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Abstract

Growth rate and yield are fundamental features of microbial growth. However, we lack a

mechanistic and quantitative understanding of the rate-yield relationship. Studies pairing

computational predictions with experiments have shown the importance of maintenance

energy and proteome allocation in explaining rate-yield tradeoffs and overflow metabolism.

Recently, adaptive evolution experiments of Escherichia coli reveal a phenotypic diversity

beyond what has been explained using simple models of growth rate versus yield. Here, we

identify a two-dimensional rate-yield tradeoff in adapted E. coli strains where the dimensions

are (A) a tradeoff between growth rate and yield and (B) a tradeoff between substrate (glu-

cose) uptake rate and growth yield. We employ a multi-scale modeling approach, combining

a previously reported coarse-grained small-scale proteome allocation model with a fine-

grained genome-scale model of metabolism and gene expression (ME-model), to develop a

quantitative description of the full rate-yield relationship for E. coli K-12 MG1655. The multi-

scale analysis resolves the complexity of ME-model which hindered its practical use in pro-

teome complexity analysis, and provides a mechanistic explanation of the two-dimensional

tradeoff. Further, the analysis identifies modifications to the P/O ratio and the flux allocation

between glycolysis and pentose phosphate pathway (PPP) as potential mechanisms that

enable the tradeoff between glucose uptake rate and growth yield. Thus, the rate-yield tra-

deoffs that govern microbial adaptation to new environments are more complex than previ-

ously reported, and they can be understood in mechanistic detail using a multi-scale

modeling approach.

Author summary

This study reconciles multiple existing microbial rate-yield tradeoff theories with experi-

mental data. There is great interest in developing quantitative descriptions of the
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relationship between growth rate and growth yield [1]. However, some reported experi-

ments [2–4] in the literature do not agree with existing theories [5–7]. Specifically, over-

flow metabolism in E. coli can either be coupled [5, 8] or decoupled [2–4] from growth

rate. We found that adaptive laboratory evolution (ALE) experiments of E. coli reveal a

two-dimensional rate-yield tradeoff in adapted strains where the dimensions are (i) a

tradeoff between growth rate and growth yield, previously reported by [5], and (ii) a trade-

off between substrate uptake rate and growth yield. The appearance of this two-dimen-

sional tradeoff during adaptation suggests that microorganisms adapting to new

environments are subject to a more complex set of rate-yield tradeoffs than previously

reported [5, 6]. In this study, the two-dimensional rate-yield tradeoff is quantitatively

explained through our multi-scale modeling approach, combining a previously reported

small-scale proteome allocation model [5] with a genome-scale model of metabolism and

gene-expression (ME-model) [9]. The modeling approach is also instrumental to future

studies.

Introduction

Growth rate and yield are basic features of microbial life that are widely implicated in cell fit-

ness, adaptation, and evolution [1]. The specific growth rate, μ, represents the number of dou-

blings of bacterial density per unit time [10]. The yield, Y, is the ratio between μ and the rate of

substrate consumption [10, 11]. The mathematical relation between μ and Y can be written as:

Y ¼
m

Msubstrate � qsubstrate
ð1Þ

where Msubstrate is the molecular weight of the substrate and qsubstrate is the substrate uptake

rate.

In the context of modeling the phenotypic relation between substrate uptake, metabolism,

and biomass growth, there is a great interest in developing quantitative descriptions of the

relationship between μ and Y. The wide-ranging measurements of μ and Y (Fig 1A) across

microbial communities and environments raised interest into the exact nature of the μ–Y rela-

tionship [1]. At low μ, positive correlations between μ and Y have been observed [8], and these

can be explained by non-growth-associated cell maintenance requirements that make slow

growth inefficient [11]. At high μ, negative correlations between μ and Y are observed [5], and

for E. coli, this can be explained by a tradeoff between metabolic efficiency and enzymatic effi-

ciency that lead to decreasing Y at high μ [12, 13]. In particular, E. coli exhibits a tradeoff

between respiration, which has higher energy yield per carbon substrate (more metabolically-

efficient), and acetate fermentation, which requires less enzyme per carbon substrate (more

proteome-efficient). Therefore, acetate excretion increases linearly with μ above a threshold

growth rate (green and blue lines in Fig 1B) [5]. [1] summarized these observations where pos-

itive μ–Y correlation at low μ and negative μ–Y correlation at high μ are different parts of a

bell-shaped μ–Y curve (Fig 1A). However, recent experiments suggest that adaptation to new

environments can modify the bell-shaped μ–Y tradeoff [3, 14, 15].

Microorganisms rapidly adapting to environmental niches [17, 18], and adaptation mecha-

nisms can be studied directly through adaptive laboratory evolution (ALE) [19]. When strains

are adapted through ALE for growth in a liquid minimal medium, they achieve higher μ com-

pared to the wild-type (Fig 1A), ALE-adapted strains have been shown to rapidly acquire regu-

latory mutations that modify proteome allocation, but they do not acquire new metabolic
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capabilities within the time frame of reported short-term (4 to 8 weeks) adaptation experi-

ments [3, 15, 20]. By analyzing ALE-adapted strains, we can reveal the strategies that allow

cells to optimize their proteome allocation for growth in an environmental niche, subject to

the constraints of their metabolic capabilities (i.e. their repertoire of pathways) and constraints

on the kinetic efficiencies of their enzymes [3, 20, 21].

Contrary to the negative μ–Y relationship at high μ observed in wildtype strains, the end-

point strains of ALE experiments of E. coli selected for high μ in a minimal medium do not

have μ–Y data points aligning on the bell-shape curve in Fig 1A, but reveal an uncorrelated

Fig 1. E. coli growth phenotypes in minimal media and multi-scale modeling approaches. Data on the plots are recorded in S7–S10 Tables

(Supporting Information). (A–D) Phenotypic data for E. coli strains including Y, μ, qac, and qglc data. The Y is calculated by m

Mglc�qglc
, where the molecular

weight of glucose Mglc = 180.156g/mol. Two datasets are presented from literature, for chemostat growth [8] (green triangles) and substrate titration [5]

(blue squares). These are compared to strains adapted for maximum growth rate through ALE (this study; red circles; error bars for standard deviation

across duplicates). The bell-shaped μ–Y relationship proposed by [1] is included for reference. (E) Diagram of the SSME-model derived from [5]. The

model consists of three pathways: respiration (R, res) and fermentation (F, fer) generate different amounts of energy, feeding the biomass (B, bms)

pathway to synthesize biomass.(F) Diagram of the genome-scale ME-model that includes a genome-scale reconstruction of metabolic pathways (“M”)

and protein expression machinery (“E”) [9, 16]. Only central carbon metabolism is sketched, other biosynthesis pathways (AA amino acids, NT

nucleotides and others) are simplified as dashed arrows in the plot, but remain fine-grained in the genome-scale ME-model that we analyze in this

study. For the “E” pathway, it starts with the amino acids and nucleotides that are synthesized through “M” pathway, and the end product of “E”

pathway is the dilution of the protein (enzyme). The dilution rate of the enzyme determines the corresponding metabolic reaction rate with the factor

keff. More details about keff constraints can be found in “3 Proteome constraints in the ME-model” in S1 Appendix.

https://doi.org/10.1371/journal.pcbi.1007066.g001
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relationship between μ and Y [3, 15]. In these experiments, strains exhibited little variation

in μ but high variation in Y and acetate excretion rate qac. Previous studies similarly reported

that overflow metabolism can be nearly eliminated through genetic engineering without

any effect on growth rate in E. coli [2, 4]. Thus, the negative μ–Y correlation at high growth

rates does not appear to be a fundamental constraint on fast-growing cells. A mechanistic

model of the full μ–Y relationship must be able to reconcile the bell-shaped curve observed

for individual strains with the uncorrelated μ–Y phenotypes seen in ALE-adapted strains

(Fig 1A).

A number of theoretical and computational models have been developed to describe rate-

yield tradeoffs. For the positive μ–Y correlation, maintenance requirements can be quantita-

tively described using algebraic growth laws [8, 11]. The maintenance requirement has been

modeled as non-growth associated maintenance (NGAM) in the genome-scale models

(GEMs) of metabolism, which can be simulated as an optimization problem, predicting μ and

Y when substrate uptake rates (e.g. qglc) are known [22]. For the negative μ–Y correlation,

quantitative models of overflow metabolism have been developed [5–7]. In particular, quanti-

tative measurements of E. coli growth in well-controlled environments revealed a linear-

threshold response of acetate excretion (qac) with increasing μ [5]. To represent the full range

of the μ–Y relationship, a constraint allocation flux balance analysis model (CAFBA) was

reported that combines a GEM with proteome allocation constraints [6]. A similar solution

can be formulated from a bottom-up reconstruction of metabolism and macromolecular

expression (ME-model, [9]) that incorporates the protein synthesis pathways into a GEM and

applies coupling constraints related to enzyme kinetics parameters on each individual reaction.

However, none of these models have been used to explain experiments where μ and Y are

decoupled through laboratory evolution or genetic engineering.

In this study, we show that the wide range of μ–Y observations in E. coli can be explained

by a two-dimensional rate-yield tradeoff, where the first dimension is the characteristic μ–Y
tradeoff associated with acetate overflow metabolism and the second dimension is a tradeoff

between glucose uptake rate (qglc) and Y that appears during ALE adaptation. We employ a

multi-scale modeling approach to provide a mechanistic description of the two-dimensional

rate-yield tradeoff. By deriving the relationship between the ME-model and the previously

reported small-scale proteome allocation model [5], we are able to develop a workflow for

modifying ME-model parameters to fit experimental data, and we achieve quantitative predic-

tions for simulations of μ–Y (the first dimension of the rate-yield tradeoff). This multi-scale

modeling approach predicts a two-dimensional rate-yield tradeoff, and it suggests that the sec-

ond dimension of the tradeoff can be explained by changes in P/O ratio and the flux balance

between glycolysis and pentose phosphate pathway. This multi-scale modeling approach pre-

dicts the systemic response of the cell to growth selection, representing the relationships

between P/O ratio, glycolytic-PPP flux balance, and the two dimensions of the rate-yield

tradeoff.

Results

Adaptive laboratory evolution reveals a two-dimensional rate-yield

tradeoff

To explore the metabolic constraints on E. coli growth, adaptive laboratory evolution (ALE)

was used to adapt E. coli K-12 MG1655 to maximize growth at 37˚C in a liquid culture with a

minimal medium containing glucose [3]. Eight independent experiments were performed on

an automated ALE platform to achieve 8.3 × 1012 to 18.3 × 1012 cumulative cell divisions [23].

Phenotype characterization was performed on eight ALE endpoint strains, including
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quantitative measurements of μ, qglc, qac, and other common metabolic byproducts of E. coli
(Materials and methods).

A diversity of metabolic phenotypes was observed in the ALE endpoint strains. Through

ALE, μ increased from 0.7 h-1 for wild-type (red triangles in Fig 1A–1D) to 0.95–1.10 h-1 (red

circles with error bars in Fig 1A–1D). Based on previous reports, we expected a linear relation-

ship between μ and qac. However, ALE endpoint strains achieved a wide ranging qac from 3.9–

11.4 mmol gDW-1 h-1 (where wild-type qac was 3.9 mmol gDW-1 h-1. While we did not observe

a correlation between μ and qac in these strains (Fig 1B), there was a clear correlation between

qglc and qac (Fig 1D).

Two of the ALE endpoint strains with similar μ (3% difference) but distinct Y (30% differ-

ence) have been processed for 13C metabolic flux measurements (S11 Table). The measured

metabolic fluxes using 13C metabolic flux analysis (13C MFA, see “Materials and methods”)

shows the positive correlation between TCA fluxes, qTCA, and Y for the ALE strains. For the

ALE strain with larger Y, qglc and qac are lower and qTCA is higher. Therefore, for a fixed μ, Y
increases as qTCA increases and qac decreases, indicating a pathway switch between the TCA

cycle and acetate overflow depending on qglc.
Therefore, combining with the referenced study [5], for a wild-type strain, there is a μ–Y

tradeoff. And for the isogenic ALE strains, a qglc–Y tradeoff appears. For both tradeoffs, Y var-

ies with the pathway switch between TCA cycle and acetate overflow. In this paper, we call the

μ–Y and qglc–Y tradeoffs a two-dimension rate-yield tradeoff, since they are tradeoffs between

different “rates” (growth rate μ and glucose uptake rate qglc) and the same yield (glucose yield

Y), and they share the same phenotypic behavior of TCA–aceate overflow pathway switch.

Correlations between qglc, Y, and qac have been observed previously for E. coli strains [2–4],

and moreover, a bacterial engineering approach has been reported to vary qac by manipulating

the substrate uptake system [24]. In one of these studies, [4] showed that switching electron

transport chain (ETC) enzyme selection (and thereby modifying the P/O ratio) can cause a

qglc–Y tradeoff at a low μ of 0.15 h-1. ALE gained qac and Y decoupled from μ, which seemingly

differs from the reported correlation between μ–Y and μ–qac [5, 8]. The ME-model used in this

study simulates the relationships between these qglc–qac and qglc–Y tradeoffs, connecting to the

mechanisms of μ–Y tradeoffs (the bell-shaped curve in Fig 1A) by established models [5, 6].

To enable our analysis, it is important to note that ALE endpoint strains rapidly acquire

regulatory mutations, but they do not acquire new metabolic capabilities within the time

frame of these experiments [3, 15, 20]. The linear correlation between qac and μ reported previ-

ously was identified for an isogenic strain [5, 8]. In contrast, our observations of a decoupling

between qac and μ appear when comparing adapted strains. However, because these adapted

strains have only regulatory mutations, their phenotypes represent the limits of what E. coli
cells can achieve while bounded by metabolic and proteomic constraints (but not by regula-

tion). This type of adaptation and the associated phenotypic tradeoffs are useful for under-

standing cellular adaptation to ecological niches where regulatory adaptation can occur

rapidly [18].

ME-model data fitting with a multi-scale modeling approach

To explain these experimental observations, we sought a modeling approach that could quanti-

tatively predict the μ–Y and μ–qac relationships. Our modeling approach starts with fitting the

linear-threshold (blue line in Fig 1B) mu–qac relation [5] using the framework of ME-model

[9, 16]. We first considered a previously reported coarse-grained model of proteome allocation

[5] that describes E. coli overflow metabolism (Fig 1E). [5] solves Y and qac as functions of μ,

and assuming that the cells pick the maximum Y under each particular μ. This indicates that

Laboratory evolution reveals a two-dimensional rate-yield tradeoff in microbial metabolism
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high-Y growth strategies have a fitness benefit in spatially structured environments, for

instance, the wild-type cultures collected from colonies, that has been demonstrated through a

Y-selection system [14], and more efficient strategies also leave more resources for cells that

are hedging against future stresses [20]. The evolutionary history of E. coli includes growth in

structured environments and a wide range of stresses that could have placed a selection pres-

sure on increasing Y. Therefore, we focused on fitting the observed wild-type chemostat [8]

and uptake titration [5] data for the Y-maximized growth solution (green and blue data points

in Fig 2).

Fig 2. SSME-model and ME-model simulations. Growth phenotypes of E. coli from simulations: (A, B) using the SSME-model and (C, D) ME-model.

Simulations were fit to experimental data for each of the three datasets, K-12 MG1655 chemostat [8] (green triangles), NCM3722 substrate titration [5]

(blue squares), and strains adapted from wild-type K-12 MG1655 (red triangle, [3] for maximum growth rate through ALE (this study, red circles, error

bars for standard deviation across duplicates). The Y-maximized solutions are displayed as solid lines in all plots. Solution spaces are simulated by

taking the feasible range between maximum (Ymax–Ymin in A and C, qac,max–qac,min in B and D)For both models, fitting was performed by manipulating

three global parameters: unmodeled protein fraction (UPF), growth-associated maintenance (GAM), and non-growth associated maintenance

(NGAM). Details of the fitting approach are provided in Materials and Methods.

https://doi.org/10.1371/journal.pcbi.1007066.g002
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The coarse-grained proteome allocation model [5] was intended to make predictions at

high μ and thus only captures the negative μ–Y relation (Fig 2A). The parameters in the

coarse-grained model have a strong experimental basis in fine-grained protein abundances

measurements in high growths, and the model simulates accurate predictions of μ–qac [5].

We also considered the genome-scale ME-model iJL678-ME [16]. With the default parame-

ter settings in the ME-model, simulations had a poor quantitative prediction [9] of μ–qac to the

uptake titration data (S3F Fig). As [5] has shown experimentally that the overflow metabolism

is fundamentally caused by the tradeoff between metabolic efficiency (reaction stoichiometry)

and protein efficiency (enzyme turnover rate). Since the reaction stoichiometry in the ME-

model has been mass-balanced and well established, we suspect that this poor fit from the ME-

model can be explained by inaccurate genome-wide enzyme turnover rates (keffs) that ME-

model researchers have been seeking to improve [16, 25, 26]. We sought to modify the keffs to

fit the μ–qac data. However, since each of the 5266 reactions in the genome-scale ME-model

has a keff parameter, it is difficult to directly fit the parameters to measured data.

Therefore, we pursued a multi-scale modeling approach where the coarse-grained model

was used to analyze the effects of proteome-efficiency at the level of coarse-grained pathways

instead of each individual reaction, which helps to tune the fine-grained parameters in the

ME-model. To connect the coarse-grained and fine-grained models, we first found that the

proteome efficiency (ε) parameters in the coarse-grained model share a conceptual basis with

the enzyme efficiency parameter keffs in ME-models (“3 Proteome constraints in the ME-

model” in S1 Appendix). Thus, we were able to reformulate the coarse-grained model within

the framework as the ME-model (S1 Fig). The resulting small-scale ME-model (SSME-model)

has parameters directly analogous to those in the genome-scale ME-model (See “5 SSME-

model parameters derivation” and “6 Matlab and COBRAme implementation” in S1 Appen-

dix). The resulting SSME-model generates identical μ–Y and μ–qac predictions to the prote-

ome allocation model.

The SSME-model is a good tool for keff parameter sensitivity analysis [27], which provides

insights on how to modify the keff of the ME-model to achieve quantitative fit. As a result, we

gained predictions for μ–Y and μ–qac from both the SSME- and ME-models (blue curves in

Fig 2). Details of the ME-model modifications are in the S1 Appendix (“8 Experimental data

fitting”). In summary, with the multi-scale modeling approach, we identified the reactions

whose enzymes turnover rates are too high to match the observed phenotypes. Those reactions

are involved in different pathways, including the TCA cycle, Entner-Doudoroff pathway,

glyoxylate shunt, nucleotide salvage, and fatty acids metabolism (S3 Table). Three global

parameters, unmodeled protein fraction (UPF), growth-associated maintenance (GAM), and

non-growth-associated maintenance(NGAM) (S2 Table) were then used to predict the pheno-

type from different strains (green, blue and red curves in Fig 2).

The reason for only modifying global parameters to simulate the ALE adaptation is that the

mutations in the ALE strains do not directly related to the enzyme turnover rate (keff value) of

a particular metabolic reaction. According to previous ALE studies [3], most mutations occur

in genes associated with regulations or translations. Even in the cases where mutations might

directly change a keff, this is hard to model. Therefore, rather than exploring the mechanistic

effects of ALE mutations, we focused on the phenotypic changes in the endpoint strains. Some

recent studies have shown how individual mutations can have wide-reaching effects on gene

expression, metabolic pathway activity, and cell phenotype [3, 20].

The most obvious difference between the SSME-model derived from [5] and ME-model

for these phenotypic predictions is the expanded solution space of the ME-model (Fig 2).

However, much of the ME-model solution space corresponds to very low yield metabolic

solutions. If Y is maximized during simulations of the SSME-model and ME-model (achieved
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by minimizing qglc at a given μ), the resulting predictions are more similar between the models

and lie closer to experimental data (solid blue curves in Fig 2). For the growth-rate-dependent

Y-maximized solutions (solid curves in all 4 panels), though the qac lines looks similar, the Y
lines looks very different in the low growth regime. Where the SSME-model predicts a con-

stant high Y, the ME-model predicts an initially low Y that increases rapidly with μ. This is

because the additional non-growth maintenance energy (NGAM) added in the ME-model.

We can also see that in Fig 2C, among the three different solution curves from the ME-model,

the curve with lower NGAM has a higher Y at low μ. The NGAM parameters for the different

curves are shown in S1 Table in Supporting information. In fact, by adding complexity to the

SSME-model or simplifying the ME-model, many intermediate models can be built.

The ME-model predicts phenotypic diversity in ALE strains

As a result of data fitting, we achieved a quantitative fit of chemostat [8] and batch [5] uptake

titration data with the Y-maximized ME-model solutions (blue and green curves in Fig 2C and

2D). The ALE-adapted strains (red circles in Fig 2) do not align well with the Y-maximizing

solutions (red curves in Fig 2), but they are encompassed by the ME-model solution space.

Further analysis of these ALE data points and the corresponding ME-model solutions were

used to understand the phenotypic diversity of these adapted strains.

Feasible solutions other than the Y-maximized solution are achieved through the activation

of alternative metabolic pathways which are sub-optimal. The SSME-model does not capture

the ALE data points with high qac (red region in Fig 2B), while the genome-scale ME-model

does (red region in Fig 2D). Moreover, the ME-model predicts feasible growth at lower Y in

the μ–Y solution space than the SSME-model. We sought to determine which pathways are

responsible for the lower Y and higher qac in ME-model that was not captured by the SSME-

model.

Removing reactions from the ME-model can decrease the size of the solution space (S5, S6

and S7 Figs, “8 Solution space variation” in S1 Appendix), making the solution space more

similar to the SSME-model solution space. We employed a workflow to identify 24 reactions

(S6 Table) that are not activated in the Y-maximized solutions but are used to enable higher

qac at lower Y. We observed that these 24 reactions are part of metabolically inefficient path-

ways that are alternatives to the Y-optimal pathways. By extension, metabolically inefficient

pathways can be added to the SSME-model to increase the size of the solution space (S7 Fig),

making it more similar to the ME-model solution space. Thus, the modified SSME-model can

achieve low Y (S7A Fig) at high qac (S7C Fig). Therefore, the difference in predictions of ME-

model from the SSME-model is a result of the greater range of metabolic capabilities of the

genome-scale model.

The two-dimensional rate-yield tradeoff

We can now put forward a theory to connect the correlations in μ–Y (Fig 1A) (and the associ-

ated acetate curve in qac-–Y, Fig 1B) with the negative correlation in qglc-–Y (Fig 1C) and posi-

tive qglc—qac correlations (Fig 1D).

To see the relationship between the three variables μ, qglc, and Y we generated ME-model

solution spaces in qglc and Y at increasing lower bounds of μ (Fig 3A). These solution spaces

represent the flexibility in the model to achieve a particular growth rate. At the Y-maximized

limit of these solution space, we see the established negative μ–Y tradeoff where increasing

growth rate requires increasing qglc and decreasing Y (dashed arrow marked as “d1” in Fig 3A)

coupling with increasing qac (top edges of solution spaces in Fig 3B). This is the first dimension

of the rate-yield tradeoff, “d1”.
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Fig 3. Analysis of the second dimension of the rate-yield tradeoff. In (A) and (B), the growth rate of each ALE endpoint strain is labeled as black

number beside the corresponding data point. (A) Two dimensions of the rate-yield tradeoff. The first dimension “d1” is the negative μ–Y correlation at

maximum Y, and the second dimension “d2” is the negative qglc–Y correlation at a fixed μ. These correlations are observed in ME-model simulations

and experimental data from ALE strains. (B) A correlation between qglc and qac is also observed at fixed μ in both the ME-model and ALE endpoint

data. Linear fits for the experimental data at similar growth rates are shown as dash-dotted (μ = 0.95–0.97 h-1), dashed (μ = 1.00–1.04 h-1), and solid (μ =

1.08–1.10 h-1) orange lines. These fits are described by the upper edges of the qglc–qac solution space at fixed μ. For growth between 1.00 and 1.04 h-1,

r2 = 0.931 and p = 0.035. For growth between 1.08 and 1.1 h-1, r2 = 0.986 and p = 0.071. (C) The reaction fluxes in ME-model simulations along the

upper edge (maximizing qac) of the solution space for μ = 1.05 h-1 in (B). Notably, the P/O ratio (ratio of ATPS flux and oxygen uptake flux, gray dashed

curve) is decreasing with increasing qglc. (D) Variation of fluxes distribution under the same μ in central metabolism and electron transport chain. (E)

Model simulation: the ac-CoA split fraction to TCA cycle (CS) and acetate fermentation (PTAr). Here, two growth rates (0.95 h−1 and 1.05 h−1) are

picked for simulation. (F) Experimental verification of the ac-CoA split through 13C-MFA data, details of the 13C-MFA data are illustrated in “2 13C

metabolic flux analysis” in S1 Appendix. Abbreviations:CS: Citrate synthase (gltA); PTAr: Phosphotransacetylase (pta and eutD); ac: acetate

excretion; THD2pp: NAD(P) transhydrogenase (catalyzed by the gene product of pntAB); NADH16pp: NADH dehydrogenase (nuoA–N); NADH5:

NADH dehydrogenase (ndh; GND: Phosphogluconate dehydrogenase (gnd); GAPD: Glyceraldehyde-3-phosphate dehydrogenase (gapA); ATPS: ATP

synthase (atpA–I).

https://doi.org/10.1371/journal.pcbi.1007066.g003
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Considering only “d1”, one would expect the acetate production rate in all strains to be

fully defined by the growth rate. In the case of this 1-dimensional tradeoff, all points in Fig 3A

would appear on the line at the top of the blue solution spaces (parallel to the dotted “d1” line).

However, we observed another degree of freedom in the phenotypic space. At a given μ,

evolved strains can acquire higher qglc, higher qac, and lower Y. The “d2” tradeoff is defined by

a linear correlation in qglc–qac (Fig 3B) and a corresponding inverse proportional tradeoff in

qglc–Y (Fig 3A).

The “d2” tradeoff is also predicted by ME-model simulations. At a given μ, the ME-model

solution spaces extend toward lower Y and higher qglc, revealing this inverse proportional

relationship in qglc-Y. The second dimension “d2” can also be seen in qac–qglc where the ME-

model predicts the qac–qglc correlation observed in ALE endpoint as the qac–maximized

edges of the solution spaces (Fig 3B). The solution spaces predicted by ME-model show

broad feasible ranges of acetate production qac at a given qglc and μ (“bold” solution spaces in

Fig 3B), so the qglc–Y tradeoff is not required by the model. On the other hand, the relation-

ship between qglc and Y is a strict tradeoff in the model (“thin” solution spaces in Fig 3A).

Therefore, the ME-model suggests that qglc–Y is the more fundamental second dimension of

the rate-yield tradeoff. To verify that hypothesis, one would look for mutant strains where

qglc increased while the other three phenotypic variables remained fixed (a shift to the right

in Fig 3B).

Mechanisms for the additional rate-yield tradeoff

We sought to identify the particular alternate metabolic strategies in the ME-model that could

enable a qglc–Y tradeoff by identifying the differential pathway usage at a fixed high μ (1.05 h-1

in the ME-model (Fig 3C). The model predicts that when qglc increases from the Y-maximized

state (minimum qglc), flux through the proton-coupled NAD(P) transhydrogenase increases

(reaction THD2pp, catalyzed by pntAB. In addition, a pathway switch between two different

NADH dehydrogenase reactions, NADH5 (ndh and NADH16pp (nuo, appears at high qglc. In

fact, each of or any combination of the 24 reactions in S6 Table can be activated in the ME-

model to achieve high qglc, high qac, and low Y. There are two common threads among these

pathway activations. First, they all reduce the P/O ratio in the simulations (Fig 3C). NADH5

transports fewer protons to the periplasm per electron than NADH16pp. And increasing

THD2pp flux drains the proton gradient without contributing to ATP production, thereby

reducing P/O ratio (Fig 3D). Second, with the activation of those 24 reactions, glycolytic flux

increases (Fig 3D) and pentose phosphate pathway flux decreases (Fig 3C). By comparing to

the 13C metabolic flux analysis (Fig 3E and 3F), the ME-model shows quantitative predictive

power for the second-order rate-yield tradeoff.

Experiments that introduce proton leakage have shown a shift towards high qac and low Y
[5] in the same μ. It has also been shown that the variation of P/O ratio can uncouple the regu-

lation of cytochrome oxidase from the cellular ATP demand [4]. More broadly, energy dissipa-

tion through proton leakage is known to be a method of metabolic control in bacteria [28, 29].

To clarify the effect of decreasing of P/O ratio in the ME-model, we added a reaction in the

model representing proton leakage (Methods). As a result, we see the Y-maximized solution

with decreased P/O ratios have higher qglc, higher qac, and lower Y at a given μ (Fig 4). Finally,

experiments have shown that knocking out gnd leads to increased qglc and qac and decreased Y
with little change in μ [30]. The ME-model also predicts that gnd knockout mutants (“gnd

knockout simulation” Methods) will have increased qglc, qac and decreased Y (Fig 4). Since

the ALE experiments do not introduce leaky proton or knock out any genes, it is also possible

that multiple mechanisms working together, where the ME-model points to the systemic
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mechanisms for this fundamental second-order tradeoff. The exact pathways involved can be

determined in future experiments.

Alternative explanations of the rate-yield tradeoff have been proposed, including mem-

brane [31, 32] and cytosolic crowding [33, 34]. It is difficult to rule out these alternative con-

straints on cell growth, and it may be that multiple constraints operate at the same time.

However, it is encouraging to see that the ME-model can explain the complex relationship

between μ, Y, qac, and qglc with only metabolic and proteome allocation constraints. In the

future, it will be possible to extend ME-models with additional constraints. For example, it has

been proposed that the unmodeled protein fraction(UPF) is growth-rate dependent, and thus

existing proteome allocation models with fixed UPF are inaccurate [34]. If this is indeed the

case, then SSME- and ME-models with cytosolic crowding constraints can be developed to

fully represent the interplay between crowding, proteome allocation, and pathway selection.

Discussion

The E. coli ME-model provides a mechanistic and predictive model of rate-yield tradeoffs. It

successfully reconciles several experimental data sets: i) uptake titration at low growth [8], ii)

batch culture at higher growth rates [5], and iii) ALE endpoint strains (this study). These data

sets, when analyzed with the ME-model, show the existence of a two-dimensional rate-yield

tradeoff. The first dimension (“d1”) rate-yield tradeoff is μ–Y tradeoff and the second dimen-

sion (“d2”) is qglc–Y tradeoff.

From a mathematical perspective, one can describe the observed tradeoffs as correlations

between any pair of the four variables μ, Y, qglc, and qac. The two particular dimensions of the

tradeoff that we describe, μ–Y (“d1”) and qglc–Y (“d2”), are motivated by two different trends

in our physiological observations. First, the previously-reported strong linear correlation

between μ and Y [5] occurs for isogenic cultures under carbon limitation. The second dimen-

sion “d2” appears when comparing laboratory evolution endpoint strains, where qglc, qac, and

Y are observed to vary at a fixed μ, with a linear relationship in qglc–qac and a corresponding

inverse proportional relationship in qglc–Y. This two-dimensional tradeoff cannot be deci-

phered from simpler intuitive models, but it can be derived from the comprehensive set of

metabolic and gene expression pathways represented by the ME-model.

Furthermore, this study employed a multi-scale modeling approach where a small-

scale model was used to guide parameter estimation in the genome-scale ME-model. This

Fig 4. The second-order rate-yield tradeoff demonstrated by decreasing the P/O ratio and and knocking out gnd (“Δgnd”) in ME-model

simulations. The drop of P/O ratio is achieved by inducing the proton leakage (“PL” , a pseudo reaction of proton leakage added in the ME-model, details

in “Materials and methods.”) reaction flux, as 0, 50 mmol gDW-1 h-1 (labeled “50”), and 100 mmol gDW-1 h-1 (labeled “100”). The new Y-maximized

solution curves (solid red for “PL” flux variation, dashed grey for Δgnd) in the (A) μ–Y and (B) μ–qac solution spaces. (C) The qac–qglc solution space

contours (fixed μ = 1.0 h-1, solid blue for “PL” flux variation, dashed grey for Δgnd) were simulated in the ME-model. Growth rates of the experimental

strains are labeled as black numbers right next to each data point. The data points in similarly closed growth rates are connected by orange lines.

https://doi.org/10.1371/journal.pcbi.1007066.g004
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approach—which has been termed Tunable Resolution (TR) modeling [35]—was essential to

the success of the study, and we expect that both small-scale and genome-scale models will

continue to play an important role in understanding the genotype-phenotype relationship.

The two-dimensional rate-yield tradeoff appears as a result of ALE selection for μ when

alternative pathway selection strategies achieve the same growth rate. Proton leakage and alter-

native ETC pathway selection are plausible mechanisms for modifying the P/O ratio and creat-

ing the qglc–Y tradeoff. In addition, the flux ratio between glycolysis (GAPD, gapA) and the

pentose phosphate pathway (GND, gnd) might play a significant role in the qglc–Y tradeoff.

Those mechanisms can be tested experimentally. Finally, revealing the underlying regulation

would be of great interest for establishing a deeper understanding of rate-yield tradeoffs. Com-

bining ME-models with known regulatory mechanisms to explain cellular choices would

achieve a long-standing goal in systems biology [36].

Materials and methods

Phenotypic data including μ, qglc, qac, and excretion rates of other metabolic byproducts were

collected for ALE endpoint strains (“1 Phenotypic characterization of E. coli strains” in S1

Appendix). In addition, 13C fluxes were measured from two of the strains with different

growth rate and different glucose yield (“2 13C metabolic flux analysis” in S1 Appendix). Refer-

ence data points of rate-yield, growth-acetate relations of wild-type MG1655 and NCM3722 E.

coli strains were collected from published studies [5, 8]. The coarse-grained proteome alloca-

tion model from [5] was reformulated as a small-scale ME-model (SSME-model, detail in “5

SSME-model parameters derivation” in S1 Appendix) and implemented by the COBRAme

framework [16]. The genome-scale model iJL1678-ME was modified to fit experimental data

by modifying the keffs (enzyme turnover rate) of TCA cycle reactions, blocking target reactions,

and modifying UPF (unmodeled protein fraction), GAM (growth associate maintenance

energy), and NGAM (non-growth associate maintenance energy) (“8 Experimental data fit-

ting” in S1 Appendix). Solution spaces were generated using flux balance analysis (incorpo-

rated in COBRAme) in the ME-model (“7 Solution space of the ME-model” in S1 Appendix).

To determine the effect of modifying P/O ratio on ME-model solution spaces, a reaction

representing proton leakage was added to the ME-model (“10 P/O ratio manipulation” in S1

Appendix). The effect of the gnd knockout was demonstrated by blocking the reaction GND in

ME-model simulations (“11 gnd knockout simulation” in S1 Appendix).

Supporting information

S1 Appendix. Detailed introduction and discussions of materials and methods.

(PDF)

S1 Table. Parameters comparison between two coarse-grained models. Comparison

between the coarse-grained proteome allocation model [5] and SSME-model. The derivation

in detail is shown in “5 SSME-model parameter derivation” in S1 Appendix.

(PDF)

S2 Table. ME-model parameters. Global parameter selection in iJL1678-ME model to fit the

μ–Y, μ–qac data as in Fig 2C and 2D.

(PDF)

S3 Table. iJL1678-ME model modification (blocked reactions). Reactions that need to be

turned off in the model to get quantitative fit of μ–Y, μ–qac data as in Fig 2C and 2D.

(XLSX)
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S4 Table. Essential exchanges. Boundary reactions in the ME-model that need to be turned

on.

(XLSX)

S5 Table. Solution space variation (Below). Reactions that after being turned off, qac,min

increases. The variation of μ–qac solution space is shown in S6B Fig.

(XLSX)

S6 Table. Solution space variation (Above). Reactions that after being turned off, qac,max

decreases. The μ–qac solution space would varied as shown in S6A Fig.

(XLSX)

S7 Table. ALE phenotypes measurements. μ, qac and qglc measurements of the E. coli adapted

MG1655 strains. Strains are replicates from [3].

(XLSX)

S8 Table. E. coli K-12 MG1655 WT phenotypes measurements. μ, qac and qglc measurements.

Data from [3].

(XLSX)

S9 Table. E. coli NCM3722 glucose uptake titration phenotypes. Data from [5].

(XLSX)

S10 Table. E. coli K-12 MG1655 chemostat measurements. Data from [8].

(XLSX)

S11 Table. 13C metabolic flux analysis data. Metabolic fluxes distribution of the highest μ
strain and highest Y strain among the ALE endpoint strains.

• Tab “Reactions” 13C MFA model and carbon mapping network.

• Tab “Net_fluxes” 13C MFA calculated net fluxes. LB and UB are the 95% confidence

intervals.

• Tab “SymMets” 13C MFA model symmetric metabolite carbon mappings.

• Tab “MS_data” Measured mass distribution vectors (MDVs) by LC-MS/MS and their associ-

ated carbon mappings used for MFA calculations.

• Tab “Flux_data” Measured uptake and secretion rates by HPLC.

(XLSX)

S1 Fig. Scheme of the coarse-grained proteome allocation model [5].

(TIF)

S2 Fig. Modification of ME-model for fitting the experimental data, based on the guideline

derived from SSME-model. (A) Reduction of the enzyme efficiency for respiration (keff,res)
causes a more gradual acetate line. Reduction of UPF increases the model-predicted maximum

μ, shifting the acetate line to higher μ. (B) Another approach of getting more gradual acetate

line is to block bp1 reactions. (C) Activation of bp2 reactions (such as the Entner–Doudoroff

pathway bypassing glycolysis) cause an inflection point and extension of the acetate line to

higher μ. (D) Workflow for the ME-model modification process. In the genome-scale ME-

model, some TCA cycle reactions appeared as bp1 reactions, but, because they belong to the

major respiration pathway of the cell, we will decreased their keffs rather than blocking them

entirely.

(TIF)
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S3 Fig. Summary of the modifications to the genome-scale ME-model. (A) Compared to

original iJL1678-ME, unmodeled protein fraction (UPF) is halved to 18%. (B) For the enzyme

efficiency parameter keff, only the TCA keffs are modified. (C) The subsystems of the 24 bp1

reactions. (D) The subsystems of 26 bp2 reactions. (E) bp1 and bp2 reactions on the pathway

map of central metabolism. (F) Acetate lines for the steps in the fitting process. More detailed

illustration process is shown in S4 Fig.

(TIF)

S4 Fig. Iteration process of filling the ME-model prediction gap of growth rate dependent

acetate excretion. First two steps of bp1 iteration process are shown in the left two figures,

where as we block the first bp1 reaction (ICL), the slope (threshold) of the acetate line drops.

The changes of the threshold (bp1 modification) and acetate line end point (bp2 modification)

from iteration Step 3–21 are shown in the right figure. Step 3–18 are the modification on bp1

reactions, where the threshold (red squares) gradually drops from high growth to low growth.

Step 19–21 are the modification on bp2 reactions, where the acetate line end point (in red cir-

cles) drops. The blue solid line is the final prediction of μ–qac relation, which is the same as the

blue line in S3F Fig. More detail about bp1 and bp2 reactions are in S3 Table.

(TIF)

S5 Fig. By blocking byproduct excretion pathways in the ME-model, which is verified by

the experimental data, the solution space was reduced from the pink region to the yellow

region.

(TIF)

S6 Fig. μ–qac solution space variation in the ME-model. Narrowing in the feasible range of

alternative suboptimal solutions by blocking some target reactions. The new solution space

after the variation is shown as the yellow in (A) and (B), with the original solution space in

pink. (A) 24 target reactions (S6 Table) that are blocked where maximum qacs in high μ get

lower, where the upper edge of the yellow region is below the upper edge of the pink region.

The activation of one of these 24 reactions thus corresponding to higher qac with lower Y. (B)

11 target reactions (S5 Table) corresponding to lower qac with lower Y, blocking those reac-

tions will get the minimum qac (lower edge of the yellow region) closed to the Y-maximized qac
solution. (C) The method of picking reactions to block: Looking for the reactions that are not

activated in the yield-maximized solution but activated at the maximal and minimal of the μ–

qac solution space, where the principal is to keep the Y-maximized solutions unchanged.

(TIF)

S7 Fig. Expansion of solution space from the SSME-model by adding model reactions. The

expanded part of the solution space is shown as yellow in (A)–(C), compared to the original

SSME-model solution spaces are in blue. (A) All added reactions ((1)-(4) in D) expand the

solution space to include lower-Y solutions (B) Reactions (1) and (3) expand the solution

space to low-qac at high μ. (C) Reactions (2) and (4) expand the solution space to high-qac
across all μ. (D) Model reactions that are added in the SSME-model for expanding the original

solution space, all those reactions are guaranteed not be activated in the Y-maximized solu-

tions so that the Y-optimal solution remains the same to fit data from [5]. Reaction (1) corre-

sponds to the reactions that would generate products other than acetate such as pyruvate

excretion, lactate excretion, etc. Reaction (2) is representative to the reactions that would gen-

erate other products, but at the same time generating acetate, such as pyruvate formate lyase

(PFL), which produce formate and acetyl-CoA (precursor of acetate) from pyruvate. Reaction

(3) and (4) could both be referred from the futile cycle in energy production and consumption,

where (3) are the reactions that are less efficient than the optimal pathway, such as the
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alternative reactions in ETC which are less efficient in transporting electrons, while (4) are the

reactions that would waste more energy in the same growth comparing to the optimal state,

such as the reactions that would cause proton leakage.

(TIF)

Acknowledgments

The authors would like to thank Ali Ebrahim, Laurence Yang, and Colton Lloyd for the assis-

tance with ME-model analysis. Moreover, we are grateful to Ke Chen, David Heckmann,

Marc Abrahms, Amitesh Anand and Brian Taylor for providing their advice on the manu-

script. We highly appreciate Andrea De Martino for providing single strain (K-12 MG1655

and NCM3722) growth yield and acetate overflow data. And at last, we would like to express

our extraordinary thanks to Terence Hwa and Matteo Mori for advice on developing multi-

scale models of proteome allocation.

Author Contributions

Conceptualization: Adam M. Feist, Bernhard O. Palsson, Zachary A. King.

Data curation: Chuankai Cheng, Edward J. O’Brien, Douglas McCloskey, Jose Utrilla, Connor

Olson, Ryan A. LaCroix, Troy E. Sandberg, Zachary A. King.

Formal analysis: Chuankai Cheng, Edward J. O’Brien, Zachary A. King.

Funding acquisition: Adam M. Feist, Bernhard O. Palsson, Zachary A. King.

Investigation: Chuankai Cheng, Edward J. O’Brien, Douglas McCloskey, Ryan A. LaCroix,

Troy E. Sandberg, Bernhard O. Palsson, Zachary A. King.

Methodology: Chuankai Cheng, Edward J. O’Brien, Bernhard O. Palsson, Zachary A. King.

Project administration: Bernhard O. Palsson, Zachary A. King.

Resources: Zachary A. King.

Software: Chuankai Cheng, Edward J. O’Brien, Zachary A. King.

Supervision: Bernhard O. Palsson, Zachary A. King.

Validation: Chuankai Cheng, Bernhard O. Palsson, Zachary A. King.

Visualization: Chuankai Cheng, Bernhard O. Palsson, Zachary A. King.

Writing – original draft: Chuankai Cheng, Bernhard O. Palsson, Zachary A. King.

Writing – review & editing: Chuankai Cheng, Bernhard O. Palsson, Zachary A. King.

References
1. Lipson DA. The complex relationship between microbial growth rate and yield and its implications for

ecosystem processes. Front Microbiol. 2015; 6:615. https://doi.org/10.3389/fmicb.2015.00615 PMID:

26136742

2. Peebo K, Valgepea K, Nahku R, Riis G, Oun M, Adamberg K, et al. Coordinated activation of PTA-ACS

and TCA cycles strongly reduces overflow metabolism of acetate in Escherichia coli. Appl Microbiol Bio-

technol. 2014; 98(11):5131–5143. https://doi.org/10.1007/s00253-014-5613-y PMID: 24633370

3. LaCroix RA, Sandberg TE, O’Brien EJ, Utrilla J, Ebrahim A, Guzman GI, et al. Use of adaptive labora-

tory evolution to discover key mutations enabling rapid growth of Escherichia coli K-12 MG1655 on glu-

cose minimal medium. Appl Environ Microbiol. 2015; 81(1):17–30. https://doi.org/10.1128/AEM.02246-

14 PMID: 25304508

Laboratory evolution reveals a two-dimensional rate-yield tradeoff in microbial metabolism

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007066 June 3, 2019 15 / 17

https://doi.org/10.3389/fmicb.2015.00615
http://www.ncbi.nlm.nih.gov/pubmed/26136742
https://doi.org/10.1007/s00253-014-5613-y
http://www.ncbi.nlm.nih.gov/pubmed/24633370
https://doi.org/10.1128/AEM.02246-14
https://doi.org/10.1128/AEM.02246-14
http://www.ncbi.nlm.nih.gov/pubmed/25304508
https://doi.org/10.1371/journal.pcbi.1007066


4. Bekker M, de Vries S, Ter Beek A, Hellingwerf KJ, de Mattos MJT. Respiration of Escherichia coli can

be fully uncoupled via the nonelectrogenic terminal cytochrome bd-II oxidase. J Bacteriol. 2009; 191

(17):5510–5517. https://doi.org/10.1128/JB.00562-09 PMID: 19542282

5. Basan M, Hui S, Okano H, Zhang Z, Shen Y, Williamson JR, et al. Overflow metabolism in Escherichia

coli results from efficient proteome allocation. Nature. 2015; 528(7580):99–104. https://doi.org/10.1038/

nature15765 PMID: 26632588

6. Mori M, Hwa T, Martin OC, De Martino A, Marinari E. Constrained Allocation Flux Balance Analysis.

PLoS Comput Biol. 2016; 12(6):e1004913. https://doi.org/10.1371/journal.pcbi.1004913 PMID:

27355325

7. Molenaar D, van Berlo R, de Ridder D, Teusink B. Shifts in growth strategies reflect tradeoffs in cellular

economics. Mol Syst Biol. 2009; 5:323. https://doi.org/10.1038/msb.2009.82 PMID: 19888218

8. Nanchen A, Schicker A, Sauer U. Nonlinear dependency of intracellular fluxes on growth rate in minia-

turized continuous cultures of Escherichia coli. Appl Environ Microbiol. 2006; 72(2):1164–1172. https://

doi.org/10.1128/AEM.72.2.1164-1172.2006 PMID: 16461663

9. O’Brien EJ, Lerman JA, Chang RL, Hyduke DR, Palsson BO. Genome-scale models of metabolism and

gene expression extend and refine growth phenotype prediction. Mol Syst Biol. 2013; 9(1):693. https://

doi.org/10.1038/msb.2013.52 PMID: 24084808

10. Monod J. The Growth of Bacterial Cultures. Annu Rev Microbiol. 1949; 3(1):371–394. https://doi.org/10.

1146/annurev.mi.03.100149.002103

11. Pirt SJ. The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B Biol Sci. 1965; 163

(991):224–231. https://doi.org/10.1098/rspb.1965.0069 PMID: 4378482

12. Novak M, Pfeiffer T, Lenski RE, Sauer U, Bonhoeffer S. Experimental tests for an evolutionary trade-off

between growth rate and yield in E. coli. Am Nat. 2006; 168(2):242–251. https://doi.org/10.1086/

506527 PMID: 16874633

13. Pfeiffer T, Schuster S, Bonhoeffer S. Cooperation and competition in the evolution of ATP-producing

pathways. Science. 2001; 292(5516):504–507. https://doi.org/10.1126/science.1058079 PMID:

11283355

14. Bachmann H, Fischlechner M, Rabbers I, Barfa N, Branco dos Santos F, Molenaar D, et al. Availability

of public goods shapes the evolution of competing metabolic strategies. Proc Natl Acad Sci U S A.

2013; 110(35):14302–14307. https://doi.org/10.1073/pnas.1308523110 PMID: 23940318

15. Sandberg TE, Pedersen M, LaCroix RA, Ebrahim A, Bonde M, Herrgard MJ, et al. Evolution of Escheri-

chia coli to 42˚C and subsequent genetic engineering reveals adaptive mechanisms and novel muta-

tions. Mol Biol Evol. 2014; 31(10):2647–2662. https://doi.org/10.1093/molbev/msu209 PMID:

25015645

16. Lloyd CJ, Ebrahim A, Yang L, King ZA, Catoiu E, O’Brien EJ, et al. COBRAme: A computational frame-

work for genome-scale models of metabolism and gene expression. PLoS Comput Biol. 2018; 14(7):

e1006302. https://doi.org/10.1371/journal.pcbi.1006302 PMID: 29975681

17. Booth IR. Stress and the single cell: intrapopulation diversity is a mechanism to ensure survival upon

exposure to stress. Int J Food Microbiol. 2002; 78(1-2):19–30. https://doi.org/10.1016/S0168-1605(02)

00239-8 PMID: 12222634

18. Elena SF, Lenski RE. Evolution experiments with microorganisms: the dynamics and genetic bases of

adaptation. Nat Rev Genet. 2003; 4(6):457–469. https://doi.org/10.1038/nrg1088 PMID: 12776215

19. Barrick JE, Lenski RE. Genome dynamics during experimental evolution. Nat Rev Genet. 2013; 14

(12):827–839. https://doi.org/10.1038/nrg3564 PMID: 24166031

20. Utrilla J, O’Brien EJ, Chen K, McCloskey D, Cheung J, Wang H, et al. Global Rebalancing of Cellular

Resources by Pleiotropic Point Mutations Illustrates a Multi-scale Mechanism of Adaptive Evolution.

Cell Syst. 2016; 2(4):260–271. https://doi.org/10.1016/j.cels.2016.04.003 PMID: 27135538

21. Ibarra RU, Edwards JS, Palsson BO. Escherichia coli K-12 undergoes adaptive evolution to achieve in

silico predicted optimal growth. Nature. 2002; 420(November):20–23.

22. Varma A, Boesch BW, Palsson BO. Stoichiometric interpretation of Escherichia coli glucose catabolism

under various oxygenation rates. Appl Environ Microbiol. 1993; 59(8):2465–2473. PMID: 8368835

23. Lee DH, Feist AM, Barrett CL, Palsson BØ. Cumulative number of cell divisions as a meaningful time-

scale for adaptive laboratory evolution of Escherichia coli. PLoS One. 2011; 6(10):e26172. https://doi.

org/10.1371/journal.pone.0026172 PMID: 22028828

24. Lara AR, Caspeta L, Gosset G, Bolı́var F, Ramı́rez OT. Utility of an Escherichia coli strain engineered in

the substrate uptake system for improved culture performance at high glucose and cell concentrations:

an alternative to fed-batch cultures. Biotechnol Bioeng. 2008; 99(4):893–901. https://doi.org/10.1002/

bit.21664 PMID: 17929322

Laboratory evolution reveals a two-dimensional rate-yield tradeoff in microbial metabolism

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007066 June 3, 2019 16 / 17

https://doi.org/10.1128/JB.00562-09
http://www.ncbi.nlm.nih.gov/pubmed/19542282
https://doi.org/10.1038/nature15765
https://doi.org/10.1038/nature15765
http://www.ncbi.nlm.nih.gov/pubmed/26632588
https://doi.org/10.1371/journal.pcbi.1004913
http://www.ncbi.nlm.nih.gov/pubmed/27355325
https://doi.org/10.1038/msb.2009.82
http://www.ncbi.nlm.nih.gov/pubmed/19888218
https://doi.org/10.1128/AEM.72.2.1164-1172.2006
https://doi.org/10.1128/AEM.72.2.1164-1172.2006
http://www.ncbi.nlm.nih.gov/pubmed/16461663
https://doi.org/10.1038/msb.2013.52
https://doi.org/10.1038/msb.2013.52
http://www.ncbi.nlm.nih.gov/pubmed/24084808
https://doi.org/10.1146/annurev.mi.03.100149.002103
https://doi.org/10.1146/annurev.mi.03.100149.002103
https://doi.org/10.1098/rspb.1965.0069
http://www.ncbi.nlm.nih.gov/pubmed/4378482
https://doi.org/10.1086/506527
https://doi.org/10.1086/506527
http://www.ncbi.nlm.nih.gov/pubmed/16874633
https://doi.org/10.1126/science.1058079
http://www.ncbi.nlm.nih.gov/pubmed/11283355
https://doi.org/10.1073/pnas.1308523110
http://www.ncbi.nlm.nih.gov/pubmed/23940318
https://doi.org/10.1093/molbev/msu209
http://www.ncbi.nlm.nih.gov/pubmed/25015645
https://doi.org/10.1371/journal.pcbi.1006302
http://www.ncbi.nlm.nih.gov/pubmed/29975681
https://doi.org/10.1016/S0168-1605(02)00239-8
https://doi.org/10.1016/S0168-1605(02)00239-8
http://www.ncbi.nlm.nih.gov/pubmed/12222634
https://doi.org/10.1038/nrg1088
http://www.ncbi.nlm.nih.gov/pubmed/12776215
https://doi.org/10.1038/nrg3564
http://www.ncbi.nlm.nih.gov/pubmed/24166031
https://doi.org/10.1016/j.cels.2016.04.003
http://www.ncbi.nlm.nih.gov/pubmed/27135538
http://www.ncbi.nlm.nih.gov/pubmed/8368835
https://doi.org/10.1371/journal.pone.0026172
https://doi.org/10.1371/journal.pone.0026172
http://www.ncbi.nlm.nih.gov/pubmed/22028828
https://doi.org/10.1002/bit.21664
https://doi.org/10.1002/bit.21664
http://www.ncbi.nlm.nih.gov/pubmed/17929322
https://doi.org/10.1371/journal.pcbi.1007066


25. Ebrahim A, Brunk E, Tan J, O’Brien EJ, Kim D, Szubin R, et al. Multi-omic data integration enables dis-

covery of hidden biological regularities. Nat Commun. 2016; 7:13091. https://doi.org/10.1038/

ncomms13091 PMID: 27782110

26. Nilsson A, Nielsen J, Palsson BO. Metabolic Models of Protein Allocation Call for the Kinetome. Cell

Syst. 2017; 5(6):538–541. https://doi.org/10.1016/j.cels.2017.11.013 PMID: 29284126

27. Cheng C. The Study of Overflow Metabolism and kinetics in a model of metabolism and gene expres-

sion of Escherichia coli; 2017.

28. Russell JB, Cook GM. Energetics of bacterial growth: balance of anabolic and catabolic reactions.

Microbiol Rev. 1995; 59(1):48–62. PMID: 7708012

29. Russell JB. The energy spilling reactions of bacteria and other organisms. J Mol Microbiol Biotechnol.

2007; 13(1-3):1–11. https://doi.org/10.1159/000103591 PMID: 17693707

30. Jiao Z, Baba T, Mori H, Shimizu K. Analysis of metabolic and physiological responses to gnd knockout

in Escherichia coli by using C-13 tracer experiment and enzyme activity measurement. FEMS Microbiol

Lett. 2003; 220(2):295–301. https://doi.org/10.1016/S0378-1097(03)00133-2 PMID: 12670695

31. Zhuang K, Vemuri GN, Mahadevan R. Economics of membrane occupancy and respiro-fermentation.

Mol Syst Biol. 2011; 7(1):500. https://doi.org/10.1038/msb.2011.34 PMID: 21694717

32. Szenk M, Dill KA, de Graff AMR. Why Do Fast-Growing Bacteria Enter Overflow Metabolism? Testing

the Membrane Real Estate Hypothesis. Cell Syst. 2017; 5(2):95–104. https://doi.org/10.1016/j.cels.

2017.06.005 PMID: 28755958

33. Adadi R, Volkmer B, Milo R, Heinemann M, Shlomi T. Prediction of microbial growth rate versus bio-

mass yield by a metabolic network with kinetic parameters. PLoS Comput Biol. 2012; 8(7):e1002575.

https://doi.org/10.1371/journal.pcbi.1002575 PMID: 22792053

34. Vazquez A, Oltvai ZN. Macromolecular crowding explains overflow metabolism in cells. Sci Rep. 2016;

6:31007. https://doi.org/10.1038/srep31007 PMID: 27484619

35. Kirschner DE, Hunt CA, Marino S, Fallahi-Sichani M, Linderman JJ. Tuneable resolution as a systems

biology approach for multi-scale, multi-compartment computational models: Tuneable resolution as a

systems biology approach. WIREs Syst Biol Med. 2014; 6(4):289–309. https://doi.org/10.1002/wsbm.

1270

36. Reed JL, Palsson B. Thirteen Years of Building Constraint-Based In Silico Models of Escherichia coli.

J Bacteriol. 2003; 185(9):2692–2699. https://doi.org/10.1128/JB.185.9.2692-2699.2003 PMID:

12700248

Laboratory evolution reveals a two-dimensional rate-yield tradeoff in microbial metabolism

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007066 June 3, 2019 17 / 17

https://doi.org/10.1038/ncomms13091
https://doi.org/10.1038/ncomms13091
http://www.ncbi.nlm.nih.gov/pubmed/27782110
https://doi.org/10.1016/j.cels.2017.11.013
http://www.ncbi.nlm.nih.gov/pubmed/29284126
http://www.ncbi.nlm.nih.gov/pubmed/7708012
https://doi.org/10.1159/000103591
http://www.ncbi.nlm.nih.gov/pubmed/17693707
https://doi.org/10.1016/S0378-1097(03)00133-2
http://www.ncbi.nlm.nih.gov/pubmed/12670695
https://doi.org/10.1038/msb.2011.34
http://www.ncbi.nlm.nih.gov/pubmed/21694717
https://doi.org/10.1016/j.cels.2017.06.005
https://doi.org/10.1016/j.cels.2017.06.005
http://www.ncbi.nlm.nih.gov/pubmed/28755958
https://doi.org/10.1371/journal.pcbi.1002575
http://www.ncbi.nlm.nih.gov/pubmed/22792053
https://doi.org/10.1038/srep31007
http://www.ncbi.nlm.nih.gov/pubmed/27484619
https://doi.org/10.1002/wsbm.1270
https://doi.org/10.1002/wsbm.1270
https://doi.org/10.1128/JB.185.9.2692-2699.2003
http://www.ncbi.nlm.nih.gov/pubmed/12700248
https://doi.org/10.1371/journal.pcbi.1007066

