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A B S T R A C T   

Background: Despite reduced infectious disease mortality and improved survival, infectious diseases continue to 
pose health threats due to their contagiousness, societal harm, and morbidity. Empiric antibiotic therapy, often 
prescribed without knowledge of the causative pathogen, faces challenges from rising antibiotic resistance. This 
study explores the potential of prior positive culture results to guide empiric antibiotic therapy. 
Methods: Data from King Abdullah University Hospital (Jan 2014–Dec 2019) included adult patients with 
recurrent bacterial infections (pneumonia, sepsis, UTIs, wounds). Excluded cases included: mixed infections, 
transfers, <14 days or >12 months between episodes. The study compared bacterial growth and sensitivity 
patterns between previous and recent cultures. 
Results: The study included 970 episodes from 650 patients, mainly UTIs (60.3%) and gram-negative bacteria 
(77.9%). The study found that (65.1%) of culture pairs matched. Empirical therapy was accurate in (71.8%) of 
cases. Further, accuracy of selected empiric antibiotic therapy was significantly predicted (p < 0.001) by: type of 
infection, type of antibiotics, and concordance with prior microbiologic data. Multivariate logistic analysis 
showed blood culture as less predictive of pending identity (OR: 0.234, P < 0.001) compared to urine culture; 
and prior affirmed gram negative bacterial culture was less predictive (OR: 0.606, P = 0.021) compared to gram 
positive bacterial culture. 
Conclusion: This study underscores the potential of prior positive culture results in guiding empiric antibiotic 
therapy, enhancing accuracy and identity agreement. Future research should explore this approach in different 
infection contexts and across multiple centers. Reducing the indiscriminate use of broad-spectrum antibiotics is 
essential to combat antibiotic resistance.   

1. Introduction 

In the 20th century, despite reduced deaths from infectious diseases 
and improved survival rates, these illnesses continue to pose a signifi-
cant health threat due to their contagiousness, potential societal harm, 
and morbidity [1–3]. Infectious diseases differ from non-communicable 
ones as they evolve with changing pathogenic strains and the emergence 
of antibiotic resistance. Ongoing research aims to counteract the 
acquisition of resistance genes in new bacteria and adapt to shifting 
susceptibility patterns [4]. 

Many antibiotics are prescribed empirically, without knowing the 
causing pathogen or its susceptibility [5–7]. Rising antibiotic resistance 
calls for more careful antibiotic use, especially in empiric cases [8]. 
Thus, choosing empiric antibiotics should rely on trusted guidelines, 
considering probable pathogens and local susceptibility patterns [9,10]. 

Using prior positive culture results to guide current antibiotic choices 
is a promising tactic, predicting upcoming culture findings and enabling 
precise treatment for the current infection [10–14]. Inadequate initial 
antibiotic treatment and delayed use of the right anti-infective agent can 
heighten the risk of bloodstream bacterial invasion, prolong hospital 
stays, raise the chance of hospital-acquired infections, increase 
in-hospital mortality rates, and boost treatment costs [15–17]. On the 
flip side, matching empiric antibiotics to the bacteria currently growing, 
based on previous positive culture results, effectively reduces treatment 
failures and halts infection progression [17]. Improving the diagnostic 
process in antibiotic prescribing is a key component of antimicrobial 
stewardship, which can help restrain antibiotic resistance development 
[18]. This study assesses the appropriateness of using prior positive 
cultures for the same type of infection to guide current empirical anti-
microbial therapy. 
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2. Methods 

2.1. Study setting 

This retrospective study was conducted at King Abdullah University 
Hospital (KAUH) to collect patients’ data from January 1st, 2014 to 
December 30th, 2019. Ethical approval was obtained from the Institu-
tional Review Board in Jordan University of Science and Technology. 

2.2. Study subjects 

Eligible cases were identified by accessing hospital databases be-
tween July 2019 and January 2020. The study included adult patients 
from various wards at KAUH who had received diagnoses of specific 
bacterial infections, namely pneumonia, sepsis, urinary tract infection, 
or wound infection. These patients had been admitted to the hospital 
twice with the same type of infection within a 12-month period. If a 
patient experienced more than two infections during the study period, 
only the most recent ones were considered. Patients who had been 
transferred from other hospitals and those with mixed microbial in-
fections (mixed growth) were excluded. Additionally, we excluded cases 
with a duration of less than 14 days or more than 12 months between the 
two episodes or encounters. This research compared bacterial growth 
and sensitivity patterns between the previous culture and the most 
recent encounter. 

2.3. Data collection 

Patient information was acquired through file reviews and comput-
erized laboratory results. Infection confirmation relied on positive cul-
ture (sputum, urine, blood, or wound) and/or chest x-ray, as 
appropriate. The hospital’s microbiology laboratory identified in vitro 
susceptibility of current and previous causative bacteria. We gathered 
demographic and clinical/medical data, including age, gender, comor-
bidities, drug allergies, recent antibiotic exposure (within 90 days of the 
latest admission), infection type, isolated bacteria type, and empirical 
therapy. Refer to Supplementary Document (S1) to access the data 
collection sheet used in this study. 

To explore factors influencing the identification of microorganisms 
in the latest episode, all episodes were categorized as follows: (1) epi-
sodes with matching microorganisms (MO) and (2) episodes with non- 
matching MO. To evaluate the precision of the most recent empirical 
treatment, we considered only episodes where empirical therapy was 
administered and susceptibility data were available. Accuracy was 
defined as the in vitro susceptibility of empirical therapy. We deter-
mined concordance by examining empirical therapy, which was 
considered concordant if it adhered to guidelines and previous micro-
biological data. The identification of the causative pathogen and anti-
biotic susceptibility followed the recommendations of the Clinical and 
Laboratory Standards Institutes (CLSI) guidelines [19]. 

2.4. Statistical analysis 

After data collection, responses were coded and imported into SPSS 
(version 23). Descriptive statistics were utilized to summarize the data 
for the entire sample, presenting categorical variables as numbers 
(percentages) and continuous variables as medians (interquartile 
range). Differences in variables were scrutinized using a Chi-square test 
(χ2) for categorical variables and a Mann-Whitney U test for continuous 
variables. Logistic regression was employed to evaluate predictors for 
culture identity and the accuracy of empirical therapy, with odds ratios 
(OR) and 95% confidence intervals (95% CI%) calculated. Statistical 
significance was defined as a p-value below 0.05. 

3. Results 

The current study encompassed 970 episodes from 650 unique pa-
tients. Cases had an average age of 63.5 years, with females comprising 
half (51.6%) of the sample. The majority of cases (87.1%) had comorbid 
conditions, while only 4.1% had documented antibiotic allergies. 
Among the most recent admissions, urinary tract infections (UTIs) were 
the most prevalent (60.3%), followed by sepsis (23.5%). Gram-negative 
bacteria were the primary causative agents (77.9%), with a notable 
proportion attributed to Extended Spectrum Beta-Lactamases (ESBL) 
producing bacteria (34.6%), E. coli (15.2%), and Pseudomonas aeruginosa 
(12.8%). The average time between isolated pairs was 70.5 days, and the 
majority of cultures (74.2%) were in agreement with previous micro-
biological data. You can find detailed demographic and clinical data in 
Supplementary 1. 

4. Culture identity results 

Approximately two-thirds of culture pairs (65.1%, n = 631) dis-
played a matching microorganism (MO) between the most recent 
episode and the preceding one, while one-third exhibited non-matching 
MO (34.9%, N = 339). Table 1 provides the results of multivariate 
analysis regarding factors influencing culture identity. 

Having a pending urine culture result was a stronger predictor of 

Table 1 
Predictors of current culture identity.  

Variable Univariate analysis Multivariate analysis 

Not 
Matching 
N = 339 
(34.9) 

Matching 
N = 631 
(65.1) 

P value OR (95%CI) P value 

Age, median 
[IQR] 

65 
[52–72] 

63 
[47–73] 

0.248 0.997 
(0.988–1.006) 

0.560 

Gender   0.135 Ref 0.090  
• Female 164 

(48.4%) 
337 
(53.4%) 

0.783 
(0.590–1.039)  

• Male 175 
(51.6%) 

294 
(46.6%)  

Comorbidity   0.006  0.470  
• No 30 

(8.8%) 
95 
(15.1%) 

Ref  

• yes 309 
(91.2% 

536 
(84.9%) 

0.836 
(0.515–1.359) 

Type of culture   <0.001    
• Urine 149 

(44.0%) 
436 
(69.1%) 

Ref <0.001  

• Sputum 34 
(10.0%) 

72 
(11.4%) 

0.705 
(0.442–1.127) 

0.144  

• Wound 35 
(10.3%) 

16 
(2.5%) 

0.155 
(0.080–0.286) 

<0.001  

• Blood 121 
(35.7%) 

107 
(17%) 

0.234 
(0.153–0.356) 

<0.001 

Prior antibiotic 
use   

0.217  0.606  

• No 45 
(13.3%) 

67 
(10.6%) 

Ref  

• Yes 294 
(86.7%) 

564 
(89.4%) 

1.126 
(0.718–1.765) 

Type of 
bacteria- 
current   

0.014  0.021  

• Gram 
positive 

90 
(26.5%) 

124 
(19.7%) 

Ref  

• Gram 
negative 

249 
(73.5%) 

507 
(80.3%) 

0.606 
(0.395–0.928) 

Interval 
between 
isolated 
pairs –days, 
median 
[IQR] 

81 
[41–170] 

65 
[35–136] 

0.001 0.998 
(0.996–1) 

0.014  
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growing the same previous MO in the prior culture compared to pending 
blood (OR = 0.234, 95% CI = 0.153–0.356, p < 0.001) or wound (OR =
0.155, 95% CI = 0.080–0.286, p < 0.001) cultures. Furthermore, a prior 
positive culture with gram-positive bacteria was a better predictor of 
having the same MO in the most recent culture compared to gram- 
negative cultures (OR = 0.606, 95% CI = 0.395–0.928, p = 0.021). 
Additionally, a shorter interval between two isolated cultures was a 
stronger predictor of culture identity in the most recent culture (OR =
0.998, 95% CI = 0.996–1, p = 0.014). However, the statistical results for 
both OR (approaching 1) and CI (including 1) concerning the interval 
between cultures do not have direct clinical implications. Fig. 1 illus-
trates the graphical representation of culture identity agreement among 
different types of cultures (Fig. 1: Culture Identity Agreement Among 
Cultures). 

5. Accuracy of therapy results 

Among the 970 culture pairs, 317 were excluded for two reasons: 1) 
46 cases with known culture results before admission (from outpatient 
settings); and 2) 271 cases lacked susceptibility data for the given 
empirical therapy. Among the remaining 653 cases analyzed for accu-
racy, 71.8% (n = 469) received accurate empirical therapy. Table 2 
presents the results of multivariate analysis concerning factors affecting 
therapy accuracy in the most recent episode. 

The results indicated that treating UTIs was more accurate than 
addressing other infection types such as pneumonia (OR = 0.203, 95% 
CI = 0.111–0.373, p < 0.001) and sepsis (OR = 0.208, 95% CI =
0.107–0.405, p < 0.001). Additionally, using antipseudomonal therapy 
was more accurate compared to narrower-spectrum non-anti-
pseudomonal/non-anti-Methicillin-resistant Staphylococcus aureus 
(MRSA) therapy (OR = 0.291, 95% CI = 0.172–0.493, p < 0.001). 
Furthermore, using concordant therapy based on prior microbiological 
data was seven times more likely to predict accuracy (OR = 7.180, 95% 
CI = 4.675–11.148, p < 0.001). 

6. Discussion 

The present study investigated the feasibility of using previous pos-
itive culture results from various infection types to inform the selection 
of empirical antibiotics for the most recent episode. Our findings suggest 
the importance of considering prior culture results when making choices 
regarding empirical antibiotic therapy. Specifically, factors influencing 
culture identity included urinary cultures, as opposed to other types, and 
infections caused by gram-positive bacterial species. Additionally, pos-
itive predictors for the accuracy of empirical antibiotic therapy included 
UTIs, the utilization of antipseudomonal agents for empirical coverage, 
and alignment with previous culture results. 

Regarding the most recent culture’s infecting identity, our study 

revealed that a pending urine culture was more likely to yield the same 
microorganism (MO) as found in the previous culture, compared to 
blood, sputum, or wound cultures. This finding reinforces the results 
reported by Linsemeyer and MacFadden, which demonstrated the utility 
of a prior positive urine culture in predicting the potential identity and 
susceptibility of the current positive urine culture [11,13]. The higher 
odds of cultural identity agreement in urine culture in our study, in 
comparison to other types of cultures, can be attributed to the higher 
recurrence potential observed with urinary tract infections (UTIs) after 
the initial episode [20]. 

Furthermore, antecedent positive culture with gram positive bacteria 
was more predictive to having the same MO in the most recent culture 
compared to gram negative culture. A potential explanation is that in-
fections implicated by gram negative bacterial species have higher odds 
of mortality compared to gram positive bacterial counterpart, in addi-
tion to delayed healing, and prevalent antibiotic resistance [21–23]. In 
addition, the survival of patients with prior infective episodes caused by 
gram positive species increases the likelihood of subsequent infection, 
particularly by gram positive strains [24], as aligned by the results of the 
present study. 

Regarding antibiotic selection accuracy, two-thirds of the patients 
received appropriate antibiotic therapy. Treating a UTI episode, as 
opposed to other types of infections, was predictive of accurate empir-
ical antibiotic therapy. As mentioned earlier, the higher prevalence of 
UTIs and the increased likelihood of UTI recurrence enhance healthcare 
providers’ familiarity with UTI susceptibility patterns and treatment 
options compared to other types of infections [25–27]. 

In addition to the type of infection, the spectrum of antibiotic activity 
is another factor that can influence the accuracy of therapy. Anti-
pseudomonal antibiotics provided more accurate coverage compared to 
narrower-spectrum options, such as non-antipseudomonal/non-anti- 
MRSA antimicrobials. Empirically, it is common practice to start with 
broad-spectrum antibiotics to increase the likelihood of targeting po-
tential pathogens causing the infection [9,28]. Antipseudomonal anti-
biotics, in this context, are considered broader-spectrum antibiotics that 
can effectively combat a wider range of pathogens. When initiated 
empirically, antipseudomonal agents offer higher chances of targeting 
the infecting strains in a given episode, resulting in superior accuracy 
rates. 

It’s crucial to distinguish between “accurate” and “appropriate” 
empiric therapy. Broad-spectrum antibiotics are often an accurate 
choice because they are likely to be effective against the causative 
pathogen. However, they may not always be the “appropriate” choice, as 
they might not align with the local epidemiological context and the 
specific clinical condition of the infected patient. 

Furthermore, concordance with previous culture results emerged as 
another noteworthy predictor of accuracy. Opting for empirical anti-
biotic therapy that aligned with prior microbiological data increased the 
accuracy rate by approximately sevenfold compared to selecting therapy 
that didn’t match previous microbiological findings. This aligns with 
findings from a study by Linsenmeyer et al. which reported a doubling of 
the accuracy rate when using a concordant anti-infective agent to treat 
subsequent UTI episodes [11]. 

As evident, our study delved into a novel concept that had not been 
explored in previous research. Our approach involved an extensive re-
view of patient encounters rather than relying solely on admission 
codes, thereby enhancing the reliability of our results. However, there 
are a few limitations to our study. Firstly, given the limited number of 
studies addressing factors affecting the accuracy of empiric antibiotic 
selection, comparing our findings to similar ones proved challenging. 
Furthermore, the comprehensive inclusion of various types of infections 
may have influenced the interrelationships between different variables. 
Lastly, our study was conducted at a single center, which could poten-
tially limit the generalizability of our results. 

The insights gleaned from this study could have implications for 
antibiotic stewardship if applied to guide the selection of empiric Fig. 1. Culture identity agreement among cultures.  
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antibiotic therapy, particularly in light of the significant clinical char-
acteristics identified in infectious episodes. Future research with a 
similar focus should encompass multiple centers and ensure a more even 
distribution of different types of infections. 

7. Conclusion 

Selecting empiric antibiotics presents a challenge as it involves a 
delicate balance between potential benefits and associated risks, 
considering the likely infecting species and local susceptibility patterns. 
This study has laid the groundwork for enhancing the use of empiric 
antibiotics by highlighting the role of prior microbiological data in 
guiding healthcare providers’ choices for treating the current episode, 
thereby improving both accuracy and agreement in identity. 

We strongly recommend further prospective studies that consider 
classifying different infections based on factors such as acquisition site, 
severity, or complexity (e.g., primary vs. relapse, complicated vs. un-
complicated). This would help establish a more accurate relationship, as 
suggested by our findings. 

There is an urgent need to curb the practice of indiscriminately 
prescribing broad-spectrum antibiotics, as it leads to excessive use of 
these antibiotics, resulting in antibiotic resistance, societal risks, sec-
ondary infections, and increased costs. 
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Key summary 

Inadequate empirical antibiotic therapy significantly contributes to 
morbidity and mortality related to infections. This study has emphasized 

factors that enhance the ability to predict pending culture results, a 
crucial step in optimizing antibiotic therapy. Predicting the growth of 
bacteria helps improve outcomes, reduce costs, and mitigate public 
health concerns linked to therapy failure and antibiotic resistance. 
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Table 2 
Predictors of the accuracy of current therapy.  

variable Univariate Multivariate 

Not accurate 
N = 184 (28.2) 

Accurate n = 469 (71.8) P value OR (95%CI) P value 

Age, median [IQR] 65[50–77] 63[48–73] 0.129 0.988 (0.976–1.001) 0.067 
Gender   0.413    
• Female 88 (47.8%) 241 (51.4%)  
• Male 96 (52.2%) 228 (48.6%) 
Comorbidity   0.340    
• No 20 (10.9% 64 (13.6%)  
• Yes 164 (89.1% 405 (86.4%) 
Type of Infection   <0.001    
• UTIa 110 (59.8%) 350 (74.6%) Ref <0.001  
• Pneumonia 38 (20.7%) 45 (9.6%) 0.203 (0.111–0.373) <0.001  
• Skin 9 (4.9%) 23 (4.9%) 0.642 (0.248–1.662) 0.361  
• Sepsis 27 (14.7%) 51 (10.9%) 0.208 (0.107–0.405) <0.001 
Prior antibiotic use   0.597    
• No 16 (8.7%) 35 (7.5%)  
• Yes 168 (91.3%) 434 (92.5%) 
Type of bacteria-current   0.578    
• Gram positive 14 (7.6%) 30 (6.4%)  
• Gram negative 170 (92.4%) 439 (93.6%) 
Interval between isolated pairs –days, median [IQR] 61[32–149] 73[37.50–149.5] 0.336   
Type of antibiotics   <0.001    
• antipseudomonals (single or double) 102 (55.4%) 351 (74.8%) Ref <0.001  
• anti-MRSAb 8 (4.3%) 7 (1.5%) 0.376 (0.107–1.313) 0.125  
• antipseudomonal (single or double) + anti-MRSA 10 (5.4%) 27 (5.8%) 1.252 (0.512–3.064) 0.622  
• Non-antipseduo/Non-anti-MRSA cephalosporins 58 (31.5%) 60 (12.8%) 0.291 (0.172–0.493) <0.001  
• others 6 (3.3%) 24 (5.1%) 1.056 (0.365–3.131) 0.922 
Concordance   <0.001  <0.001  
• Not concordant 106 (57.6%) 72 (15.4%) Ref  
• Concordant 78 (42.4%) 397 (84.6%) 7.219 (4.675–11.148)  

a UTI: urinary tract infection. 
b MRSA: Methicillin-resistant Staphylococcus aureus. 
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