept pro-

vides a tool for viable, dead and lysed cell concentra-

tion estimation in real-time with adequate accuracy

and enables further applications with respect to

process optimization and control.

Keywords Biomass segregation � Lysed cells �
Mammalian cell culture � Monitoring � Soft sensor �
Turbidity measurement

Mathematical notations

d Path length of light

FO2, in Oxygen flow in the reactor

kDL Specific lysis rate

OD Optical density

pj Regression coefficients

RMSEi Root mean square errors

VR Reactor working volume

Xi Biomass state i

D� Delta permittivity

ei Attenuation coefficient of the species i

Introduction

In accordance with the process analytical technology

(PAT) initiative, real-time monitoring of biomass is of

great importance as it affects productivity and product

quality significantly (FDA 2004). With respect to

mammalian cell culture processes, there are numerous

technologies and methods available for real-time

monitoring of viable biomass which can be used for

a multitude of applications such as model-based
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process control, increasing robustness of processes

and higher productivity (Aehle et al. 2011; Biechele

et al. 2015; Bogaerts and Wouwer 2003; Frahm et al.

2003; Gnoth et al. 2008; Kroll et al. 2014; Luttmann

et al. 2012).

Frequently, biomass is considered to be homoge-

neous in its composition. In mammalian cell culture

processes, however, it was shown previously that

segregation of biomass in subpopulations of viable

cells, dead cells and lysed cells provides useful

information that can be used for process understanding,

data evaluation and modeling (Klein et al. 2015; Kroll

et al. 2016). With regard to viable and dead cells,

several methods are available basing on dielectric and

Raman spectroscopy using data driven models (Abu-

Absi et al. 2011; Patel and Markx 2008). Lysed cells

are of particular interest as they are a source of process-

related impurities like DNA and host cell protein in the

supernatant. Although lysed cells should be monitored

in real-time according to the ICH Q8-R2 guidance

(ICH 2009) there are no suitable methods available for

control actions and industrial applications. State of the

art measurement methods include sampling, an at-line

measurement and a calculation step (Klein et al. 2015)

which is not applicable for real-time monitoring.

The objective of this study is the development of a

simple soft sensor to monitor viable cell concentration

(XVCC), dead cell concentration (XDCC) and the lysed cell

concentration (XLCC) in amammalian cell culture process.

The presented soft sensor uses simple, robust and common

in situ measurements, namely dielectric spectroscopy and

turbidity, as inputs and combines them with standard

models that are easy to calibrate. Dielectric spectroscopy

provides permittivity depending on a measurement fre-

quency and conductivity and turbidity provides an optical

density. In order to introduce the soft sensor, which is the

combination of a measurement and a model, each

measurement signal is analyzed using data from two fed-

batch experiments. In addition, the underlying model and

its parameters are defined and discussed. Finally, areas of

validity and possible applications are presented.

Methods

Cultivations

An industrial CHO cell line was cultivated in chemi-

cally defined media. In order to investigate biomass

segregation in more detail, two fed-batch experiments

were performed in a 3.6 l bioreactor system (Labfors 5,

Infors, Switzerland). The average working volume was

2 l. The set points for temperature (37 �C), pH (6.8),

dissolved oxygen tension (40%) and the partial pressure

of carbon dioxide (125 mbar) were chosen in a way to

extend the investigated degradation phase. All these

process parameters were closed loop controlled. The

volume specific aeration rate was 0.015 l l-1 min-1.

The fed-batch experiments were performed using three

different feeds, i.e. a glucose feed, a glutamine feed and

a feed with limiting components.

In-process data

Samples were taken every 12 h and analyzed for

viable cell concentration, intact dead cell concentra-

tion and the concentration of cell debris by an

automated image analyzer in triplicates (Cedex HiRes

Analyzer, Roche, Mannheim, Germany). Cell debris is

defined as particles being smaller than 7 lm. The

estimation of the lysed cell concentration was per-

formed according to Klein in triplicates (Klein et al.

2015). All in-process data was used for readjustment

of the model parameters.

Real-time measurements

Soft sensor relevant real-time measurements included

(i) the reactor volume VR, (ii) oxygen flow into the

system FO2,in, (iii) permittivity by a dielectric spec-

troscopy probe (Incyte, Hamilton, Switzerland) and

(iv) optical density at 880 nm by a turbidity probe

(Dencytee, Hamilton, Switzerland). Settings for the

dielectric spectroscopy probe were 1000 kHz. The on-

line probes collected data every 6 min. A process

information management system (PIMS) (Lucullus

3.2.5, Secure cell, Switzerland) was used for collect-

ing, storing and processing all necessary process data.

Soft sensor

The real-time process data was used for implementa-

tion of a soft sensor, meaning that information about

the actual composition of biomass subpopulations

could be extracted from multiple real-time measure-

ments for monitoring purposes. The data evaluation

and set up of the soft sensor was performed with

MatLab (MATLAB R2016a, MathWorks, U.S.A.).
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All model parameters and shown residuals were

estimated using the experimental data of the fed-

batches described above.

Results

Soft sensor concept

The soft sensor estimation is based on the observations

shown in Fig. 1. The permittivity (D�) and the

turbidity (OD880) show a similar time course at the

beginning. After the 9th day however, a discrepancy

between the two signals was observed. The basic

hypothesis is that the divergence of these two curves

results from a different information content with

respect to the previously introduced biomass subpop-

ulations. The turbidity, as a non-specific sum param-

eter, is known to include information about all

absorbing and stray light inducing states such as the

biomass subpopulations. In contrast to this, permittiv-

ity provides information about the total viable cell

volume of intact viable cells.

Target values of the soft sensor are the three

biomass states XVCC, XDCC and XLCC. In a previously

published study, it was shown that the investigated

biomass subpopulations can be described by three

parameters (Kroll et al. 2016), which are the specific

growth rate (l), the specific death rate (kD) and the

specific lysis rate (kDL). In order to determine these

three parameters, and consequently the three biomass

subpopulations, at least three independent relation-

ships must be established. The first relation bases on

the monitoring of XVCC (i.e. permittivity signal), the

second relation is based on the turbidity signal used for

estimation of XDCC and the third relation is repre-

sented by a kinetic model describing XLCC depending

on XVCC. Details about these three relations will be

explained in the following subsections. This combi-

nation of methods and technologies is the basis of the

soft sensor and allows the real-time estimation of all

three target values.

Real-time estimation of XVCC

In principle, any method and technology estimating

XVCC can be used for the presented soft sensor

concept. Due to this flexibility, the soft sensor concept

can be applied for a wide range of set-ups regarding

different PAT tools. In this study the XVCC was

estimated using a linear correlation between XVCC and

firstly the permittivity (see Eq. (1) and secondly the

volumetric specific oxygen supply (FO2, in VR
-1) (see

Eq. (2)), where p1, p2, p3 and p4 are parameters that

were fitted to the process data by a simple regression

analysis (MatLab, ‘regress’). In order to achieve a

more robust estimation of XVCC, both relationships

were taken into account and error-weighted (see

Eq. (3)) (Aehle et al. 2010). This is a common

approach when there is redundancy.

XVCC;D ¼ p1 þ p2 � D� ð1Þ

XVCC;O2 ¼ p3 þ p4 �
FO2; in

VR

ð2Þ

XVCC ¼
XVCC;D

RMSED
þ XVCC;O2

RMSEO2

1
RMSED

þ 1
RMSEO2

ð3Þ

The presented relation has an RMSE of

0.61 9 109 cells l-1 and is valid as long as (i) the

total viable cell volume is linear proportional to the

viable cell concentration, (ii) the oxygen-biomass

yield and (iii) the kL,O2a-value is constant which is

satisfied in our case. The estimation of XVCC could be

improved by using additional measurements, which
Fig. 1 Time course of D� (permittivity) and OD 880 nm

(turbidity) over the process time

Biotechnol Lett (2017) 39:1667–1673 1669

123



would lead to data redundancy. Furthermore, the re-

estimation of the model parameters (p1–p4) using at-

line measurements, such as measurements of XVCC

from a cell culture analyzer (Goffaux et al. 2009)

could reduce estimation errors. For the aim of this

paper the above presented relation (Eq. (3)) is

sufficient.

Information content of the turbidity signal

and estimation of XDCC

Figure 2a shows the time course of XVCC, XDCC and

cell debris concentration for the first fed-batch exper-

iment over process time. It can be seen that the amount

of cell debris increases over process time. Cell debris

is mainly caused by cell lysis. Figure 2b shows the

distribution of viable cells, intact dead cells and cell

debris according to particle size and amount of

particles with a particular size over process time. It

can be seen that the single subpopulations have

specific particle sizes and different courses over time.

This in combination with different surface character-

istics should lead to different extinction coefficients.

The central measurement used by the soft sensor

concept is the turbidity.According to theBeer–Lambert

law, the total absorbance of a system is the sum of the

absorbances of its components. Thus, the absorbance of

biomass can be calculated by the absorbance of all

considered subpopulations. This leads to Eq. (4), where

�i denotes the extinction coefficient, Xi denotes the

concentration of the ith component and d denotes the

path length of the light. Thereby, two different

subpopulation sets are considered. In the first case

viable cells, intact dead cells and cell debris are taken

into account ði 2 I ¼ fVCC;DCC; cell debrisgODÞ.
In the second case cell debris is replaced by lysed cells

ði 2 I ¼ fVCC;DCC; LCCgÞ.

OD ¼
X

i2I
ei � d � Xi ð4Þ

In order to investigate the turbidity signal in more

detail these two absorbance models were compared

with respect to the coefficient of determination R2, the

RMSE, the condition c and the F-value (see Table 1)

using experimental data from the first fed-batch

experiment. The F-value is in both cases higher than

the reference value Fth = 2.64 showing that both

models are suitable. However, the second model

shows better performance with regard to the coeffi-

cient of determination, the condition and the RMSE.

Furthermore, the extinction coefficients according to

the two different models were estimated (see Fig. 3). It

can be seen that all extinction coefficients of the

second model (Fig. 3b) are significant (confidence

level = 0.95). The first model (Fig. 3a) shows a

significant extinction coefficient for viable cells and

cell debris only. It follows that the second model is

more suitable to describe the effects of all three

subpopulations. Debris and lysed cells show the

highest extinction coefficients. This seems plausible

as they are rougher than viable and intact dead cells

which leads to more scattered light.

Fig. 2 a Time course of

viable cell concentration

(XVCC), intact dead cell

concentration (XDCC) and

cell debris concentration

over the process time.

b Proportionate frequency

distribution with respect to

time and particle size of

viable and intact dead cells

and cell debris over process

time
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Using the absorbance model basing on lysed cells,

XDCC can be estimated according to Eq. (5),

XDCC

¼ 1

2DCC

� OD� ODoff � 2VCC �XVCC � 2LCC �XLCC

� �

ð5Þ

where ODoff denotes the signal offset depending on the

media. The presented relationship is valid as long as

(i) the extinction coefficients are significant as shown

in Fig. 3b, (ii) no other particles such as micro gas

bubbles are present in the system and (iii) the Beer–

Lambert law is valid. All three conditions were

satisfied in the performed experiments.

Real- time estimation of XLCC

In this section the last necessary relation for XLCC is

established based on a previously published growth

model considering a similar process (Kroll et al.

2016). This ordinary differential equation (ODE)

contains the specific lysis rate kDL as parameter that

can be assumed to be constant (Kroll et al. 2016). It is a

system-describing parameter which depends on lysis

influencing parameters such as aeration, power input

and reactor geometry. Thus, for a fed-batch process

XLCC can be described by Eq. (6) (Kroll et al. 2016).

For this purpose, it is necessary to measure feed rates

Fin and the reactor volume VR.

dxLCC

dt
¼ kDL � xVCC � Fin

VR

� xLCC ð6Þ

Performance of the soft sensor

Combining the three relationships described above, all

biomass states (XVCC, XDCC and XLCC) can be

estimated using continuous measured signals. This

soft sensor bases on three equations and nine param-

eters. The order of implementation is: (i) real-time

estimation of XVCC according to Eq. (3) which is

independent of the other biomass subpopulations, (ii)

estimation of XLCC basing on the previously deter-

mined XVCC using Eq. (6) and (iii) the calculation of

XDCC using the measured turbidity based on Eq. (5)

and the calculated values for XVCC and XLCC. All

parameters can be calibrated separately by historical

or in process data. The single equations are simple and

easy to implement. Thus, the presented soft sensor was

set up in accordance to the basic principle of process

engineering being as simple as possible and as

accurate as necessary. Figure 4 shows the at-line

measurements and the soft sensor estimations of all

investigated biomass subpopulations. With respect to

accuracy of reference methods, all states could be

Table 1 Statistical parameters for the assessment of the

information content of the turbidity signal

Cell debris

based model

Lysis based

model

R2 0.97 0.99

RMSE [109 cells l-1] 0.13 0.04

condition 36.21 31.7

F-value 413 1233

Fig. 3 Extinction

coefficients for the two

investigated models. a The

first model bases on the

segregation of biomass in

viable cells, intact dead cells

and cell debris (�VCC, �DCC,
�Debris). b The second model

bases on the segregation of

biomass in viable cells,

intact dead cells and lysed

cells (�VCC, �DCC, �LCC)
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determined with an adequate RMSE which is compa-

rable to deviations of the reference measurements (see

Table 2).

Discussion

The presented soft sensor is based on several assump-

tions: (i) the oxygen biomass yield is constant, (ii) the

kL,O2a is constant, (iii) the cell specific volume is

constant, (iv) the extinction coefficients of the biomass

subpopulations are significant and constant, (v) no other

absorption active particles such as micro gas bubbles

are present, (vi) the turbidity is not saturated and (vii)

the specific lysis rate is constant. These assumptions can

be reduced by the use of additional methods. For

example, a method for the real-time estimation of

model parameters could expand the validity area of the

soft sensor (Bogaerts andWouwer 2003; Goffaux et al.

2009). The observed design space for the soft sensor

was: XVCC: 0.03–10.5 [109 cells l-1], XDCC: 0–2.4

[109 cells l-1], XLCC: 0–1.2 [109 cells l-1]. Further-

more, the concept of the soft sensor is easily transferable

to differentmeasurementmethods and helps to improve

process understanding and control strategies.

The developed soft sensor represents a method for

estimating viable, dead and lysed cells of biomass in

mammalian cell culture processes in real time. The real-

time estimation of lysed cells in mammalian cell culture

processes has not been reported so far to the knowledge of

the authors. The soft sensor concept bases on a careful

selection ofmodel equations, parameters and simple in situ

measurements. The time-resolved information obtained by

the soft sensor with respect to the subpopulations can be

used for (i) reactor quantification with respect to cell

damageandfor (ii) eachbiomass relatedcontrolactionsuch

as real-time identification of termination criteria depending

on viability or lysed cell concentration. This could have a

direct impact on product quality and on productivity.

Especially the influence of lysis on the downstreamwould

be an interesting point for further studies.
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Fig. 4 At-line measured

and real-time estimated

XVCC, XDCC and XLCC over

a fed-batch process

Table 2 RMSE and NRMSE of XVCC, XDCC and XLCC for

two independent experiments (1 and 2)

Fermentation XVCC XDCC XLCC

1 2 1 2 1 2

RMSE [109 cells l-1] 0.61 0.46 0.12 0.14 0.08 0.17

NRMSE [-] 0.1 0.07 0.24 0.27 0.18 0.37
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