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Abstract: Lack of better understanding of nanoparticles targeted delivery 
into cancer cells calls for advanced optical microscopy methodologies. Here 
we present a development of fluorescence microspectroscopy (spectral 
imaging) based on a white light spinning disk confocal microscope with 
emission wavelength selection by a liquid crystal tunable filter. Spectral 
contrasting of images was used to localize polymer nanoparticles and cell 
membranes labeled with fluorophores that have substantially overlapping 
spectra. In addition, fluorescence microspectroscopy enabled spatially-
resolved detection of small but significant effects of local molecular 
environment on the properties of environment-sensitive fluorescent probe. 
The observed spectral shift suggests that the delivery of suitably composed 
cancerostatic alkylphospholipid nanoparticles into living cancer cells might 
rely on the fusion with plasma cell membrane. 

© 2011 Optical Society of America 
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1. Introduction 

Nanoparticles have reduced renal clearance and therefore remain in the blood circulation 
longer compared to compounds with lower molecular weight. Due to compromised vascular 
endothelial lining and the lack of lymphatic drainage they accumulate in the tumor 
environment [1]. Consequently, different nanoparticles, for example polymer-based, lipid-
based, metal-based, and carbon-based nanoparticles, are increasingly being employed in 
cancer therapy [1]. The described enhanced permeability and retention effect can be exploited 
for passive targeting of high molecular weight compounds and small particles to tumors, 
which is currently considered as an effective way to bring drugs to tumors [2]. However, the 
efficient interaction of nanoparticles with cancer cells, e.g. through drug release in case of 
nanocarriers or through cellular uptake of nanoparticles, is as crucial as their accumulation 
around cells. Thus, it is important to develop advanced approaches to study mechanisms of 
nanoparticles delivery into cells. 

In our previous work we have shown that the interaction of nanosized liposomes, made of 
cancerostatic alkylphospholipid [3] and cholesterol, with breast cancer cells depends critically 
on liposome membrane composition and membrane fluidity characteristics [4]. Although a 
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comprehensive membrane characterization based on electron paramagnetic resonance 
spectroscopy with spin labeling provided detailed information about overall membrane 
properties, it could not give spatial information about liposome-cell interaction. To gain new 
insight confocal fluorescence microscopy was used, since it enables localization of 
fluorescently labeled lipid nanoparticles. 

Confocal fluorescence microscopy has become invaluable for a wide range of 
investigations due to its capability of imaging thin optical sections [5]. It is a convenient tool 
for localization of labeled regions within a sample, but it offers only limited information on 
their molecular properties. In addition, it does not allow differentiating between regions 
labeled with fluorescent probes with substantially overlapping spectra or sampling multiple 
spectral parameters simultaneously to understand the interactions of individual components 
within complex matrices. To overcome the shortcomings of confocal fluorescence microscopy 
spectral imaging or fluorescence microspectroscopy (FMS) has been introduced [6,7]. It has 
to be noted that there exist also label-free microscopy and microspectroscopy alternatives 
such as Raman microspectroscopy [8]. The label-free techniques are advantageous when the 
introduction of fluorescent labels and their instability pose a problem. 

Confocal FMS indicates coupling of confocal fluorescence microscopy and spectroscopy. 
It allows acquisition of fluorescence spectra from particular volume elements in a sample. 
This technique has already proved to be a biomedically relevant methodology e.g. in drug 
screening [9], in studying cell transfection by liposomal formulation of siRNA [10], or in 
fluorescence tomography [11]. In the present work it will be shown that FMS methodology 
can be successfully applied also to the study of the mechanism of nanoparticles delivery into 
living cancer cells providing invaluable information that cannot be obtained with other 
methods. 

In order to make FMS widely accessible to the biomedical community the system has to 
be affordable and should permit routine use. Here we report about such development of an 
FMS system based on a white light spinning disk confocal microscope. The spinning disk 
confocal microscopy is appropriate for cell imaging due to reduced fluorophore 
photobleaching problem as well as for a high image acquisition rate [12,13]. Moreover, the 
use of a broad-spectrum arc-lamp excitation (white light) source enables flexibility needed 
with respect to different problem-specific fluorescent probes as well as their synthesis-on-
demand [14]. The white light FMS system is also in line with the current developments and 
ambitions focused to new fluorophore design with less limitation in the choice of excitation or 
emission wavelengths. 

The developed FMS setup is an example of a filter-based system. Specifically, the 
emission wavelength selection is done with a narrow band liquid crystal tunable filter (LCTF) 
placed in front of the camera. A similar approach was used before [15], where however the 
LCTF was applied to resolve the weights of spectral components of different probes via linear 
unmixing and not for the detection of small lineshape changes in combination with 
environmentally sensitive probes. In similar manner to LCTF also acousto-optic tunable filters 
can be used [16]. Both filter technologies provide very fast wavelength selection and 
tunability while preserving image integrity with the advantage of having no moving parts. 
Beside the filter-based FMS systems, there are also interferometric, grating-based or optical-
fiber-array-based systems [17,18]. 

The main advantage of our FMS system is its modular structure, which enables upgrade of 
any fluorescence microscope to a confocal FMS system at a relatively low cost and with a 
good spectral resolution. Since the system is flexible it can easily be optimized for different 
research problems. 

In this paper we examine the mechanism of delivery of different fluorescently labeled 
nanoparticles into cancer cells by spectrally contrasting FMS images. The spectral 
information is obtained through automated analysis in terms of intensities and emission 
spectra maximum wavelengths from every pixel in FMS images. The application of a narrow 
band pass filter, i.e. LCTF, enabled us to localize and differentiate labeled nanoparticles and 
cell membranes although their spectra overlap. Moreover, the interaction of fluorescently 
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labeled nanoparticles with non-labeled cells has been also revealed through the influence of 
probes' local molecular environment on the spectral shape. The presented results point to the 
biomedical potential of the presented FMS setup. 

2. Materials and methods 

2.1. Test fluorescent beads 

FocalCheck fluorescent beads (F36913, Invitrogen, Carlsbad, CA, USA) were chosen as a test 
sample. The convenience of this sample as a stable and repeatable standard has been 
demonstrated recently [19]. The test slide with immobilized fluorescent beads (6 μm in 
diameter) stained with two spectrally closely overlapping orange dyes was used. The 
excitation/emission maxima declared by the producer for these dyes are 541/555 and 545/565 
nm, respectively. The FMS images were taken in 2 nm steps in the interval from 536 to 630 
nm, exposure time being 500 ms for each of them. The maximum level of counts on the CCD 
detector was around 340 counts/s. 

2.2. Interaction of cancer cells with fluorescently labeled nanoparticles 

Human breast adenocarcinoma cell line MCF-7 cells were cultured in Dulbecco’s modified 
Eagle’s medium (DMEM, Gibco, Invitrogen, Carlsbad, CA, USA) containing 10% fetal calf 
serum (FSC) and 100 U/ml penicillin and 100 μg/ml streptomycin (Sigma-Aldrich Chemie 
GmbH, Steinheim, Germany). The cells were incubated at 37°C in a humidified 5% CO2 
atmosphere. 

For fluorescence microspectroscopy experiments on the interaction of living cancer cells 
with different nanoparticles, cells were plated on glass-bottom cell culture dishes (Chambered 
Coverglass, Lab-Tek, Nalge Nunc, Rochester, NY) and allowed to grow for one day. The 
number of cells was approximately 30000 cells/well before the experiments. 

In the experiments with fluorescein labeled polystyrene latex nanoparticles (Fluoresbrite 
YG microspheres, Polysciences GmbH, Eppelheim, Germany) of 50 nm diameter, 5 μl of 3.7 
× 10

12
 particles/ml were incubated with cells for 20 minutes. For polymer nanoparticles with 

500 nm diameter, 0.1 μl of 3.7 × 10
11

 particles/ml was used. These nanoparticles have the 
fluorescence emission maximum at 486 nm and an additional shoulder with intensity 
comparable to the maximum at around 515 nm, as declared by the producer. In our 
experiments the latter shoulder was monitored. 

Afterwards 1 μl of 10
4

 M or 5 μl of 10
3

 M (dissolved in DMSO) lipophilic fluorescent 
probe NBD-FA was added to the cells in case of 50 nm or 500 nm nanoparticles, respectively. 
The different amount of lipophilic probe was used in order to approximately match the level 
of fluorescence emission by polymer nanoparticles in different cases. This precaution enabled 
contrasting between the label bound to the nanoparticles and the label in the cell membrane. 
Consequently, the exposure time of 500 ms for one optical slice at a single wavelength for 500 
nm nanoparticles was increased to 20 s in the case of 50 nm nanoparticles when recording 
images in confocal mode. The maximum level of counts on the CCD detector in the regions 
free from aggregated nanoparticles was around 30 counts/s and 3 counts/s, respectively. The 
exposure time was 1 s for 50 nm nanoparticles in the wide-field mode with the maximum 
level of counts around 50 counts/s. The FMS images were taken in 3 nm steps in the interval 
from 470 to 551 nm. 

NBD-FA probe was synthesized, as described earlier [14], by combining an amino sugar, 
which serves as a central polar group, NBD and the derivative of the fatty acid. The probe is 
labeled “16b” in the reference [14]. The measured emission maximum of this probe in a lipid 
environment was about 537 nm. Next, the time evolution of samples was followed with FMS. 

In the experiments with lipid nanoparticles the cell medium was replaced with 200 μl PBS 
and then 10 μl of prepared labeled liposomes were added and incubated with the cultured 
cells. Next, the time evolution of samples was followed with FMS. The exposure time was 
500 ms for single wavelength. The maximum level of counts on the CCD detector was around 
260 counts/s for lipid nanoparticles with lower concentration of cholesterol and 80 counts/s 
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for nanoparticles with higher level of cholesterol. Due to considerable photobleaching of 
NBD-PC probe the FMS images were taken in 5 nm steps, so that fewer exposures were 
needed to obtain the whole spectrum. The spectral range was from 515 to 585 nm. 

2.3. Preparation of fluorescently labeled liposomes 

Large unilamellar vesicles (LUV) were prepared from octadecyl-(N,N-dimethyl-piperidino-4-
yl)-phosphate (OPP), cholesterol (Chol) and dicetylphosphate (DCP), as described previously 
[20]. Briefly, multilamellar vesicles (MLV), final concentration 10 mM, were prepared by the 
lipid film/hydration method from appropriate mixtures of stock solutions of the components in 
CH3Cl/MeOH (7:3, v/v). The lipid film was resuspended in phosphate buffer saline (PBS). 
LUV were prepared from MLV by repeated extrusion through polycarbonate filters (diameter 
of pores, 100 nm) using a LiposoFast Basic system (Avestin, Ottawa, ON, Canada). The 
molar ratio between OPP and DCP was kept constant (10:2), while the molar ratio between 
OPP and Chol was different for different liposomes. In OPP5 LUV the molar ratio of 
OPP:Chol was 10:5 and in OPP15 the molar ratio was 10:15. The negatively charged DCP 
was used to prevent aggregation of LUV. 

LUV were fluorescently labeled with a phospholipid fluorescent probe NBD-PC, where 7-
nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) is attached to a phosphatidylcholine phospholipid 
(16:0-06:0 NBD PC, Avanti polar lipids, Alabaster, AL, USA). NBD-PC was added to the 
organic solvent before preparing MLV. The fluorescence emission maximum of this probe 
declared by the producer is around 534 nm. The molar concentration of the fluorescent probe 
with respect to other components was 0.5 mol%. 

The reference measurements of fluorescence emission spectra were done with Infinite 
M1000 microplate reader (Tecan, Männendorf, Switzerland). A 96-well black plate was used 
in the fluorescence intensity top mode. 

2.4. Confocal fluorescence microspectroscopy system 

The confocal FMS system, presented in Fig. 1, is built on an inverted microscope Nikon 
Eclipse TE 2000-E platform. Unless specified otherwise, an oil immersion 100x 1.4-NA 
objective lens was used in this work to provide high magnification and high spatial resolution. 
The microscope is equipped with a Prior ProScan II (Cambridge, UK) motorized and 
computer controlled stage that enables precise movements of the sample in the x and y 
directions (in the plane perpendicular to the optical axis of the objective). Focus is controlled 
with a stepper motor for objective holders, which enables optical sectioning along the z 
direction (along the optical axis). The confocal unit is a CARV II spinning disk confocal 
module (BD Biosciences, Franklin Lakes, NJ, USA), which also houses excitation, dichroic 
and emission filters (BrightLine filters from Semrock, Rochester, NY, USA). As an excitation 
source a high power 300 W xenon Lambda LS arc-lamp (Sutter, Novato, CA, USA) is used. 
The advantage of this kind of source is a broad spectrum of emitted light, which provides 
flexibility with respect to the wavelength of excitation light. All electronic microscope 
functions as well as camera control, shutters, stage, and focus, are controlled using a home-
built software. 

The fluorescence emission light that leaves the CARV unit can be directed to the camera 
in two ways. In the microspectroscopy mode the light goes through the liquid crystal tunable 
filter (LTCF) [21,22] (Fig. 1a). In the other alternative, the light goes directly to the camera by 
inserting the movable mirrors for conventional microscopy operation (Fig. 1b). The lenses in 
the latter option are used to correct for the focus shift produced by passing light through the 
LCTF. In our case the geometrical constraints and the degree of the focus shift due to LCTF 
prompted us to use in turn achromatic convergent lens with the focal length of 10 cm and an 
achromatic divergent lens with the focal length of 5 cm. The magnification of this double lens 
combination is approximately 1.5, which is matched on the first path by using the 1.5x 
magnification optovar in the Nikon microscope. 
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Fig. 1. A schematic presentation of the configuration of the experimental setup. The light 
coming from the spinning disk confocal module can be directed to the camera in two different 
paths by moving two mirrors (indicated by the double-headed arrows) in or out of the optical 
path. The first path (a) where the light goes through the LCTF represents the (confocal) 
fluorescence microspectroscopic mode while the second path (b) represents the conventional 
(confocal) fluorescence microscopy imaging mode. 

The microspectroscopic images are taken successively at different wavelengths, i.e. as a 
wavelength stack or λ-stack. The LCTF is Varispec VIS-10-20 from CRi (Woburn, MA, 
USA), tunable in the range from 400 to 720 nm, with the bandwidth of around 10 nm. The 
uncertainty in setting the wavelength value of LCTF is about 1 nm. Both the wavelength 
accuracy and the LCTF bandwidth are well below the fluorescence emission spectral width, 
thus exhibiting very low distortion on the acquired emission spectra. The wavelength can be 
changed in the order of a few tens of milliseconds. 

The last component in the system is a highly sensitive QImaging Rolera MGi back-
illuminated EMCCD (Electron Multiplying Charge-Coupled Device) (Surrey, BC, Canada) 
camera with a very high quantum efficiency (>90% between 500 and 700 nm), which is 
needed mainly because of the light intensity losses due to spinning disk and LCTF. The 
detector has 512x512 pixels with 16 μm pixel size. The image size on the detector matches the 
part of homogeneously illuminated section of the sample. The detector field of view 
determines the size of a single image pixel to about 100 nm x 100 nm, which does not exceed 
half of the wavelength. The EM assures adequate signal to noise ratios also at fast image 
acquisition rate enabled by the spinning disk confocal microscope. 

The measured radiant output from the liquid light guide connected to the xenon lamp is 
around 450 mW being reduced to around 25 mW when light reaches the sample. In confocal 
mode spinning disk reduces the value by additional 92% (measured value), yielding 
approximately 2 mW of excitation power or 10

16
 photons/s. Assuming the number of dye 

molecules in a volume element of a sample to be around 1000 (corresponding to 10
5

 M probe 
solution or 1 probe per 200 lipid molecules in a vertical membrane bilayer) and taking into 
account typical extinction coefficient and quantum efficiency (2 × 10

4
 (M cm)

–1
, and 0.3, 
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respectively), their fluorescent output is around 2.0 × 10
6
 and 1.5 × 10

5
 photons/s in wide-

field and confocal mode, respectively. Considering objective acceptance angle, dichroic and 
emission filter transmittances, LCTF characteristics, and camera quantum efficiency, around 
8000 or 600 photons/s are finally detected within 10 nm LCTF-filtering window in wide-field 
or confocal mode, respectively. Consequently, the number of counts on the CCD detector will 
be in the range of hundred counts/s or ten counts/s after AD conversion in wide-field or 
confocal mode, respectively. This can be increased mainly by more efficient probe or 
increased probe concentration. 

In our system the typical spectral acquisition time for single optical slice is in the range of 
minutes. In comparison, typical acquisition times in wavelength dispersive systems for 
512x512 pixels image range from seconds to tens of minutes [23,24]. The main advantage of 
an LCTF-based system over systems with simultaneous channels relies on the spectral 
resolution at desired sensitivity. The latter system working in a broad spectral range (e.g. 32 
channels and 300 nm spectral range) provides resolution of 10 nm at a channel width of 10 
nm. With respect to a typical fluorescence spectrum span of about 80 nm, such a device 
provides only 8 points characterizing the emission spectrum. An LCTF-based system can be 
adjusted to 1 nm steps with 10 nm filter width, providing better resolution at a comparable 
sensitivity. Note, that the distortion of a lineshape is still small since the linewidth is much 
larger than 10 nm. On the contrary, when working in a narrow spectral range, like 30-60 nm, a 
32 channel system would have the same resolution but with 1 nm channel width. 
Consequently, the exposure times would have to be increased for 10 times to count the same 
amount of photons. Similar conclusions hold for wavelength dispersive systems based on 
CCD camera, where binning increases sensitivity at a cost of lower spectral resolution. Taking 
these facts into account, we can state that our FMS system can perform better for a full-image 
high-resolution microspectroscopic analysis, while the point-scanning wavelength dispersive 
systems are advantageous in cases when just a portion of the image has to be scanned. 

2.5. Spectra acquisition and analysis 

A home-built program “FMS+: Fluorescence MicroSpectroscopy Acquisition, Control, 
Processing” has been developed in MathWorks MatLab environment (Natick, MA, USA). 
The program controls the recording of images at different wavelengths and their analysis in 
order to extract fluorescence emission spectra. The program replaces the software packages 
controlling the microscope, camera and LCTF and, most importantly, allows high-throughput 
microspectroscopy experiments. The latter is not possible by independent control over the 
different components of the FMS system. 

To obtain spectra that can be directly compared to spectroscopic data acquired by other 
methods, several corrections have to be applied to the pixel intensity values measured by the 
detector. The camera dark current is corrected by acquiring two black reference images before 
and after the experiment with the same camera settings but without excitation light. An 
average of these images is subtracted from all images in a spectral series. 

Photobleaching of the fluorophores is corrected with a similar approach by monitoring the 
intensity of the signal recorded at a reference wavelength that can be arbitrarily chosen 
(usually close to the wavelength of maximal intensity in the considered spectral region). 
During the recording of a λ-stack six reference images are taken (one at the beginning, four 
during the recording at recurring wavelength intervals, and one at the end), and the decay of 
the intensity over the consecutive reference images is used to correct the intensities of each 
image in the λ-stack after the dark current contribution has been subtracted. 

Transmission characteristics of the LCTF as well as the EMCCD sensitivity as a function 
of wavelength are known and are utilized to correct the light intensities at each wavelength 
accordingly [15]. Since transmittances of fluorescence filters used are high (> 0.95) and nearly 
constant (with variations < ± 2%, which occur at much smaller wavelength steps than LCTF 
spectral width) in the spectral region of typical measurements, their effect on the measured 
spectra is neglected. 
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After the images in a λ-stack are corrected, as described above, a spectrally contrasted 
image is generated for a fast and intuitive visual inspection of the acquired data from the 

obtained spectra. Every point of the image is color-coded in terms of hue [0,1  ]h  according 

to the wavelength of the spectral maximum λmax, and in terms of brightness [0,1  ]v  

according to the level of intensity [0,1  ]i . The latter is normalized to the maximum intensity 

in the λ-stack of images, respectively. The pixel colors are defined according to the following 
formulae: 

 

1.3
1.2

0.51

2 1

0.8 , 1, ,  1 maxh vs i
 

 




 
    
   

  (1) 

where λ1 and λ2 are predefined values limiting the wavelength range of interest. Saturation is 
always kept maximal (equal to 1) for best color contrast. Values of λmax that fall outside this 
range are set to the limiting values. The exponents in Eq. (1) are introduced to enhance the 
perception of color contrast while the coefficient of 0.8 extracts violet-to-red color range from 
cyclic hue function. 

In case of low signal-to-noise ratio and small differences in the fluorescence emission 
spectrum maxima, the noise in the detected photon counts can interfere with the measurement 
of very small shifts. To reduce the effect of noise on the determination of λmax position 
spectral data is smoothed by fitting it with a third order polynomial. Subsequently, a 
normalized distribution of λmax values can be plotted for an arbitrarily chosen image region 
and the maximum of the histogram is then used as the reference emission spectrum maximum 
λmax(hist). As it can be seen from the experimental data, such a procedure reveals λmax(hist) 
accuracy better than 1 nm, even despite lower spectral resolution for spectra taken with 
wavelength steps of a few nm. Note that this procedure is analogous to the single molecule 
tracking, where optical resolution of 200 nm is converted to positional accuracy of 30 nm by 
fitting the shape of the light profile [25]. 

3. Results and discussion 

3.1. Spectral contrasting of microspectroscopic image 

By passing the emitted light through LCTF, FMS system is running in the fluorescence 
microspectroscopic mode (Fig. 1a). The FMS mode can either be confocal or wide-field 
depending on the positioning of the spinning disk in the optical path. The pictures taken at 
different wavelengths are used to build a λ-stack of images (Fig. 2a). An example in Fig. 2 
shows an optical slice through two fluorescent beads. The two beads are labeled with two 
different fluorescent dyes with the declared emission maxima at 555 and 565 nm. 

The “FMS+” software enables extraction of fluorescence emission spectra from any pixel 
in the image or an average spectrum from a group of neighboring pixels (small white squares 
in Fig. 2a). As shown in Fig. 2b, test example of two fluorescent beads reveals a measured 
shift between the maxima of fluorescence emission spectra of around 9 nm, which agrees well 
with the shift of around 10 nm declared by the producer of the beads. 

The color coding transformation automatically assigns colors to pixels or groups of pixels 
across the image according to particular emission spectrum characteristics as discussed in the 
section Materials and methods. In the presented case the color coding was applied to code λmax 
with the underlying color legend (small open white squares in Fig. 2b) within the interval 
from 540 to 570 nm. Consequently, the pixels corresponding to the left fluorescent bead will 
be colored bright green in the final image, while the right bead will be orange/red and 
dimmer, since the spectrum intensity is lower. In the spectrally contrasted image (Fig. 2c) 
small white squares indicate the positions that were originally chosen in the λ-stack (Fig. 2a) 
for presenting fluorescence emission spectra. 

Note that in contrast to the LCTF application of Fraser’s group [15], where LCTF is used 
to derive locally resolved spectral information of different probes linearly unmixed via known  
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Fig. 2. Spectral contrasting of a microspectroscopic image. (a) Fluorescence 
microspectroscopic mode provides a stack of images obtained at different wavelength settings 
of the LCTF (a λ-stack of images) in FMS system. Different regions of interest can be selected 
from which (b) fluorescence emission spectra are extracted. The spectra are used in the color 
coding procedure to provide (c) a spectrally contrasted image, in this case the confocal image 
of equatorial optical slice through fluorescent beads. For details see text. 

and predetermined spectral lineshapes, in our case spectral lineshapes are analyzed in terms of 
wavelengths of maximal intensities λmax. While in the first case the derived weights are 
directly encoded by the RGB colors, in our case spectral maxima are transformed into colors 
using the hue rule characterizing changed local concentration or environment when using 
environmentally sensitive probes. The two approaches are therefore complementary – the first 
one enables spectral decomposition and concentration detection, while the latter enables the 
characterization of small changes in environment detected by one probe only. 

The main benefit of the color coding is a fast recognition of spectral variations across the 
image. Similar spectral contrasting approaches have been utilized in other microspectroscopic 
techniques, for instance in fluorescence lifetime imaging microscopy (FLIM), where an image 
can be color-coded in a way to highlight the different fluorescence lifetimes in different parts 
of the sample [26]. Another example is spectrally resolved anisotropy imaging, where the 
degree of fluorescence anisotropy is used for the color coding [27]. 

3.2. Study of polymer nanoparticles delivery into cancer cells 

Spatially-resolved spectral analysis, which is enabled through the FMS system, allowed us to 
track nanoparticles' delivery/uptake into cancer cells. Firstly, experiments with incubation of 
cells with polymer nanoparticles of two different diameters (50 and 500 nm) were performed. 
After the initial incubation with nanoparticles the lipophilic NBD-FA probe was added to 
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enable co-localization of nanoparticles with plasma membrane and cell inner membrane 
structures. In our case the emission spectra of fluorescent labels attached to nanoparticles and 
labels introduced in cell membranes overlap. Therefore, the use of FMS and spectral 
contrasting enables to identify and spatially distinguish the two labels. 

In the intensity confocal images the interior of the cells fluoresces (Figs. 3a.1–3c.1), but it 
is not possible to determine the origin of this fluorescent light, i.e. whether it comes from 
nanoparticles or lipophilic probe, except for the aggregated nanoparticles. It can also be seen 
from comparison of images taken in the wide-field and confocal mode (Figs. 3a and 3b) that 
in the wide-field mode the regions rich in the membrane probe seem larger due to the out-of-
focus light coming from the membranes above and below the focal plane. 

On the contrary, the color-coded images in Figs. 3b.2 and 3c.2 clearly show the difference 
in behavior between nanoparticles of different size. It can be seen that only 50 nm 
nanoparticles were transferred in the interior of cells after 25 minutes of incubation (Fig. 
3b.2), while the 500 nm nanoparticles, even after 2 hours, remained outside the cells (Fig. 
3c.2). Co-localization was enabled through spectral identification despite substantial spectral 
overlap of the probes on the nanoparticles and in cell membranes (Fig. 3b.2). If quantitative 
information is desired about the overlapping probes, one should apply the method of linear 
unmixing [15,23,28]. 

3.3. Study of lipid nanoparticles delivery into cancer cells 

Although confocal fluorescence microscopy was previously used to test OPP liposomes as 
drug nanocarriers [29], it did not reveal the mechanism of OPP liposomes delivery across 
plasma membrane. For optimization of the liposomes' properties for even larger cancerostatic 
efficiency, FMS was applied to study living cancer cells exposed to OPP lipid nanoparticles. 
OPP liposomes were labeled with the environment-sensitive NBD-PC fluorescent probe. Note 
that the cells were not labeled. 

NBD is an example of a solvatochromic dye that can exhibit shifts in its emission spectra 
as a function of polarity and hydration of its environment [30]. Consequently, any fusion of 
the OPP liposomes with different amount of cholesterol relative to the cancer cell membrane 
should lead to a change in the lipid environment of the NBD-PC probe. This should induce a 
shift in the λmax of the corresponding emission spectrum, since the level of cholesterol 
influences the polarity and hydration profile in the membrane [31]. The ability of the FMS of 
spatially-resolved spectral analysis was therefore used to trace the fusion of cancer cell 
membranes and OPP liposomes with different OPP/cholesterol ratios, referred to as OPP5 (29 
mol% Chol) and OPP15 (56 mol% Chol). 

First the environmental sensitivity of NBD-PC was examined in the case of pure liposome 
samples. The images were acquired with FMS and objective lens with 10x magnification. The 
spectra were obtained by averaging the signal from the whole image. The lower magnification 
and averaging was applied in order to reproduce experimental conditions in measurements 
with fluorimeter. The results showed that the spectrum of OPP15 LUV is shifted to lower 
wavelengths for about 5 nanometers compared to the spectrum of OPP5 LUV (data not 
shown). This result was confirmed also by reference measurements on fluorimeter. 

The reference spectra of liposomes were acquired with FMS and objective lens with 100x 
magnification also on mixture of cells and liposomes. For this purpose, images were spectrally 
analyzed in the regions outside the cells, where intact liposomes that do not interact with cells 
are present. These regions are depicted by the open green square for OPP5 liposomes in Fig. 
4a.4 and by the open dark blue square for OPP15 nanoparticles in Fig. 4b.4. Value of 
λmax(hist) for intact OPP5 liposomes obtained from the histogram in Fig. 4 (green columns) is 
downshifted for about 3 nm with respect to intact OPP15 liposomes (dark blue columns). The 
shift qualitatively confirms the observations for pure liposome samples. The difference in the 
measured shifts arises from different experimental conditions. Especially, photobleaching, 
which is intensified when the lens with 100x magnification is used compared to the lens with 
10x magnification, imposes additional uncertainty to the absolute value of λmax. 
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Fig. 3. Interaction of polystyrene nanoparticles with living MCF-7 human breast cancer cells. 
Images of cells incubated in vitro with NBD-FA probe, i.e. a lipophilic NBD based fluorescent 
probe, and with (a) fluorescent 50 nm polymer nanoparticles imaged in wide-field mode or (b) 
imaged in confocal mode and with (c) 500 nm nanoparticles imaged in confocal mode. (a.1, 
b.1, c.1) Fluorescence intensity contrasted images. Fluorescent emission spectra of the 
nanoparticles and the lipophilic probe overlap, so it is not possible to determine the delivery 
efficiency of nanoparticles to the cancer cells from microscopic image, except for the 
aggregated nanoparticles indicated by arrows. (a.2, b.2, c.2) Spectrally contrasted images, 
which show the distribution of the NBD-FA probe (green/yellow) and fluorescein (violet/blue). 
The observed colors correspond to the measured (537 nm) and declared (shoulder at 515 nm) 
emission maximum values for membrane and nanoparticle probe, respectively. 
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Fig. 4. Interaction of OPP lipid nanoparticles with living MCF-7 human breast cancer cells. 
Cells incubated in vitro with (a) 100 nm OPP5 LUV labeled with NBD-PC or with (b) labeled 
OPP15 LUV. (a.1-a.3, b.1-b.3) The time evolution of the intensity contrasted images of the 
cancer cells. (a.4, b.4) Color-coded images corresponding to the last image in the time line. 
Between the two color-coded images the histogram of the distribution of fitted spectrum peak 
positions (λmax) from the accordingly-colored squared regions in a.4 and b.4 are shown. The 
histogram confirms the significance of the observed small shifts in the λmax(hist) value. 

The relatively small observed shift between spectra of OPP liposomes with different 
amount of cholesterol ascertains the need of a narrow band pass filter system, which would 
not be required for well separated spectra. In the latter case two different 
excitation/dichroic/emission filter combination can be used and subsequently the integrated 
fluorescence emission intensities can be compared for the two combinations. Such an 
approach is used in ratiometric or generalized polarization measurements [30,32,33]. 

To trace the interaction of the OPP liposomes with the living cancer cells, the time 
evolution of the delivery was followed. It seems that OPP5 gradually accumulate in the cells 
(compare Fig. 4a.1 to Fig. 4a.3). On the other hand, OPP15 did neither interact nor 
accumulate in cells (Fig. 4b.1 to Fig. 4b.3). This confirms that the efficiency of delivery 
depends on the amount of cholesterol in OPP liposomes, which is in agreement with our 
previous results obtained by electron paramagnetic resonance [4]. Lack of OPP15 liposomes 
accumulation in the cells means that these liposomes are spread and diluted all-around the 
cells, significantly increasing out-of-focus light and thus decreasing the contrast in confocal 
mode. Together with low intensity (low signal to noise ratio) this forced us to show the wide-
field image for OPP15. To enable better comparison with OPP5 also the latter is shown in the 
wide-field mode, although we obtained also confocal FMS data.. For this particular 
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experiment this did not impose a limitation, while the spectral information was collected from 
a larger spatial region of the sample, as discussed below. 

Finally, FMS reveals much more than just information on the accumulation of the particles 
within the cells. It is also possible to see a change in spectral properties of NBD-PC from the 
color-coded image of cancer cells exposed to OPP5 liposomes. Specifically, there is a spectral 
shift between the spectra of the probe residing inside the cell (Fig. 4a.4, area depicted by the 
open light blue square) or in intact free liposomes (Fig. 4a.4, area depicted by the open green 
square). The analysis of the distribution of fitted spectrum peak positions λmax, shown in a 
histogram, clearly reveals the shift of 1 nm, which is significant although very small (compare 
the center of mass for green and light blue columns in the histogram in Fig. 4). Note that the 
increased accuracy of determining spectral maximum position is analogous to an increased 
positional accuracy in single molecule tracking (see Section 2.5 for details). Since the 
spectrum of NBD-PC depends on the properties of lipid environment as already corroborated 
above, it is possible to assign the spectral shift to a change in the probe environment. The 
main reason for this change is mainly due to direct interaction of liposomes with cell 
membrane, e.g. through membrane fusion. In contrast, the analysis of the OPP15 liposomes 
data shows no significant difference in the spectral properties across the image (Fig. 4b.4). 
Due to the wide-field mode, which imposes a large portion of out-of-focus light, we can see 
the same (weak) spectrum all over the image. 

The presented example clearly shows the strength of the FMS approach in the study of the 
mechanism of nanoparticles interaction with cancer cells. Similarly to lipid-based 
nanoparticles, the usefulness of the FMS approach to study drug delivery to cancer cells was 
also shown for metal-based nanoparticles [34]. 

4. Conclusions 

Different nanoparticles are increasingly being used in cancer therapy because of their passive 
targeting to cancer cells by enhanced permeability and retention effect. The results presented 
in the current work show that the developed modular fluorescence microspectroscopy system 
can serve as a useful biomedical tool to study and screen the mechanisms of delivery of 
different fluorescently labeled nanoparticles to living cancer cells. Firstly, FMS enables co-
localization of inner cancer cell membranes and cell-entering polymer nanoparticles that are 
labeled with spectrally overlapping fluorophores. Secondly, FMS made it possible to detect a 
small shift in the fluorescence emission spectrum maximum, which was attributed to the 
fusion of labeled lipid nanoparticles with cancer cell membranes. In addition, the built system 
represents a diverse tool for research of fluorescently labeled biological systems, e.g. for 
monitoring biophysical properties of lipid membranes by environmentally sensitive 
fluorescent probes. 

Acknowledgments 

This work was carried out with financial support from Slovenian Research Agency (program 
No. P1-0060) and financial support in the framework of Center of Excellence NAMASTE. 
We would also like to thank Mr. Hugo Ostermann from Chromaphor and Dr. Andrea Latini 
from Crisel Instruments companies for useful advices concerning the CARV II confocal 
module. We would like to acknowledge the contribution of Dr. Iztok Dogša to the 
development of the FMS system. We are grateful to Dr. Stane Pajk and Prof. Slavko Pečar 
from the University of Ljubljana, Faculty of Pharmacy, for synthesizing the fatty-acid-NBD-
based fluorescent probe and to Prof. Igor Križaj from Jožef Stefan Institute for providing 
access to the Tecan microplate reader. 

 

#146260 - $15.00 USD Received 21 Apr 2011; revised 3 Jun 2011; accepted 27 Jun 2011; published 29 Jun 2011
(C) 2011 OSA 1 August 2011 / Vol. 2,  No. 8 / BIOMEDICAL OPTICS EXPRESS  2095




