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Abstract: To address the shortcomings of weak confusion and high time complexity of the existing
permutation algorithms, including the traditional Josephus ring permutation (TJRP), an improved
Josephus ring-based permutation (IJRBP) algorithm is developed. The proposed IJRBP replaces the
remove operation used in TJRP with the position exchange operation and employs random permuta-
tion steps instead of fixed steps, which can offer a better scrambling effect and a higher permutation
efficiency, compared with various scrambling methods. Then, a new encryption algorithm based on
the IJRBP and chaotic system is developed. In our scheme, the plaintext feature parameter, which is
related to the plaintext and a random sequence generated by a chaotic system, is used as the shift step
of the circular shift operation to generate the diffusion matrix, which means that a minor change in
the source image will generate a totally different encrypted image. Such a strategy strikes a balance
between plaintext sensitivity and ciphertext sensitivity to obtain the ability to resist chosen-plaintext
attacks (CPAs) and the high robustness of resisting noise attacks and data loss. Simulation results
demonstrate that the proposed image cryptosystem has the advantages of great encryption efficiency
and the ability to resist various common attacks.

Keywords: Josephus ring; image cryptosystem; scrambling framework; plaintext-related; chaotic
mapping; efficiency

1. Introduction
1.1. Research Background

With the development of communication technology, some new transmission media
such as image and video are widely used to disseminate information. Digital images
containing private information without special processing can be easily intercepted and
exploited by hackers when they are transmitted on various public channels. Encryption is
an effective means commonly used to keep information confidential. However, traditional
text encryption standards such as the data encryption standard (DES), advanced encryption
standard (AES) and Rivest–Shamir–Adleman (RSA) algorithm cannot efficiently encrypt
the images with huge data volumes, high temporal redundancy, and spatial redundancy [1].
The high sensitivity to initial values and the uncertain behavior of chaotic systems renders
them more suitable for image encryption [2]. Therefore, the chaotic-based encryption
scheme draws more and more attention. In 1998, Fridrich proposed a new cryptographic
framework that includes permutation and diffusion using a two-dimensional chaotic
map. Such a method not only disrupts the position of the pixels, but also changes the
statistical characteristic of the plaintext image [3]. Inspired by Fridrich’s research, many
encryption algorithms using similar encryption frameworks have been proposed in recent
years [1,4–31].

According to the characteristics of the scrambling method, the above algorithms
can be divided into two categories: one is that the size of the original image remains
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unchanged [1,4–14,19,23,28,29], and the other is that the plaintext image is decomposed
into another size for scrambling [15–18,20–22,24–27].

In the first category, some researchers utilized the extended Arnold map to permute
the plaintext image [6,9]. Specifically, the pixel coordinates are set as the initial values of the
chaotic map and the new positions of the pixels are obtained by iterating the chaotic system.
To improve the plaintext sensitivity of a cryptosystem, in [6], the plaintext information
is employed to generate the parameters of the extended Arnold map and influence the
diffusion operation. Kang et al. [7] presented a novel plaintext-related mechanism, in which
the numbers of A, T, C, and G of plaintext DNA coding are used to control the permutation
process. In addition, SHA algorithms have been applied in cryptographic frameworks to
pursue high plaintext sensitivity [8,11,12,14,23]. For instance, in [8], the hash values of the
plaintext image calculated by the SHA256 algorithm are used as the initial values of the
non-coupled map lattice function. However, these schemes suffer from some drawbacks,
such as the weak scrambling effect [6,9], a long permutation time [7], or a low application
value because of its one-time-pad-like property [8,11,12,14,23]. For the characteristic of easy
implementation, permutations based on index matrices which are derived from sorting and
matching random sequences has been used in many encryption schemes [4,5,28,29]. In 2020,
Cao et al. [5] employed the index matrix and the specific diffusion formula to permute
and diffuse the plaintext image separately, which can avoid the need of using one-time
encryption techniques to reach high plaintext sensitivity. In many works, circular shift is
exploited to scramble the source image matrix to achieve faster permutation speeds [1,10,13].
In [1], a novel cryptosystem is developed based on a circular shift operation in which step
size is controlled by the pseudo-random sequence. Although this scheme has excellent
encryption efficiency, its scrambling effect needs to be further improved.

In the second category, the permutation operation in many cryptographic systems is
performed on a one-dimensional plaintext matrix transformed from the original
image [16,17,20,24,26]. For instance, in [17], the plain image is converted into a one-
dimensional matrix, which is scrambled by an index matrix in the permutation stage.
Since a pixel can be represented by an eight-bit binary, some works transform the original
image into a binary array which is downscaled to a one-dimensional matrix for further
scrambling [20,24]. Although bit-level permutation can change the positions and values
of pixels simultaneously, the amount of data that needs to be processed has increased by
8 times, which reduces the efficiency of the cryptographic system. Furthermore, since the
generation of a index matrix used in permutation stage by sorting and comparing the ran-
dom sequences is very time-consuming, and when the size of the original image is doubled,
the execution time will increase exponentially, some algorithms transformed the plain im-
age into a 3D matrix for further processing [15,25,27]. In 2016, Zhang et al. proposed a novel
cryptosystem in which the plaintext image is transformed into a 3D bit matrix, and then the
permutation operation is performed using three index sequences whose lengths are equal
to the length, width, and height of the 3D bit matrix [15], respectively. In 2014, a Josephus
ring has been used to scramble images [32]. However, this exposed some problems, such
as a fixed step length and a too-long scrambling time. In recent years, many improved
Josephus rings have been developed and used to pursue higher confusion effects [18,21,22].
In [18], Niu et al. developed an improved Josephus ring scrambling algorithm with a
dynamic step size, related to the pixel value of the plaintext. This scheme greatly improves
the scrambling effect and plaintext sensitivity, but possesses poor robustness against noise
attacks and a slow encryption speed. In addition to the permutation–diffusion architecture,
some scholars apply quantum mechanics theory to developed image encryption schemes
which only contain some diffusion operations, such as C-Not gate [33,34]. Other studies
introduced additional perturbations to the chaotic maps to avoid chaos degradation [35]
when implementing in hardware with limited precision [36,37].
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1.2. The Weaknesses of Existing Works

After careful analysis of the above encryption schemes, we found that most of the
algorithms have the following drawbacks:

• Some encryption schemes are insensitive to subtle differences of the original image
and insufficient to resist chosen-plaintext attacks (CPAs). Table 1 shows the papers
that have been cracked in recent years;

• Low robustness of noise-resistings and occlusion-resistings because of the high sensi-
tivity of ciphertext [7,16,18,38];

• Permutation operations are time-consuming, especially the permutation techniques us-
ing long random sequences generated by sorting and comparing
operations [4,5,11,12,17,19,20] or traditional Josephus rings [18,21,22];

• Poor permutation effects are present in many works, including existing chaos-based
image permutation algorithms and Josephus ring-based permutations, which is dis-
cussed in Section 1 and will be further detailed in Section 3.

Table 1. Cryptanalysis of different schemes.

Schemes Category Cryptanalyzed by Attacks Employed

Pak et al. (2017) [17] NPR Wang et al. (2018) [39] CPA
Hua et al. (2018) [4] NPR Chen et al. (2020) [40] CPA

Huang et al. (2018) [6] PR Hu et al. (2020) [41] CPA
Zhang et al. (2016) [15] NPR Wu et al. (2018) [42] CPA
Zhen et al. (2016) [26] PR Su et al. (2017) [43] CPA

1.3. Contribution of Our Research

To overcome the weaknesses of existing works, we propose an improved Josephus
ring-based permutation (IJRBP) and a new encryption scheme. The contributions of this
paper are as follows:

• The proposed IJRBP replaces the remove operation used in TJRP with the position
exchange operation and employs random permutation steps instead of fixed steps,
which avoids the drawbacks of TJRP to offer an excellent scrambling effect and a high
permutation efficiency;

• A new encryption algorithm based on the IJRBP is developed. The new scheme strikes
a balance between plaintext sensitivity and ciphertext sensitivity to obtain the ability
to resist CPAs, as well as a high robustness for resisting noise attacks and data loss
simultaneously;

• IJRBP can be used for scrambling grayscale images or color images of any size;

Section 2 presents the involved chaotic systems and the generation of pseudo-random
sequences required for cryptosystems. Section 3 introduces the IJRBP algorithm in detail.
Section 4 provides the process of image encryption. Section 5 offers a systematic evaluation
of safety performance. Section 6 concludes this article.

2. The Generation of a Pseudo-Random Sequence
2.1. The Involved Chaotic Map

There are three chaotic maps used in this work, namely, a tent map, a piecewise linear
map, and a Chebyshev map. The tent map is a classic one-dimensional chaotic system
which is widely used in the field of image encryption, and its mathematical equation can
be defined as:

xn+1 = F1(xn, u) =

{
uxn

2 xn < 0.5
u(1−xn)

2 xn ≥ 0.5;
(1)

when the control parameter u ∈ (2, 4], the numerical simulation of the tent map demon-
strates chaotic behavior.
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The piecewise linear map consists of a multi-segment linear function and can be
described by the following iteration:

xn+1 = F2(xn, p) =


xn/p, 0 < xn < p
(xn − p)/(0.5− p), p < xn < 0.5
F(1− xn, p), 0.5 < xn < 1,

(2)

where p is the control parameter in the range (0, 0.5) and the xn+1 ∈ (0, 1) is the output.
The Chebyshev map is a one-dimensional chaotic map with the advantages of a simple

structure and easy implementation. It can be expressed as:

xn+1 = F3(xn, a) = cos(a× arccos xn), (3)

where a ≥ 2 and xn+1 ∈ [−1, 1].
Figure 1 shows the bifurcation diagrams and Lyapunov exponent diagrams of the

chaotic maps used in the proposed cryptosystem. In our proposed scheme, the parameters
of the three chaotic maps are set as u = 3.999998, a = 4, and p = 0.256, respectively.
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Figure 1. (a–c) are the bifurcation diagrams of the tent map, piecewise linear map, and Chebyshev
map, respectively; (d–f) are the corresponding Lyapunov exponent diagrams.

2.2. Pseudo-Random Sequence Generation

In this subsection, the three involved chaotic maps are used to generate the pseudo-
random sequences which will be utilized in the proposed cryptosystem.

Step 1: An original image I is converted into a one-dimensional matrix P with the length
of MN, where M and N are the height and width of the image. Iterate Equations (1)–(3)
(N0 + M), (N0 + N + 2), and (N0 + M) times, respectively, and discard the first N0 ele-
ments for a better random effect and to obtain three sequences xn, yn, and zn, given by:

xn = {x1, x2, x3, . . . , xM}
yn = {y1, y2, y3, . . . , yN+2}
zn = {z1, z2, z3, . . . , zM}

(4)
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Step 2: Obtain the two sequences Xn and Zn calculated by Equations (5) and (6):

Xn(k) = f loor
(

mod
(

xn(i)× yn(j)× 109, M ∗ N
))

+ 1, (5)

Zn(k) = f loor
(

mod
(

yn(i)× abs(zn(j))× 109, 256
))

, (6)

where i = 1, 2, 3 · · ·M, j = 1, 2, 3 · · ·N, and k = 1, 2, 3 · · ·MN.
Step 3: Generate the coordinate information. The random coordinates loc1 and loc2

are calculated by using the following equations:

loc1 = f loor
(

mod
(

yn(N + 1)× 109, M
))

+ 1, (7)

loc2 = f loor
(

mod
(

yn(N + 2)× 109, N
))

+ 1. (8)

Step 4: Obtain the plaintext feature parameter f using the sequence Xn and the
plaintext image I, given by:

Xn1 = reshape(Xn, [M, N]), (9)

f = mod(
M
∑

i=1

N
∑

j=1
(I(i, j)× f loor

(√
Xn1(i, j)

)
), 256), (10)

where i = 1, 2, 3 · · ·M, and j = 1, 2, 3 · · ·N.

3. Improved Josephus Ring-Based Permutation

The traditional Josephus ring can be implemented with only one step parameter,
and its permutation process is easy to understand. The principle of traditional Josephus
rings is shown in Figure 2. Here, the step size is set to three and the Josephus ring is
scanned clockwise from the first element. The element located at each step is extracted
from the Josephus ring, and then a new similar operation is repeated from the next position
of the removed element until the last element in the Josephus ring is eliminated. We
improve the traditional Josephus ring and propose IJRBP to solve the problems of the
traditional Josephus ring and other existing permutation algorithms discussed in Section 1.
The principle of IJRBP is shown in Figure 3. The IJRBP replaces the remove operation with
the position exchange operation to achieve a further dislocation effect and reduce the time
complexity. Suppose the one-dimensional image matrix and the random sequence are
P = [1, 2, 3, 4, 5, 6, 7, 8] and Seq = [2, 8, 6, 5, 3, 4, 7, 1], respectively. The detailed process of
IJRBP is described in Algorithm 1.

We use the standard testing image Lena in the scrambling experiment. All permutation
algorithms are tested in the same environment to ensure the correctness. The simulation
results are shown in Figure 4 and Table 2, and we can see that IJRBP shows significant
advantages over other solutions in terms of the confusion effect and the running speed.
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Figure 2. An illustration of Josephus ring with a step size of 3.
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Algorithm 1 Pseudo-code of IJRBP
Input: The plaintext image P with size of M× N, a random sequence Xn with length MN
Output: output result permuted plaintext matrix S.
1: Convert P into a one-dimensional matrix P1 with length MN.
2: cd = 0, occupied = 0, posi = 0;
3: for i = 1 : MN do
4: temp = P1(i);
5: cd = cd + Xn(i);
6: if MN − occupied < cd then
7: posi = cd− (MN − occupied);
8: posi = mod(posi, MN);
9: if posi == 0 then

10: posi = MN;
11: end if
12: else
13: posi = cd + occupied;
14: end if
15: P1(i) = P1(posi);
16: P1(posi) = temp;
17: occupied = posi;
18: end for
19: Convert P1 to a two-dimensional matrix S with size of M× N.
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Figure 3. An illustration of IJRBP.
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Table 2. Comparison of scrambling schemes published recently.

Schemes Technique Image Speed (s) Comments

Josephus ring
with step = 3 Josephus ring Gray 591.2136 Poor permutation effect and low

efficiency

[1] Circular shift Gray 0.0105 High efficiency but average
permutation effect

[5] Sorting Gray 75.2105 Better permutation effect but low
efficiency

[24] Sorting Gray 6215.2372 Better permutation effect but
unacceptable inefficiency

[18] Improved
Josephus ring Gray 121.4508 Better permutation effect than

Josephus ring but low efficiency

[6] 2D cat map Color 2.8945 Poor permutation effect and low
efficiency

[38] Sorting Color 2.4200 Poor permutation effect and
low efficiency

proposed IJRBP Gray 0.1243 Excellent confusion effect and
high time efficiency

proposed IJRBP Color 0.2223 Excellent confusion effect and
high time efficiency

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 4. Scrambling effects of different schemes: (a,b) source images; (c–i) the permuted images
are acquired by a traditional Josephus ring with a step size of 3 [1,5,6,18,24,38]; (j,k) the permuted
images are acquired by IJRBP.

4. The Proposed Encryption System

In this section, the new encryption system based on IJRBP is detailed. Figure 5 de-
scribes the diagram of the encryption and decryption system. After the IJRBP, the scrambled
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matrix S is obtained. It is worth noting that when the plaintext image I is all black, matrix
S is obtained by Equation (11):

S = mod(Xn1 + I, 256). (11)

Chaotic mapping

The encryption process

Chaotic mapping

The decryption process

Xn

Zn 1loc 2loc

  Scramble the 

 matrix  with 

 IJRBP using  

P

Xn

 Replace  

 with   to obtain the  

 encrypted image 

B(loc1,loc2)

f

C

3

  Perform an XOR 

operation on  matrix 

 and matrix  to 

  obtain matrix 

Zn S

B

    Convert the image 

into a one dimensional 

       matrix P

Zn

X n

Xn

f

3Zn

3

 Perform an  XOR 

operation on matrix  

   and matrix  to  

    obtain matrix 

C

Zn

B

 Use sequence  for 

 reverse IJRBP on 

matrix  to recover 

the original image 

Xn

S

I

1 2 3 0
K  K  K  N

   Convert to a 

two dimensional 

    matrix S

2Zn 3Zn1Zn
2Xnf

1 2 3 0
K  K  K  N

1loc 2loc

Figure 5. The proposed cryptosystem.

4.1. Diffusion Stage

Here, we detail the diffusion stage as follows.
Step 1: Generate a pseudo-random sequence Xn2 through Equation (12). Then,

the IJRBP and Xn2 are used to confuse the sequence Zn to obtain sequence Zn1.
Step 2: Apply the circular shift operation on the sequence Zn1 to gain another sequence

Zn2. Technically, if the parameter f is an odd number, the direction of the cyclic shift is to
the left, with a step size of f loor(1.1 f ); inversely, the direction is to the right with the same
step size.

Xn2= mod(Xn ∗ ( f + 1), M ∗ N). (12)

Step 3: Convert the sequence Zn2 into a two-dimensional matrix Zn3 with height M
and length N.

Step 4: Perform the XOR operation of matrix Zn3 and matrix S to obtain matrix B.
Step 5: Replace the pixel value of B(loc1, loc2) with f ; then, an encrypted image C is

obtained. In particular, for encrypting a color image I, we can perform encryption on the R,
G, and B channel images separately in the same way.

4.2. Decryption Algorithm

Referring to Figure 5, the decryption process is the inverse process of encryption.
Firstly, the four keys are used to generate the sequences Xn and Zn, and then the parameter
f is obtained through loc1 and loc2. Secondly, after the IJRBP, circular shift, and XOR
operation, the matrix Zn3 and matrix S are derived. Finally, the original image I is produced
by performing the inverse IJRBP on the matrix S using the sequence Xn.

5. Simulation Results and Security Analysis

To verify the security and efficiency of the proposed encryption scheme, some standard
images with different sizes are used in multiple simulation and security analyses. The initial
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values of the three chaotic maps, which are denoted as K1, K2, and K3, and the iteration
parameter N0 are used as secret keys in this work. The simulation test is performed on
a computer with an Intel Core i5-4200HCPU@ 2.80 GHz, 8.0G RAM, Windows 10 OS,
and MATLAB R2016b. The simulation results are shown in Figure 6.
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Figure 6. Simulation outcomes: (a–d) source images; (e–h) histograms of the source images;
(i–l) cipher images of (a–d); (m–p) histograms of (i–l); (q–t) decrypted images of (i–l).

The peak signal to noise ratio (PSNR) is often used to measure the degree of signal
distortion. A smaller PSNR means that the encrypted image possesses higher distortion
relative to the original image. The PSNR is defined by:

PSNR=10× log
2552

MSE
(dB), (13)
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where MSE = 1
M×N

M
∑

i=1

N
∑

j=1
(I(i, j)− C(i, j))2, M, and N are the height and width of the

image, and I and C are the plaintext image and the encrypted image, respectively. Table 3
shows the PSNR analysis results of different algorithms, which proves the excellent encryp-
tion effect of our algorithm.

Table 3. Quantitative results of PSNR.

Gray Image (512 × 512) Proposed Ref. [44] Ref. [7] Ref. [28] Ref. [33]

Lena 9.2222 9.5301 9.5244 9.2142 9.2196
Airfield 8.4518 8.4455 8.4325 8.4246 8.4496
Boat 9.2938 9.2975 9.2841 9.3047 9.2922
Ruler 4.7589 4.7686 4.7482 4.7580 4.7727
Average 7.9316 8.0104 7.9973 7.9253 7.9335

5.1. Security Key Space

The key space is an important factor of a reliable encryption system and it must be
greater than 2100 for resisting brute-force attacks. The ranges of the four secret keys in
our approach are K1 ∈ (0, 1), K2 ∈ (0, 1), K3 ∈ (−1, 1), and N0 ∈ [1000, 2500], respectively.
The key space comparison results of different algorithms are shown in Table 4. If the
computational precision of the computer reaches 1016, the key space of the proposed
algorithm will be 1016 × 1016 × 1016 × 1500 ≈ 2170. Obviously, the cryptosystem can
effectively resist brute-force attacks.

Table 4. Key space comparisons.

Schemes Proposed Ref. [44] Ref. [45] Ref. [46] Ref. [28] Ref. [47] Ref. [48]

Key space size 2170 2512 1098 1015 × 2256 2170 2159 2198

5.2. Histogram Analysis

Statistical analysis can disclose the distribution characteristics of the image and be
used in the work of cracking cryptographic systems. An excellent encryption system must
guarantee the uniform distribution of the pixel values of ciphertext image to mask the
pixels’ distribution characteristics. As illustrated in Figure 6, the unique pixel intensity dis-
tribution characteristic of each plaintext image is concealed after the encryption operation.
Furthermore, we use the variance of image histogram (VIH) to evaluate the flat level of the
histogram of the ciphered image, which is defined as:

VIH=
1

256

255

∑
i=0

(hi − e)2, (14)

where hi are the components of the histogram of the encrypted image and e=M×N
256 (M

and N are the size of image). Table 5 shows the VIH analysis results. Combining Figure 6
and Table 5, one can conclude that the VIH performance of the proposed scheme is better
than that of other algorithms, and it is difficult for attackers to crack the encryption system
through statistical analysis.
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Table 5. VIH analysis results for various schemes.

Gray Image (512 × 512) Proposed Ref. [44] Ref. [7] Ref. [28] Ref. [33]

Lena 984.13 931.05 1145.87 967.85 1025.5
Airfield 1088.9 1145.07 1136.73 1077.8 940.73
Boat 1011.4 1007.90 1630.34 942.87 998.27
Ruler 885.38 995.73 6529.51 20,064 997.84
Average 992.45 1019.76 2610.61 5763.13 990.58

5.3. Correlation Analysis

There is a high correlation between the adjacent pixels in the image without special
processing. The strong correlation of the adjacent pixels in cipher images will increase the
risk of being attacked. Here, we calculate the correlation coefficient of all adjacent pixels at
vertical, horizontal, and diagonal directions. The expressions of the correlation coefficient
are defined as follows:

rxy =
cov(x, y)√

D(x)×
√

D(y)
, (15)

cov(x, y) =
1
N

N

∑
i=0

(xi − E(x))(yi − E(y)), (16)

where x and y are the two adjacent pixel values, and N is the number of image pixels.
Figure 7 shows the correlation plots of the Lena and Baboon images and the corresponding
cipher images. Tables 6–8 present the correlation coefficient results, and one can see that
the correlation coefficient of the image encrypted by the proposed algorithm is close to zero.
Further, the average analysis results of our scheme is lower than that of other techniques.

Table 6. Correlation coefficients of plain images and ciphered images.

Image
Original Image Cipher Image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Lena 0.972 0.9853 0.9684 −0.0005 0.0000 −0.0034
Baboon 0.8666 0.7593 0.7269 0.0001 −0.0007 −0.0028
Barbara 0.8595 0.959 0.8426 −0.0018 −0.0007 0.0023

Cameraman 0.9338 0.9597 0.9074 −0.0023 0.0019 −0.0027

Table 7. Correlation coefficients of ciphered Lena image obtained by different algorithms.

Direction Proposed Ref. [45] Ref. [7] Ref. [15] Ref. [46] Ref. [28] Ref. [33]

Horizontal −0.0005 −0.0139 0.0025 −0.0042 0.0064 0.0015 −0.004
D 0.0000 6.7947 × 10−4 −0.0026 −0.0036 0.0029 −0.0034 −0.0052
V −0.0034 0.0177 −0.0019 0.0005 0.0078 0.0051 −0.0017
Average 0.0013 0.0107 0.0023 0.0027 0.0057 0.0033 0.0024

Table 8. Correlation coefficients of ciphered Baboon image obtained by different algorithms.

Direction Proposed Ref. [45] Ref. [7] Ref. [15] Ref. [46] Ref. [28] Ref. [33]

Horizontal 0.0001 −0.0106 0.0019 0.0021 0.0018 −0.0041 0.0002
D −0.0007 0.0180 0.0036 0.0023 0.0056 −0.0043 −0.0026
V −0.0028 0.0036 0.0014 0.0012 −0.0016 0.0003 0.0029
Average 0.0012 0.0072 0.0023 0.0018 0.0030 0.0029 0.0019
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Figure 7. Correlation analysis. (a,e,i) are the correlation plots of the plain image of Lena; (b,f,j) are
the correlation plots of the ciphered image of Lena; (c,g,k) are the correlation plots of the plain image
of the baboon; (d,h,l) are the correlation plot of the ciphered image of the baboon.

5.4. Secret Key and Plaintext Sensitivity Analysis
5.4.1. Secret Key Sensitivity Analysis

The high key sensitivity of a secure cryptosystem represents the excellent performance
against exhaustive attacks. In this subsection, the NPCR (number of pixels change rate) and
UACI (unified average changing intensity) are introduced to evaluate the key sensitivity
and plaintext sensitivity. NPCR and UACI are defined by the following equation:

NPCR =
H
∑

i=0

W
∑

j=0
D(i, j)× 100%

UACI = 1
W×H

H
∑

i=0

W
∑

j=0

|C1(i,j)−C2(i,j)|
255 × 100%,

(17)

where C1, C2 are two cipher images, and D(i, j) =
{

0, i f C1(i, j) = C2(i, j)
1, i f C1(i, j) 6= C2(i, j)

.

Here, a simulation example is given, and its detailed steps are as follows:
Step 1: A secret key K1(0.2, 0.4, 0.3, 2000) is selected from the key space and used to

encrypt the original image of Lena to obtain the cipher image denoted by C1.
Step 2: Add 10−14 to the first initial value of K1 to obtain another secret key K2(0.2 +

10−14, 0.4, 0.3, 2000). Then, the modified key K2 is used to encrypt the same original image
to obtained another cipher image, denoted as C2.

Step 3: Finally, we calculate the NPCR and UACI of C1 and C2, according to
Equation (17).

We randomly select 200 sets of keys from the key space to repeat the above steps
200 times and the average results of NPCR and UACI are shown in Table 9. The numer-
ical results of NPCR and UACI in Table 9 are the approximate theoretical values, which
demonstrate that the encryption mechanism is extremely sensitive to the encryption keys.
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Table 9. Key sensitivity test results using NPCR and UACI.

Image Index K1 + 10−14 K2 + 10−14 K3 + 10−14 N0 + 1 Theoretical Values

Lena NPCR 99.6098 99.6087 99.6087 99.6096 99.6094
UACI 33.4580 33.4658 33.4632 33.4642 33.4635

Baboon NPCR 99.6055 99.6088 99.6075 99.6096 99.6094
UACI 33.4342 33.4658 33.4691 33.4667 33.4635

Boat NPCR 99.6067 99.6081 99.6092 99.6084 99.6094
UACI 33.4395 33.4699 33.4644 33.4649 33.4635

Barbara NPCR 99.6088 99.6085 99.6096 99.6095 99.6094
UACI 33.4613 33.4692 33.4659 33.4662 33.4635

5.4.2. Plaintext Sensitivity Analysis

Differential attacks are the common methods used in cryptanalysis by attackers.
By changing the pixel value of the plaintext image and recording the change of the corre-
sponding ciphertext image, attackers may deduce the correspondence between the original
image and the encrypted image or the equivalent keys. High plaintext sensitivity can
ensure the ability of the encryption algorithm to resist differential attacks effectively. Here,
we use NPCR and UACI again to test the plaintext sensitivity of the proposed scheme. In
this experiment, we use 100 sets of keys to encrypt the original images and the same images
with one pixel at a random position, slightly modified by Equation (18).

Pixel(xi, yj) = mod(Pixel(xi, yj) + 1, 256). (18)

The simulation results of NPCR and UACI are shown in Table 10, and are all close to
the ideal values, which proves that our cryptosystem is sensitive to slight differences of the
image and can resist differential attacks.

Table 10. Plaintext sensitivity test results using NPCR and UACI.

Image Type Size NPCR (99.6094) UACI (33.4635)

Lena gray 512× 512 99.6095 33.4647

Dollar gray 512× 512 99.6099 33.4633

Boat gray 512× 512 99.6089 33.4673

Plane gray 512× 512 99.6095 33.4658

Barbara gray 512× 512 99.6088 33.4637

Baboon gray 512× 512 99.6093 33.4633

Lena gray 256× 256 99.6093 33.4647

Cameraman gray 256× 256 99.6071 33.4766

Lena in Ref. [45] gray 512× 512 99.58 33.43

Baboon in Ref. [45] gray 512× 512 99.63 33.41

Cameraman in Ref. [45] gray 256× 256 99.61 33.46

Lena in Ref. [7] gray 512× 512 99.6178 33.4412

Baboon in Ref. [7] gray 512× 512 99.6004 33.4522

Cameraman in Ref. [7] gray 256× 256 99.5987 33.4316

Lena in Ref. [15] gray 512× 512 99.6155 33.4988

Lena in Ref. [46] gray 512× 512 99.5994 33.4647
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Table 10. Cont.

Image Type Size NPCR (99.6094) UACI (33.4635)

Baboon in Ref. [46] gray 512× 512 99.6351 33.4857

Lena in Ref. [28] gray 512× 512 0.0003 0.0015

Baboon in Ref. [28] gray 512× 512 0.0003 0.0015

Lena in Ref. [33] gray 512× 512 0.0003 0.0015

Baboon in Ref. [33] gray 512× 512 0.0003 0.0015

5.5. Resistance to Chosen Plaintext Attack Analysis

Furthermore, in a CPA, specially processed images, such as all black and all white
images, are used to access the cryptosystem to obtain corresponding encrypted images for
further cryptanalysis. In our scheme, to resist the CPA, the plaintext feature parameter f ,
which is calculated by Equation (10), is used to determine the shift step of the circular shift
operation to generate the diffusion matrix, which guarantees the high plaintext sensitivity
of the proposed algorithm. Here, four special images (P1, P2, P3, P4) were designed for this
trial. P1 and P2 are all white and all black images, respectively. P3 is an image with only
one pixel value of 1; the other pixel values are 0. P4 is an image with only one pixel value
of 0, and the other pixel values are 255. The simulation results of the NPCR and UACI
analyses and the encryption are shown in Table 11 and Figure 8, respectively. Based on the
experimental results, the proposed encryption scheme has high plaintext sensitivity.

Table 11. The NPCR and UACI results of special images.

Index P1 P2 P3 P4 Theoretical Values

NPCR 99.6090 99.6108 99.6093 99.6099 99.6094
UACI 33.4607 33.4636 33.4663 33.4677 33.4635

(a) (b) (c) (d)

Figure 8. Simitation results of special images. (a) All white; (b) encrypted image of (a); (c) all black;
(d) encrypted image of (c).

5.6. Information Entropy Analysis

Information entropy analysis can be used to reflect the degree of randomness of an
encrypted image. The mathematical expression of information entropy is given by:

H =
2N−1

∑
i=0

p(i) log
1

p(i)
, (19)

where p(i), i = 1, 2 · · · , 2N is the probability of different gray-level values. According to
Equation (19), the entropy value of a completely random grayscale image is 8. Table 12
shows the information entropy analysis results of original images and the cipher images
encrypted with different schemes, which shows the better performance of our scheme than
similar algorithms.
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Table 12. Information entropy calculation results.

Image Type Size Plain Image Cipher Image

Lena gray 512× 512 7.4474 7.9993

Baboon gray 512× 512 7.1391 7.9993

Barbara gray 512× 512 7.4664 7.9993

Lena in Ref. [45] gray 512× 512 7.4456 7.9993

Baboon in Ref. [45] gray 512× 512 7.3579 7.9994

Lena in Ref. [7] gray 512× 512 7.4455 7.9993

Baboon in Ref. [7] gray 512× 512 7.3585 7.9993

Lena in Ref. [15] gray 512× 512 – 7.9992

Baboon in Ref. [15] gray 512× 512 – 7.9992

Lena in Ref. [46] gray 512× 512 – 7.9993

Baboon in Ref. [46] gray 512× 512 – 7.9992

Lena in Ref. [28] gray 512× 512 7.4474 7.9993

Baboon in Ref. [28] gray 512× 512 7.1391 7.9993

Lena in Ref. [33] gray 512× 512 7.4474 7.9994

Baboon in Ref. [33] gray 512× 512 7.1391 7.9994

5.7. Noise Attack and Data Loss Analysis

During the transmission to the receiver, the cipher image is easily affected by the harsh
environment and the ability to recover the original image is lost. A reliable encryption
scheme must minimize the impact of noise attacks and data loss. Here, a grayscale image of
Lena with the size of 512× 512 is selected to test the robustness of the proposed encryption
algorithm to resist the noise attacks and data-loss attacks. The detailed analysis results are
shown in Figures 9 and 10. One can see that, even if the ciphertext images are polluted by
salt-and-pepper noise with a noise intensity level of 0.4, most of the important information
in the original images can still be obtained from the decrypted images. Therefore, our
algorithm possess strong robustness in resisting noise attacks or data loss.

Furthermore, we use the PSNR again to quantify the robustness analysis of our
cryptosystem. The analysis results are presented in Table 13 and attest that the encryption
system has better recovery capability for the polluted information.

Table 13. PNSR analysis of noise attacks and data loss.

Noise Attacks or Data Loss PSNR

Salt-and-pepper noise (0.1) 19.2388

Salt-and-pepper noise (0.2) 16.2361

Salt-and-pepper noise (0.3) 14.4661

Salt-and-pepper noise (0.4) 13.2087

Data loss (60:250,60:250) 17.8117

Data loss (1:100,1:512) 16.2678

Data loss (1:512,250:450) 13.2774

Data loss (300:512,1:512) 13.0381
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. The recovery results of images attacked by noise: (a–d) are encrypted images affected by
salt-and-pepper noise at densities of 0.1, 0.2, 0.3, and 0.4; (e–h) are the corresponding decrypted
images.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Simulation results of data loss: (a–d) are the encrypted images of Lena with different
degrees of data loss; (e–h) are the corresponding decrypted images.

5.8. Encrypted Time Analysis

For the purpose of real-time encryption, the cryptosystem must have low computa-
tional complexity. The encryption speed simulation of our scheme and of similar recently
proposed algorithms is performed in the same environment. Here, the works of Zhang
et al. [44], Kang et al. [7], Huang et al. [6], Aceng et al. [28] and Li et al. [33] are used in the
analysis of encryption speed. The simulation results are shown in Table 14 and Figure 11,
from which we can conclude that the proposed encryption scheme has a faster encryption
speed than similar ones.
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Table 14. Execution speed for cryptographic systems (seconds).

Size
Gray Image (Lena)

Proposed Ref. [44] Ref. [7] Ref. [6] Ref. [28] Ref. [33]

512× 512 0.2398 4.3778 0.9703 1.2723 0.1236 22.2586
256× 256 0.0565 1.0886 0.2612 0.3727 0.0301 5.6697
128× 128 0.0119 0.3121 0.0712 0.0866 0.0076 1.3892
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Figure 11. The execution speed bar chart of different encryption systems.

6. Conclusions

Firstly, a novel, improved Josephus ring-based permutation algorithm is proposed
in this paper. Different from the traditional Josephus ring scrambling algorithm, IJRBP
combines the advantages of the Josephus ring and chaotic mapping and replaces the re-
move operation with the position exchange operation, which overcomes the shortcomings
of poor confusion and the long scrambling time of the existing permutation algorithms,
including the TJRP. Then, based on the IJRBP, a new encryption scheme was suggested.
In the developed cryptosystem, to ensure high plaintext sensitivity, a plain image is used to
determine the shift step of the circular shift operation to generate the diffusion matrix. Fi-
nally, thorough experiments, including key space analyses, histogram analyses, correlation
analyses, plaintext sensitivity analyses, information entropy analyses, robustness against
noise analyses, data loss analyses, and encrypted time analyses are conducted, and their
results prove that the proposed encryption scheme has high security and computational
efficiency. In our future work, we will exploit the potential of IJRBP to expand its applica-
tion scenarios while exploring other possibilities to optimize the encryption approach for
better robustness.
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