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Abstract: Using the structured serial coalescent with Bayesian MCMC and serial samples, we estimate population size when 
some demes are not sampled or are hidden, ie ghost demes. It is found that even with the presence of a ghost deme, accurate 
inference was possible if the parameters are estimated with the true model. However with an incorrect model, estimates 
were biased and can be positively misleading. We extend these results to the case where there are sequences from the ghost 
at the last time sample. This case can arise in HIV patients, when some tissue samples and viral sequences only become 
available after death. When some sequences from the ghost deme are available at the last sampling time, estimation bias is 
reduced and accurate estimation of parameters associated with the ghost deme is possible despite sampling bias. Migration 
rates for this case are also shown to be good estimates when migration values are low.

Key Words: Coalescent, Migration, Markov Chain Monte Carlo, Bayesian Inference, Serial Samples, Measurably Evolv-
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Introduction
Frequently when we estimate the parameters associated with an island population model with migra-
tion using the structured Kingman coalescent (Kingman, 1982a,b), it is assumed that we sample all the 
demes in the population. In practice, sampling every deme may not be possible; frequently the data is 
just not available. It may be the case that we do not even know how many demes there are for the popu-
lation of interest. Previous work on hidden (or ghost) demes was done by Beerli (2004). In that study 
he considered 3 subpopulations, 2 with sampled data and one that was not sampled. The study included 
a range of migration rates to and from the ghost deme. Estimates were then obtained with simulated 
data using a Maximum Likelihood approach with the program MIGRATE (Beerli and Felsenstein, 
2001, 1999), both with and without the ghost deme. Beerli’s results are summarised in Table 1. It was 
found that estimated population sizes of observed demes tend to be biased when the estimation model 
is different from the true model.

In this paper we extend the work in Beerli (2004) to Bayesian estimation of coalescent-based popula-
tion parameters using sequence samples obtained serially over time. In particular, we look at the ability 
of the Bayesian method presented in Ewing et al. (2004) to resolve population sizes when there are 
hidden or ghost demes with serial samples. We further extend this to the case where there is a single 
sample from the ghost deme at the last time point. This case can arise in HIV patients, for example when 
some tissue samples and viral sequences only become available after death (Wong et al. 1997; Nickle
et al. 2003). The baseline model we use is a 2-deme model with samples coming from only one deme 
at 3 different times and possibly from the second deme at the last time point. In Beerli (2004) migration 
rates were also estimated. However, Beerli’s study used maximum likelihood and was for isochronous 
(i.e., non-serial sample) data only.

By focusing on population size, we can restrict our models to just 2 demes in order to reduce the 
times needed for inference and simplify analysis. We look at the problem of estimation with and without 
the ghost deme and consider the related problem of inference under the assumption of a ghost deme 
when the true model has none.

The rest of this paper is set out as follows. In the next section we discuss the details of the simulation 
datasets and the procedures used to estimate parameters over these datasets. In Section 3 we outline 
the main results and show appropriate summary statistics. Comparison to the general fi ndings of Beerli 
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(2004) are mentioned and we present results under 
the ghost deme model while the truth contains no 
such deme. We also consider how often the truth 
would be rejected from a 95% Highest Posterior 
Density interval (HPD). Finally we discuss these 
results with regard to practical approaches to 
applying this type of inference to real problems.

Methods
We now discuss the specifi c parameters used for 
simulation and estimation. Data were simulated 
under the coalescent with the appropriate model, 
then parameters inferred with the same code that 
was presented in Ewing et al. (2004); Ewing and 
Rodrigo (2006). Table 1 shows the different data 
generation and estimation models considered. We 
produce a genealogy from the coalescent prior based 
on the given true parameters and then generate 
simulated sequences. The length of the simulated 
sequences was relatively short (250 base pairs) to 
allow for faster likelihood evaluations and to better 
replicate the uncertainty of branch lengths and 
topology that we see in real data of greater length. 
The simulated data consists of 3 time points equally 
spaced with 10 sequences per time point per deme. 
The distance between time points was 7.5 × 10−2 
expected number of substitutions per unit time with 
a normalised mutation rate of 1. This produced 

small trees (30 sequences) but the population size 
can still be accurately inferred from such a dataset 
as shown in Ewing et al. (2004) and Drummond 
et al. (2002). Following the notation in Ewing and 
Rodrigo (2006), population size was parameterised 
as i i = Nitg where Ni is the effective population 
size in deme i and tg is the generation time. We set
tg = 1 and use i1 = i2 = 0.1 for both deme 1 and 2 
respectively, throughout this study. Migration rates 
m to and from ghost deme were symmetric with 
units of expected number of migration events per 
lineage per expected substitution with values 0, 
1, 2, 5, 10, 20 and 50. This covers the interesting 
ranges of high migration (m>>   1/i), low migration
(m<<1/i) and intermediate migration (m≈1/i).
A m  =  0 indicates that the ghost deme does not 
contribute to the coalescent or genetic diversity.

For each set of simulated data parameters, 
51 datasets were generated and the parameters 
inferred with the Bayesian MCMC (Ewing et al. 
2004; Ewing and Rodrigo, 2006). Estimation
was done with constrained symmetric migration 
rates. That is mt 12 = mt 21 (Figure 1). However, the 
same assumption on it 1 and it 2 was not made, so in 
general it 1 ! i

t
2 Mutaion and genealogy were also 

estimated, but we omit the results due to very good 
estimation that is independent from the population 
parameters, (see Drummond et al. (2002), Ewing 
et al. (2004)). The MCMC chains were run for 

Table 1. Summary of the results from this study and from Beerli (2004). We have excluded migration results from 
Beerli (2004). Models used for data generation and estimation are shown horizontally and vertically respectively. 
When m  = 0 there is no migration from or to the ghost deme and it is effectively excluded. Results show that 
the two studies agree qualitatively and illustrate a general trend that estimation with the incorrect demographic 
model leads to poor performance of the estimators.

Data Generation   Estimation Model
Model  m  = 0 (No Ghost Deme)  m  > 0 (Ghost Deme) 
  Case I(a)   Case I(b) 
  Beerli:NA   Beerli: it 1 underestimates the truth.
m  = 0  This Paper: it 1 estimates  This Paper: it 1 has a much larger 
  accurately in this base case.  downward bias than
    in  Beerli’s results.
  Case II(a)   Case II(b) 
  Beerli: it 1 overestimates,   Beerli: it 1 estimates reasonably
  with the bias increasing with   accurately even with higher
  increasing migration rate.   migrations.
m  > 0  This Paper: it 1 is also   This Paper: it 1 estimation is again 
  overestimated and tends   reasonably accurate even for
  to i1  + i2 with increasing   high migration. However, mixing
  migration rate.    becomes diffi cult at very high
    migration rates and long
    run times are required.
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10 million generations which we sampled every 
1000 generations. For estimating without the ghost 
deme, the run lengths were much shorter: only 1 
million generations with sampling every 200 was 
enough for good effective sample sizes (> 500). 
We check convergence by looking at topology, 
mutation rate and tree height. If these parameters 
encompass the truth then we consider that the chain 
is in the stationary distribution. Further checks 
for convergence included estimation of effective 
sample size (ESS) from the integrated autocor-
relation time x (IACT) (Geyer, 1992) and visual 
checks. In cases where the chain did not appear 
to converge (i.e., ESS less than 100), the chain 
length was increased until the ESS was at least 100 
or more. Only a few chains and parameter ranges 
yielded ESS lower than 500.

Finally we generated 51 sets of zero-migration 
coalescent genealogies (i.e., models where no 

ghost deme is present) as in Beerli (2004). For this 
model i1 = 0.1; We estimated the true parameters 
assuming the absence of a ghost deme, and under 
the assumption that the ghost deme is present.

Mode estimators from the posterior are used as 
estimators due to the long tails that are common 
for marginal posterior density plots (Figure 2) and 
provide both lower bias and lower sensitivity to 
priors. The mode is estimated by noting the poste-
rior density is inversely proportional to the distance 
between a fi xed number of ordered values. We use 
4% of the samples for the ordered values and take 
a median for the estimate. We have found that this 
provides very good estimates and is accurate when 
compared with Gaussian kernel posterior density 
estimates (Ewing et al. 2004). We only include 
estimates for sampled demes due to the high level 
of uncertainty for un-sampled demes, i.e., we do 
not report it 2 for Cases I and II.

95% Highest Posterior Density intervals were 
estimated in a similar fashion. We simply look for 
the shortest distance between ordered samples that 
encloses 95% of the samples. This method fails 
if the posterior is multi-modal, and in all cases 
marginal posterior densities were checked visually 
to ensure that they are unimodal.

In this study, we counted the proportion of 
95% HPD’s that enclosed the true value of i1, 

Figure 1. Schematic representation of the model. The dashed circle 
represents the hidden and unsampled ghost deme.
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Figure 2. Marginal posterior density for it 1. The data was generated with m  = 0 and then the parameters estimated with a 2 deme model. 
There is a long tail that can often dominate the HPD intervals despite the well defi ned mode.
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as well as the the value of i1 + i2, where appro-
priate. The latter value of i1    + i2 represents the 
true effective size under an equivalent panmictic 
model (Nagylaki, 1980). Hence under high migra-
tion rates, it is expected the estimated i1 for the 
sampled population will approach i1 + i2.

Results
The major results of this study are summarised in 
Tables 1 and 2. Effective Sample Sizes were about 
500 for worst-case parameters with the majority of 
runs signifi cantly higher than this. We see from the 
Table that there is a trend of poor inference when 
we estimate under the wrong model. We overes-
timate it 1 without the hidden deme when m > 0 
and we underestimate it 1 when the hidden deme 
is included incorrectly. These general trends are in 
line with those observed by Beerli (2004).

Case I(a): Estimation Without A Ghost 
Deme When m = 0
First we consider the base case when there is no 
ghost deme and estimation is performed without 
a ghost deme. Due to the smaller number of 
parameters we expect this to be the case of best 
performance. In this case the true value of it 1 is 

enclosed in the HPD interval 100% of the time. 
The mean of the modes shows no evidence of 
bias. Visual inspection of individual runs also 
shows that performance is excellent, with fast 
convergence to equilibrium and effi cient mixing
with ESS > 1000. Since this case is essentially 
simple estimation under a correct coalescent 
model, these results are not surprising and echo 
those of others (Felsenstein, 1992; Drummond
et al. 2002).

Case I(b): Estimation With A Ghost 
Deme With m = 0
For this section we consider the performance when 
the data is generated with m   =   0 or without a ghost 
deme, but we assume that a ghost deme exists for 
estimation. The estimation of it 1 assuming the 
existence of a hidden deme showed substantial 
downward bias of the mode estimator with a 
mean of 0.02. In Beerli (2004), the general trend 
of a downward bias is also observed. This sets the 
general theme for the results: when we estimate 
under an incorrect model we get poor inference 
performance. 95% HPD intervals are very wide 
and are not signifi cantly different from the prior 
(Figure 2). A short section of a trace for both popu-
lations is shown in Figure 3 and we see a “mode” 
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Figure 3. Traces of i1 and i2. The clear jumps correspond directly to genealogy migration patterns. Most coalescent events are in one or the other 
deme, corresponding directly with either poorly determined population size (+  0 coalescent events) or a well defi ned population size.
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shift in the chain. At some point the parameter
it 1 is well defi ned and low compared to the bound 
while it 2 jumps between the bounds. In other
parts of the plot we see that the opposite is true 
and it 2 is well defi ned while it 1 is moving between 
the bounds. If we inspect the genealogies for both 
cases we see that at any given time a majority of 
the coalescent events occur in one or the other 
deme. Thus there is insuffi cient information to 
estimate the population size of just one deme at a 
given time. The transitions between these modes 
is quick and effi cient, and ESS is large for this 
parameter. Some of this bias may be due to the fact 
that the migration marginal posterior density has 
substantial weight on migration rates > 0 (Figure 4). 
If the chain spent more time in the close-to-zero 
migration rate, it would not bias the estimate of 
it 1 since in this case the posterior density reduces 
to the plain coalescent.

In Figure 4 the peak close to m = 0 indicates 
that there is substantial probability around this 

true value. But this peak is small in terms of the 
total probability that it represents and the marginal 
density indicated that this is not distinguishable 
from high migration. We now need to consider 
if the lack of support for low migration, when 
the truth is zero, is due to mixing. The chain can 
only slowly remove migration events and in turn 
lower migration rates, thereby only mixing down 
to the lower migration values rarely. Even the 
recolour move described in the appendix in Ewing 
and Rodrigo (2006), does not appear to help the 
mixing. A better move (MCMC kernel proposal) 
would be to change the migration rate and regen-
erate the migration nodes as a single move. We 
have not implemented this move for this study. 
We did inspect the 51 marginal posterior densities 
and we noted a small number that rejected low 
migration. When we extend these runs1 (× 2-5 
longer), it was found that in most cases the peak 
at m = 0 would manifest itself, and in a majority 
of cases this peak was the mode. This is a clear 
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Figure 4. Marginal Posterior Density for migration. There is a clear peak at zero. The rest of the posterior is noisy due to the poor mixing 
over this large range and the ESS for this parameter was the lowest for this run at 150. The prior is a fl at bounded prior from 0 to 250.

1The code supports extending any MCMC chain from where it stops. It records the machine state in a fi le every twenty minutes and then at the end 
of a run. It is then easy to “restart” a run from where it stopped and make it longer.
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indication that the migration in particular does 
not mix properly despite the high ESS. This can 
be understood from the small chance of getting 
close to small values of m with a random walk 
over permissable values and indicates that there 
could be some sensitivity to the prior bound. Some 
exploratory chains were run with larger priors with 
the result of a reduction in the peak at zero and 
reduced mixing.

Furthermore we attempted to explore the use 
of a fl at prior in log space or a Jeffreys prior on 
all parameters with the effect of hugely increasing 
the mixing of the it 1 and it 2 parameters by casing 
longer waiting times between the fl ips. Migration 
mixing also suffered very badly and informative 
results were not produced. In general much of 
the above trends appear to exist, as the chain still 
spends signifi cant time away from the zero migra-
tion rate. It should also be noted that MCMC runs 
with poor mixing did not change the it 1 and it 2 
marginal posterior densities as compared to chains 
with improved mixing.

This scenario illustrates the potential bias a fl at 
bounded prior has on Bayesian inference. As we 

increase the upper bound on m we increase prior 
support for a non-zero migration rate. With the 
current prior, a non zero migration rate is never 
rejected from a 95% confi dence interval. We will 
discuss how we might overcome these limitations 
in section 4. Prior sensitivity analysis was not 
carried out except as mentioned above and formal 
hypothesis testing would need more thorough 
treatment.

Case II(a): Estimation Without A Ghost 
Deme With m > 0
When the migration rate is not zero and we esti-
mate without a ghost deme the acceptance of the 
true value for it 1 immediately drops and the mode 
estimator becomes biased. This trend continues 
with increasing migration rate and the mode esti-
mator for it 1 tends to i1 + i2. Also we reject the 
true value of it 1 from a HPD interval in more than 
50% of the runs while we accept it 1 = i1 + i2 in 
more than 80% of the runs. So in effect we infer 
the population size of the single deme to be the 
sum of both demes. This is indeed the behaviour 

Table 2. The results showing the means of the modes for the different cases and migration rates. A clear trend 
is observed when the hidden deme is not taken into account (case I), and we see the truth is rejected more than 
expected even for low migration rates. As migration tends to large values the estimate of it 1 tends to i1 + i2. 
However, the trend of increasing estimates of it 1 with increasing migration rate does not hold when we take the 
ghost deme into account (case II). Once we have some samples from the ghost deme at the last sampling time, 
the performance improves dramatically. Estimates for it 2 are included and provides reasonable estimates with 
a slightly larger standard deviation. It is noted that we accept the truth as expected. 

Migration rate 0 1 2 5 10 20 50
case I
i
-t

1  0.102 0.142 0.1621 0.169 0.181 0.217 0.202
95% HPD 0.1 100% 75% 67% 61% 49% 45% 34%
95% HPD 0.2 30% 62% 84% 86% 94% 94% 100%
case II
i
-t

1  0.02 0.0997 0.0697 0.0702 0.0688 0.082 0.0705
vr 1i   - 0.0433 0.0272 0.029 0.025 0.0122 0.0297
95% HPD 0.1 100% 82% 88% 85% 92% 90% 96%
95% HPD 0.2 30% 31% 31% 36% 53% 58% 55%
case III
i
-t

1   - 0.093 0.0981 0.0913 0.0878 0.0867 0.1
vr

2i   - 0.02 0.032 0.0268 0.03 0.0433 0.136
i
-t

2  - 0.105 0.105 0.102 0.0923 0.106 0.108
vr 2i   - 0.04 0.0468 0.0462 0.0562 0.095 0.135
95% HP 0.1it 1  - 96% 94% 94% 94% 86% 86%
 95% HPD 0.1 it 2 - 98% 96% 96% 92% 92% 86%
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of the structured coalescent under high migration 
(Notohara, 1993; Hudson, 1990). It is surprising 
that the bias is strong even for very low migration 
rates and indicates that model misspecifi cation of 
the type tested here gives rise to large errors in 
inference.

Case II(b): Estimation With A Ghost 
Deme With m > 0
If we include the unobserved deme in the estima-
tion process, this bias is strongly suppressed. We 
see from Table 2 that when we estimate with a 
ghost deme mode estimators of i1 are not far off 
from the truth. We accept the true value as expected 
and we reject the false values at about the same rate 
as the base case or case I(a) (the fi rst column of 
Table 2 of case I). We have omitted the summary 
statistics for parameters of the ghost deme itself 
due to the fact that the marginal posterior densities 
for i1 varie only slightly from the prior. That is, 
it is fl at and extends out to the bounds. Marginal 
migration posterior densities are also generally 
uninformative. With low migration rates (5 or less) 
there was support for a region smaller than the prior 
bounds, but it was still diffuse. At high migration 
rates the marginal posterior density did exclude 
low migration rates, but was otherwise fl at out to 
the bounds.

Case III: Estimation With A Few
Sequences From The Ghost Deme
When we have just a few sequences (10) from the 
ghost deme at the most recent sample time only, 
the power of the method increases signifi cantly. 

From Table 2 we see that even this small amount of
data has reduced the bias seen under estimation 
with a ghost deme. With this data we also have 
informative marginal posterior densities for
population size for both demes as shown in
Figure 5.

There is a transition between low and high 
migration rates with regard to estimation of migra-
tion rates however. At m = 20 the marginal migra-
tion posteriors often look like Figure 6(b) and we 
see they simply support any migration rate that is 
large. In this regime we note that population size 
estimates for the ghost deme become less informa-
tive and a long tail becomes the common distribu-
tion. However, the mode is still well defi ned for
i1 and we are able to make informed estimates of 
population sizes.

At low migration rates m = 5, migration is 
somewhat resolved with a clearmode and overes-
timates the true value as previously reported and 
shown in Figure 6(b). With these reasonably well 
defi ned migration posteriors, particularly at low 
migration rates, there is larger variance for the 
estimate of population size of the ghost deme due 
to a smaller number of sequences and lack of data 
at other sample times.

From visual inspection of the traces it was 
observed that there were signifi cant mixing issues 
for some datasets with large migration (m ≥ 20). 
The nature of the slow mixing was identical to that 
already discussed in Section 3.0.2. ESS for some 
runs were therefore quite small (200–500) and 
long run times were often required. This further 
illustrates the point that a better MCMC proposal 
kernel is needed to improve the mixing and allow 
larger datasets to be practical.
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Figure 5. Marginal posterior density for i1 and i2 when there are a few sequences collected from the ghost deme. Both posterior densities 
are well resolved.
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Discussion
In this paper we have looked at the ability to infer 
population size and migration rate using a coales-
cent-based Bayesian MCMC approach when we 
have serial samples from just one deme, while 
the true underlying population structure includes 
a hidden or ghost deme with migration between 
them. The case when we have samples from 
both demes only at the last time point was also 
presented. We also consider the related problem 
of estimating population size assuming a ghost 
deme when the true model does not contain this 
unobserved deme. It was found that in the former 
case, where there is a hidden deme when it is not 
taken into account, it overestimates the population 
size. As migration rates tend to large values, the 
estimate of population size tends to the sum of the 
subpopulations as we expect. For the opposite case, 
where the hidden deme is incorrectly included, it 1 
is strongly underestimated and confi dence intervals 
were very large. We did identify that mixing with 
respect to zero migration was poor, but this alone 
could not explain all of the bias.

In all cases, estimating under the correct model 
gave informative inference and reduced biases as 
compared to estimation under the incorrect model. 
The inclusion of a ghost deme when there is such 
a ghost deme effectively removes the dependence 
of estimated population size with migration rate. 
However, there is still a slight downward bias in 
the mean estimators, and migration estimates were 
very diffuse. The true value for i1 was within the 
95% HPD interval as expected and we could reject 
it 1 = i1 + i2 50% of the time. This compares to 

the base case of estimating with no ghost deme 
when one does not exist, where we reject the larger
it 1 about 30% of the time (First column of Table 
2 for case I).

Adding a small number of sequences at the last 
time point for the ghost deme made a substantial 
difference. An instance where this type of data 
may arise is with HIV populations within hosts. 
Often we can only sample some tissues at autopsy 
and we may have no sequence data from these 
tissues at earlier sample times. The bias that was 
observed was effectively removed for low migra-
tion rates and reduced for large migration rates. At 
low migration rates estimation can be acceptable, 
while at high migration all we may be able to do 
is rule out low migration rates.

We have established that in general for the struc-
tured coalescent, we need to be accurate with the 
population structure to avoid misleading results. 
But we can’t always be sure of what the “correct” 
model is. However, there is no available test that 
compares different island-population models. 
Surprisingly a direct Bayesian model averaging 
approach or even any coalescent based approach 
to this question has not been carried out anywhere 
in the fi eld. We suggest Bayesian model averaging 
as a way of addressing this problem.

Bayesian Model Averaging (BMA) in a MCMC 
setting is implemented by adding a move that jumps 
between models with the appropriate acceptance 
probability (Hoeting et al. 1999). In effect, we treat 
the current model as part of the state space or as 
one of the estimated parameters. More complicated 
model averaging can allow moves between models 

Figure 6. Marginal posterior density for mt  from two runs, when there are a few sequences collected from the ghost deme for high migration. 
On the left there is a well defi ned mode and generally over estimates the true migration rate (Truth m  = 5) On the right low migration rates 
are excluded but otherwise it is uninformative and this is a general result for higher migration rates (Truth m = 50).
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with different numbers of parameters (Green, 
1995). Generally these types of moves are more 
diffi cult to develop. One possible genealogy move 
for our case, is the move between panmictic and 
subdivided populations. To move from the subdi-
vided population model to panmictic model, we 
simply remove the migration events and relable 
the leaf nodes to be in the same deme. However, 
the opposite move is more diffi cult. A number of 
legal migration events need to be generated over 
the genealogy and the leaves again relabelled. This 
move must be capable of producing every possible 
migration event pattern on the genealogy, and the 
probability must be calculable so the acceptance 
probability can be evaluated. This type of move 
is particularly generic in that moves between 2 to 
3 demes and vice versa are also possible by fi rst 
removing all the migration labels and just regen-
erating a legal migration history. The recolour tree 
move proposed in Ewing and Rodrigo (2006) does 
this and gives reasonable acceptance rates.

BMA provides more fl exibility when compared 
to alternatives, for example, Bayes factors.When 
we wish to just have an estimate of the population 
size, we can marginalize the posterior distribution 
across models and get a combined estimate. The 
difference in bias between the ghost data estimated 
without the ghost deme, compared to estimation 
with a ghost deme when m   =   0 suggested that 
there are some distributional differences between 
the two cases. Thus BMA could possibly work 
well for this type of problem and is the next logical 
step for this method. We are currently working on 
a model averaging version of the code.
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