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Abstract 

Background:  The traditional way to estimate variance components (VC) is based on the animal model using a ped‑
igree-based relationship matrix (A) (A-AM). After genomic selection was introduced into breeding programs, it was 
anticipated that VC estimates from A-AM would be biased because the effect of selection based on genomic informa‑
tion is not captured. The single-step method (H-AM), which uses an H matrix as (co)variance matrix, can be used as 
an alternative to estimate VC. Here, we compared VC estimates from A-AM and H-AM and investigated the effect of 
genomic selection, genotyping strategy and genotyping proportion on the estimation of VC from the two methods, 
by analyzing a dataset from a commercial broiler line and a simulated dataset that mimicked the broiler population.

Results:  VC estimates from H-AM were severely overestimated with a high proportion of selective genotyping, and 
overestimation increased as proportion of genotyping increased in the analysis of both commercial and simulated 
data. This bias in H-AM estimates arises when selective genotyping is used to construct the H-matrix, regardless of 
whether selective genotyping is applied or not in the selection process. For simulated populations under genomic 
selection, estimates of genetic variance from A-AM were also significantly overestimated when the effect of genomic 
selection was strong. Our results suggest that VC estimates from H-AM under random genotyping have the expected 
values. Predicted breeding values from H-AM were inflated when VC estimates were biased, and inflation differed 
between genotyped and ungenotyped animals, which can lead to suboptimal selection decisions.

Conclusions:  We conclude that VC estimates from H-AM are biased with selective genotyping, but are close to 
expected values with random genotyping.VC estimates from A-AM in populations under genomic selection are also 
biased but to a much lesser degree. Therefore, we recommend the use of H-AM with random genotyping to estimate 
VC for populations under genomic selection. Our results indicate that it is still possible to use selective genotyping in 
selection, but then VC estimation should avoid the use of genotypes from one side only of the distribution of pheno‑
types. Hence, a dual genotyping strategy may be needed to address both selection and VC estimation.
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Background
Accurate and unbiased prediction of breeding values 
(BV) is essential for an efficient breeding program to 
select parents of future offspring and maximize genetic 
gain. The linear mixed animal model [1] is commonly 
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used for predicting BV. The distribution of BV is assumed 
to follow a multivariate normal distribution with a null 
mean and a (co)variance matrix, which is the product of 
two parts, a relationship matrix and the genetic variance. 
The numerator relationship matrix (A) based on pedi-
gree is widely used as the relationship matrix in the ani-
mal model, and in this paper, the animal model that uses 
the A matrix as (co)variance matrix for BV is denoted as 
A-AM. To predict BV from A-AM, variance components 
(VC) including genetic variance and residual variance are 
needed to solve the mixed model equations (MME). In 
many cases, VC need to be estimated from the available 
data. If a population is under selection based on pheno-
type and pedigree information, if all the data that drive 
selection decisions are included in the model, and if the 
genetic architecture of the trait is close enough to the 
assumption of an infinite number of loci contributing to 
the trait, VC estimated by restricted maximum likelihood 
(REML) from A-AM are unbiased [2].

During the last decade, affordable high-throughput 
genotyping products for livestock have enabled breeding 
companies to use dense markers such as single nucleo-
tide polymorphisms (SNPs) to aid prediction of genetic 
merit and select superior breeding stock [3–5]. Instead 
of using the pedigree-based relationship matrix A , a 
genomic relationship matrix ( G ) is constructed as a pro-
posed measure of the (co)variance of BV between geno-
typed animals [6]. The animal model was then modified 
to use G as the (co)variance matrix for BV [7]. However, 
due to the cost of genotyping on available platforms, not 
all animals in the breeding populations can be geno-
typed. Thus, to accommodate for partial genotyping, 
the so-called single-step method was developed [8–10]. 
The single-step method is based on a relationship matrix 
( H ), which is constructed by combining G and A . In this 
paper, the single-step method was abbreviated as H-AM 
to emphasize that H-AM remains an animal model but 
with a (co)variance structure that differs from that of 
A-AM. H-AM allows the simultaneous estimation of BV 
for all individuals when only a subset of the animals are 
genotyped [11].

In many livestock breeding programs, H-AM is now 
used for genomic evaluation [5, 11, 12], but VC are 
still estimated by REML from A-AM without includ-
ing genomic information. For such populations under 
intensive genomic selection, one concern is that genomic 
selection may have an effect on estimating VC from 
A-AM. We anticipate that VC estimates from A-AM 
could be biased after introduction of genomic selec-
tion, because A-AM can only account for phenotype 
and pedigree-based selection, but not for genomic selec-
tion. Consequently, H-AM can be the natural choice for 
estimating VC in populations in which H-AM has been 

implemented for genetic evaluation. To our knowledge, 
there are no studies that have investigated whether, for 
populations under genomic selection, H-AM is a better 
model to estimate VC, and whether A-AM gives biased 
estimates of VC.

If we use H-AM to estimate VC, another concern is the 
effect of the genotyping strategy on bias in VC. Selec-
tive genotyping has been reported to lead to bias in pre-
diction of BV [13], and we hypothesized that the same 
could be true for the estimation of VC. In most breed-
ing programs, the genotyping strategy aims mainly at 
maximizing genetic gain while limiting genotyping cost. 
To achieve this goal, many studies showed that, for a 
fixed genotyping budget, selective genotyping based on 
own performance, results in maximum genetic response 
[14–16]. However, these studies assumed that VC were 
known. In addition, in many practical cases so far investi-
gated, the number of genotyped individuals is small com-
pared to the size of the whole population, so it is difficult 
to detect the influence of genotyping strategy on the esti-
mation of VC. In broiler breeding the number of breed-
ing candidates that are likely to be genotyped is relatively 
large, and genomic selection has already been used for 
several generations. If bias exists in VC estimates due to 
the genotyping strategy, broiler populations are ideal to 
detect it. So far, no studies have investigated whether bias 
in BV due to selective genotying, as reported in [13], also 
occurs in the estimation of VC, and whether the propor-
tion of genotyped individuals impacts the amount of bias.

In this paper, we report VC estimated by A-AM and 
H-AM by using a commercial broiler dataset for which a 
large number of individuals are genotyped. The first and 
main objective of this study was to report, backed-up by 
a simulation study, that H-AM provides (highly) overesti-
mated genetic variances when genotyping is selective and 
a sufficiently large proportion of individuals is genotyped. 
The secondary objectives were to investigate whether 
A-AM, or H-AM with random genotyping, could provide 
unbiased estimates of VC, and how genotyping strategy, 
proportion of genotyping and VC estimates affect pre-
dicted BV.

Methods
Relationship matrices for A‑AM and H‑AM
The relationship matrix based on pedigree is denoted A and 
is used in A-AM. For genotyped animals, the genomic rela-
tionship matrix G was computed by VanRaden’s method I 
[6], with G =

(

M − 2p1′
)(

M − 2p1′
)′

/
∑

j

2pj

(

1− pj

)

 , 

where M is the matrix of genotypes with one row for each 
individual and one column for each SNP, and genotypes are 
coded as 0, 1, 2, p is the vector of allele frequencies com-
puted from genotyped animals, and 1 is a vector of ones.
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The difference between H-AM and A-AM is the (co)
variance structure for BV, where the A matrix is replaced 
by a H matrix. To compute H , first, the values in the 
genomic relationship matrix are aligned to the pedigree 
relationship matrix for genotyped individuals A22 by cal-
culating Ga = α + βG , where α and β are computed by 
solving the two following equations [11]:

and

where avg() is a function to calculate the numeric aver-
age of all the elements in a matrix, and diag() repre-
sents the diagonal elements of a matrix. Second, we 
weighted the aligned Ga with a small portion of pedigree 
relationships to obtain a genomic relationship matrix 
G∗ = (1− w)Ga + wA22 . In all our analyses, the weight 
on the pedigree was w = 0.05. Then, G∗ is used in the 
computation of the H-inverse matrix as [10, 17]:

.
where A−1

22  is the inverse of the part of the pedigree 
relationship matrix for genotyped animals.

Commercial broiler data
The commercial broiler data were provided by Cobb-
Vantress Inc. (Siloam Springs, AR, USA), and the trait 
was body weight (BW) measured in grams at a fixed age 
after birds were hatched. This purebred broiler line was 
first selected for several selection rounds (SR) based on 
predicted BV from A-AM, followed by a number of SR 
based on predicted BV from H-AM. Table 1 provides an 
overview of the data. The pedigree consisted of 128,004 
birds, phenotypic records were collected on 108,555 
birds, and genotypes were available for 23,688 birds. 
Among the genotyped birds, 58 birds had no BW records. 
The pedigree included 53,855 males and 54,700 females 
with BW records, among which 8850 males and 14,848 
females were genotyped. The pedigree contained 944 

avg
(

diag(A22)
)

= α+ avg
(

diag(G)
)

β,

avg(A22) = α+ avg(G)β,

H−1
= A−1

+

(

0 0

0 G∗−1 − A−1
22

)

,

sires and 4113 dams, among which 76 sires and 674 dams 
had their own BW records, and 73 sires and 672 dams 
were genotyped, i.e. almost all the parents with pheno-
typic records were genotyped. Birds were genotyped with 
a 60  K SNP panel [18]. Quality control is described in 
[12]. After editing, 43,517 autosomal SNPs remained to 
compute the G matrix.

Analysis model
For the commercial dataset, the genotyping strategy and 
proportion of genotyping differed between males and 
females (see below). Therefore, part of the strategy used 
to investigate the effects of genotyping strategy and pro-
portion of genotyping compared analyses from the whole 
dataset with analyses for each sex. The model for this 
analysis is as follows:

.
where y is a vector of BW (for the whole dataset or for 

one sex only), b is a vector of fixed effects for the contem-
porary group, and for sex when analysing all the data, m 
is a vector of random maternal permanent environmental 
effects, u is a vector of BV, e is a vector of residuals. X , 
W , and Z are the design matrices for fixed effects, mater-
nal permanent environmental effects, and additive BV, 
respectively. For A-AM and H-AM, the covariance struc-
tures of u are A and H , respectively, and those of m and 
e are identity matrices. VC were estimated by AI-REML 
using either A-AM or H-AM using the DMU package 
[19]. Fixed and random effects were estimated/predicted 
by best linear unbiased estimators (BLUE) and best linear 
unbiased predictors (BLUP) from A-AM or H-AM.

Effects of genotyping strategy and proportion 
of genotyping in the commercial data
For the commercial data, we studied the effects of geno-
typing strategy and proportion of genotyping on VC esti-
mates from A-AM and H-AM by using different subsets 
of the dataset.

In the first set of analyses, we compared VC estimates 
from A-AM and H-AM for the whole dataset, and for 
males and females separately, and linked differences in 

y = Xb+Wm + Zu + e,

Table 1  Overview of the commercial broiler data

SR selection round

Numbers of birds SR Total Males Females Sires Dams

In the pedigree 1–77 128,004 944 4113

With a phenotype 68–77 108,555 53,855 54,700 76 674

With a genotype 68–77 23,688 8850 14,838 73 672
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VC estimates to differences in genotyping strategies and 
proportions of genotyping in these datasets. First, we 
computed mean and standard deviations for BW per SR 
for genotyped and ungenotyped males and females, and 
second, we plotted the distributions of standardized BW, 
which were obtained within SR, of genotyped and ungen-
otyped males and females. As will be shown in the 
Results section, females were preselected among the 
heavy individuals based on own BW, but this was less the 
case for males, and the proportion of genotyping was 
higher in females than in males. VC estimates were com-
pared between A-AM and H-AM for the three groups 
(all data, males, and females), and related to the different 
genotyping strategies and proportions of genotyping 
used in each group. Significance of differences was tested 
by computing a t test for the difference between two 
means as t =

∣

∣VCi − VCj

∣

∣/
√

SE2
i + SE2

j  . However, since 
females were genotyped both selectively and at a higher 
proportion, the comparison between males and females 
was not sufficient to separate the effects of selective gen-
otyping and proportion of genotyping.

In the second set of analyses, we compared VC esti-
mates from H-AM for different subsets of the data that 
were constructed to either enhance or mitigate the effects 
of selective genotyping and proportion of genotyping, 
and thus to better disentangle these two effects. Subset 
1 increased the effect of selective genotyping in males, 
while Subsets 2 and 3 modified the proportion of geno-
typing by either removing genotyped or ungenotyped 
animals. These subsets were constructed as follows.

Subset 1
In Subset 1, selective genotyping was increased in males 
and proportion of genotyping was decreased, by using 
only the genotypes of the heavy males among all geno-
typed males (this was possible in males because both 
low-weight and high-weight males were genotyped). 
This made the genotyping strategy in males similar to 
the genotyping strategy in females, but with a lower pro-
portion of genotyped animals. Genotyped males were 
ranked according to BW records, then genotypes from 
the heaviest 3000 individuals were kept to compute a new 
Gm3k matrix together with all the genotyped females, 
and the genotypes from the remaining genotyped males 
were removed in this subset. VC were estimated for the 
whole dataset, and for males only, using H-AM with the 
H matrix based on Gm3k . All available phenotypes were 
used in the analyses, i.e. only part of the genotype infor-
mation from the males was removed.

Subset 2
In Subset 2, the effect of selective genotyping was 
decreased in females by randomly removing genotypes 

of females. Instead of using all the 14,838 genotyped 
females, two random subsets of 8000 and 4000 individu-
als were sampled from genotyped females, and Gf8k and 
Gf4k were computed using genotypes from these two 
subsets together with all the genotyped males. In these 
subsets, females were selectively genotyped in a similar 
way as in the whole dataset, but the proportion of geno-
typing was decreased. VC were estimated for females 
only using H-AM with the H matrices based on Gf8k or 
Gf4k . Phenotypes from all females were used in the analy-
sis, i.e., only part of the genotype information from the 
females was removed.

Subset 3
In Subset 3, selective genotyping in males, as in Subset 
1, and proportion of genotyping were increased simul-
taneously. This was achieved by using the same heaviest 
3000 genotyped males from Subset 1, combined with 
decreasing the number of ungenotyped males by remov-
ing their phenotypes, so that, relatively, the proprortion 
of selectively genotyped males increased. To reach a pro-
portion of genotyping of 30% in males, a random subset 
of 7000 ungenotyped males were sampled. Using pheno-
types from these 7000 ungenotyped males together with 
the heaviest 3000 genotyped males in Subset 1, VC were 
estimated for males only using H-AM with the H matrix 
based on Gm3k.

H-AM estimates in these three different subsets were 
compared to the H-AM estimates for the unedited data 
in the same group (all data, males, and females). Differ-
ences in VC estimates were tested with the same t-test 
as described above to test the difference between two 
means.

Simulation study
After analyzing subsets of the commercial data, a pop-
ulation that mimicked the population structure and 
selection process of the broiler breeding program was 
simulated using the ADAM software [20]. The first objec-
tive of the simulation study was to verify the hypothesis 
that selective genotyping of a large proportion of birds 
caused bias in VC estimates from H-AM. The second 
objective was to show the existence of bias in VC esti-
mates from A-AM after genomic selection was applied. 
Using simulated data makes it possible to modify geno-
typing strategy and selection scheme, and to remove the 
influence from potential other unknown factors in the 
commercial data, such that the conclusions based on 
simulated data are more straightforward. The term unbi-
ased is used here in the frequentist sense as a property of 
maximum likelihood estimators to estimate, on average 
over replicated data samplings, the true value of a param-
eter [21].
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The simulation was based on a historical population 
with a genome consisting of 40 K SNPs and 2 K quantita-
tive trait loci (QTL), and the patterns of linkage disequi-
librium (LD) decay along distances between each pair of 
SNPs were generated such that they were similar to that 
observed in the commercial data. Genetic effects were 
the sum of the QTL effects, which were sampled from a 
normal distribution. For both sexes, the total genetic var-
iance in the base population was assumed to be 9644, and 
residual variance was assumed to be 24,798. Phenotypes 
were simulated as body weights (BW) which was the sum 
of additive genetic effects ( u ) and residuals ( e ). In each 
SR, 130 sires and 520 dams were mated to produce 5200 
offspring. In total, 40 SR after the base population were 
simulated, and SR were divided into two periods depend-
ing on how the BV were computed. In SR1-20, parents 
were selected based on predicted BV by A-AM in all sce-
narios; in SR21-40, parents were selected based either on 
predicted BV by A-AM or on predicted BV by H-AM, 
using different genotyping strategies. In the simulation, 
VC estimates from the base population were used in the 
models to estimate BV. Three scenarios, which are sum-
marized in Table 2, were simulated by varying the geno-
typing strategy and selection criteria.

Scenario 1
Scenario 1 simulated a population under genomic selec-
tion by H-AM with selective genotyping in SR21-40. 
Based on the ranking of BW within each SR, the 20% 
heaviest birds were selected to be genotyped, and the G 
matrix was computed based on these genotypes.

Scenario 2
Scenario 2 simulated a population under genomic selec-
tion by H-AM with random genotyping in SR21-40. A 
random subset of 20% birds were selected as the geno-
typed individuals in each SR, and the G matrix was com-
puted based on these genotypes.

Scenario 3
Scenario 3 simulated a population with selection on pre-
dicted BV by A-AM for all SR1-40. i.e. no genomic infor-
mation was used in the selection. However, the genotypes 
of all the birds were saved, and thus available for analyses 
using the H-AM models.

Scenarios 1 and 2 were designed to investigate the 
effects of genomic selection and different genotyp-
ing strategies on VC estimates, and to further test the 
hypothesis that selective genotyping causes bias in VC 
estimates from H-AM. Scenario 3 was used to check 
whether VC estimates were biased when using H-AM 
with selectively genotyped animals in the G matrix, even 
when the population was not under genomic selection.

For analysis of the simulated data, only the phenotypes 
from SR 30 to 40 were used, but with pedigree infor-
mation going back to the base population. We did not 
expect that A-AM would correctly estimate the genetic 
variance in the base population from these analyses 
for two reasons: (1) selection before SR 30 cannot be 
accounted for, because the phenotypes on those genera-
tions were not included in the analysis, and (2) the sim-
ulated data are generated based on a finite locus model 
in which genetic variance can be lost due to  fixation of 
QTL under selection. A-AM cannot correctly model this 
change of genetic variance, because it assumes an infi-
nite locus model in which allele frequencies at underly-
ing loci do not change. For these reasons, we expected 
the A-AM genetic variance estimates to be lower than 
those of the base population. Additional file 1: Figure S1 
plots the genetic variance per generation, computed from 
the variances of true BV in each generation, and shows a 
reduction in genetic variance from the original base pop-
ulation variance of 9644 to an average of ~ 6000 in SR 30 
to 40 that we used in our analysis. Thus, we compared the 
genetic variance estimates both to the genetic variance of 
the base population, and to the A-AM estimate in Sce-
nario-3, and expected the latter to be a better benchmark 
for the expected VC estimates in this dataset.

Phenotypes, genotypes and true BV of all birds were 
saved for all scenarios. Therefore, VC can be estimated 
after simulation using different models and under dif-
ferent genotyping strategies. This includes scenarios 
in which genomic selection was based on selective 
genotyping, but estimation of VC used a random set of 
genotypes, or vice versa. Full pedigree, and phenotypes 
of birds in SR31-40, were used to estimate VC in both 
A-AM and H-AM. To investigate the effects of geno-
typing strategy and proportion of genotyping on VC 
estimates from H-AM, different proportions (10, 20 
and 30%) of either a selected or random set of birds in 
SR31-40 were assumed to be genotyped, and these gen-
otypes were used to construct the G matrix, and thus 

Table 2  Models for  breeding value prediction and   
genotyping strategies in the simulation of three scenarios

SR selection round, A-AM animal model with pedigree-based relationship matrix, 
H-AM Animal model with combined pedigree-based and genomic relationship 
matrix

SR1-20 SR21-40 Genotyping 
strategy 
in SR21-40

Scenario 1 A-AM H-AM Selective, 20%

Scenario 2 A-AM H-AM Random, 20%

Scenario 3 A-AM A-AM None
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the H matrix for H-AM. For each scenario, three repli-
cates were performed, and results are presented as the 
mean estimates over replicates and standard errors (SE) 
of the mean based on the standard deviation of the rep-
licated estimates divided by the square root of the num-
ber of replicates. The estimated VC were compared to 
the variances of the base population and to A-AM esti-
mates of Scenario 3 using a t-test as described above.

Predictive ability, prediction accuracy and bias of predicted 
breeding values
In the commerial data, we evaluated predictive ability, 
computed as the correlation between predicted BV and 
phenotypes corrected for fixed effects ( yc ). The popu-
lation was divided into training and validation data, in 
which all the birds from SR68-72 were grouped into 
the training set; full sibs from the same dam in SR73-
77 were randomly divided into two subsets, one subset 
was merged to the training set and the other subset was 
assumed as the validation set; a bird without siblings 
was placed in the training set. The reason to define 
the validation group in this way was to equalize ran-
dom maternal permanent environmental effects ( m ) 
between training and validation sets. However, with 
full-sibs of validation birds in the training data, the 
obtained accuracies will be higher than what would 
be achieved in reality with a forward prediction. Fixed 
effects were estimated using phenotypes of all birds in 
SR1-77. BV was predicted for birds in the validation set 
with own phenotypes masked as unknown, by the three 
following models: A-AM using VC estimates from 
A-AM; H-AM using VC estimates from A-AM; H-AM 
using VC estimates from H-AM.

For the simulated data, birds from SR31-35 were used 
as training set and birds from SR36-40 were used as 
validation set. Prediction accuracy was computed as the 
correlation between true BV and predicted BV. BV were 
predicted by H-AM using three different VC estimates, 
which were estimated by H-AM or A-AM, or were VC 
estimates of the base population. Prediction accuracy 
under different genotyping strategies with different pro-
portions of genotyping were also compared between 
scenarios.

To evaluate “bias”, i.e. deflation or inflation in predic-
tion of BV, corrected phenotypes ( yc ) were regressed on 
predicted BV for the commercial data, and true BV were 
regressed on predicted BV for the simulated data. The 
deviation of this regression coefficient from 1 indicates 
bias, with a regression coefficient smaller than 1 implying 
inflation in the prediction of BV, and a regression coef-
ficient larger than 1 implying deflation in the prediction 
of BV.

Results
Commercial data
The average and standard deviations of BW per SR for 
genotyped and ungenotyped males and females are in 
Fig. 1, and the distributions of standardized BW of geno-
typed and ungenotyped males and females are in Fig. 2. 
Generally, genotyped individuals were heavier than 
ungenotyped individuals, and this effect was strong-
est in females. However, variation in BW was larger for 
genotyped males than ungenotyped males, whereas it 
was smaller for genotyped females than ungenotyped 
females. This latter effect can be explained from Fig.  2, 
which shows that genotyped females are only heavy-
weight individuals, whereas for males both heavy and 
light individuals were genotyped. In addition, the propor-
tion of genotyped individuals was much higher in females 
than in males (Table 1).

The results from the first set of analyses, which ana-
lysed all data, males and females by A-AM and H-AM 
are in Table  3. They show that H-AM estimated a sig-
nificantly larger genetic variance (over 2 times larger), 
and a significant smaller residual variance than A-AM. 
When analyzing males and females separately, A-AM 
estimates of the genetic variance did not differ signifi-
cantly between males and females, and A-AM and H-AM 
estimates of the genetic variance did not differ signifi-
cantly for males. However, for females, estimates of the 
genetic variance from H-AM were more than five times 
larger and highly significantly different from the A-AM 
estimates. Residual variances followed opposite patterns 
and were very similar (although only just significantly 
different) in males, but much smaller and highly signifi-
cantly different in females for H-AM compared to A-AM. 
Hence, the difference in VC estimates between A-AM 
and H-AM observed in the whole dataset, seems to origi-
nate primarily from the females.

In the second set of analyses on the commercial data, 
we investigated the effects of selective genotyping and 
proportion of genotyping on VC estimates in H-AM 
by analyzing three subsets of the commercial data. The 
results are shown in Table 4. In Subset 1, only the geno-
types of heavy males and of all available females, were 
used to construct G . For all data, this increased σ̂ 2

a  to 
29,054 (297.4) and decreased σ̂ 2

e  to 6719 (104.5), which 
is significantly more compared to the H-AM analy-
sis for all data in Table  3. For the males only, σ̂ 2

a  was 
estimated at 6341 (514.4), which is not significantly 
different from 6606 (385.8) when using the unedited 
male dataset (Table  3). In Subset 2, the proportion of 
genotyped females was decreased, resulting in a signifi-
cant decrease in σ̂ 2

a  to 14,651 (409.9) when using 8000 
genotyped females and even more to 6020 (434.0) when 
using 4000 genotyped females, compared to 23,524 
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(297.4) when using all genotyped females. The H-AM 
VC estimates of genetic variance for females by using 
4000 genotyped females were no longer significantly 
different from the H-AM estimates in males, and were 
also close to the VC estimates from A-AM for females 
in Table  3. In Subset 3, the proportion of selectively 
genotyped males increased to 30%, and σ̂ 2

a  when analys-
ing males only increased to 31,722 (1824.4), which is a 
significant increase compared to the results in Table 3. 
Taken together, these results show that if the propor-
tion of selectively genotyped birds was small (Subset 
1 for males only and Subset 2 with 4000 selectively 
genotyped females), VC from A-AM and H-AM did 
not differ significantly, but when a large proportion of 
selectively genotyped birds was used to construct G 
(Subset 1 for all data and Subset 3 for males), genetic 
variance estimates from H-AM were significantly larger 
than those from A-AM.

Simulation study
The estimates of VC from H-AM and A-AM in the three 
scenarios are summarized in Table 5, which also contains 
the average value of VC estimates and their average SE 
across the three replicates. VC estimates from different 
scenarios and models were compared to the variances for 
the base population, and to A-AM estimates from Sce-
nario 3 (population under A-AM selection).

For H-AM, different genotyping strategies were com-
pared by selecting three proportions (10, 20 and 30%) 
of either preselected or random birds to be genotyped 
and using genotypes of selected birds to compute the G 
matrix. When using genotypes from preselected heavy 
birds in the H-AM analysis, estimates of the genetic 
variance ( ̂σ 2

a  ) were all significantly larger than both the 
variance of the base population and the A-AM estimates 
from Scenario 3, and the over-estimation increased as 
proportion of genotyping increased. This is also true 

Selection round

A
ve

ra
ge

68 69 70 71 72 73 74 75 76 77

17
00

19
00

21
00

23
00

25
00 Genotyped males

Ungenotyped males
Genotyped females
Ungenotyped females

Selection round

S
ta

nd
ar

d 
de

vi
at

io
n

68 69 70 71 72 73 74 75 76 77

80
12

0
16

0
20

0
24

0

Fig. 1  Mean and standard deviation of body weights per selection round (SR), for males and females and for genotyped and ungenotyped birds
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when the population was selected by using A-AM. In 
contrast to σ̂ 2

a  , the estimated residual variance σ̂ 2
e  was 

significantly underestimated in all scenarios using selec-
tive genotyping in the H-AM analysis. However, when 
using genotypes from a random subset of birds in H-AM, 
VC estimates did not differ significantly from the A-AM 
estimates of Scenario 3 for all scenarios, but Scenarios 2 
and 3 underestimate significantly the variance of the base 
population.

The results of the analyses with A-AM in populations 
under genomic selection (Scenarios 1 and 2) showed 
that σ̂ 2

a  was significantly larger than the variance of 

the base-population in Scenario 1, and was signifi-
cantly larger than the A-AM estimate from Scenario 3, 
in Scenarios 1 and 2. The A-AM estimate in Scenario 
3 was significantly lower than the base population σ 2

a0
 

(t-value = 3.32).

Predictive ability, prediction accuracy and bias 
of predictions
For the commercial data, predictive ability and bias of 
predictions were compared among the three models: 
A-AM, H-AM and H-AM (VC-A), which is H-AM using 
VC estimates from A-AM. Table  6 shows that for both 
males and females, H-AM (VC-A) and A-AM had the 
highest and lowest predictive ability, respectively. H-AM 
had a higher predictive ability for genotyped birds than 
for ungenotyped birds, while A-AM and H-AM (VC-A) 
had a lower predictive ability for genotyped birds than for 
ungenotyped birds.

Generally, bias of predictions was smaller for males 
than for females, and all biases indicate inflation of pre-
dictions. Bias was largest for females with H-AM, but 
males were close to unbiased with H-AM. Furthermore, 
levels of bias differed between genotyped and ungeno-
typed birds, but this was not consistent across models: 
bias was larger for genotyped than for ungenotyped birds 
(both in males and females) with A-AM, but bias was 
smaller (close to absent) for genotyped than ungenotyped 
birds with H-AM (VC-A). There was no clear connection 
between predictive ability and bias of predictions.
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Fig. 2  Histogram of standardized body weights (BW) for genotyped and ungenotyped males and females. Standardization was done within each 
selection round, by substracting the mean and dividing the standard deviation of body weights

Table 3  Estimates of  variance components (with SE 
in brackets) using the broiler data

σ̂ 2
a  : genetic variance

σ̂ 2
m : variance of maternal permanent environmental effects

σ̂ 2
e  : residual variance

A-AM animal model with pedigree-based relationship matrix, H-AM animal 
model with combined pedigree-based and genomic relationship matrix
*  Significantly different comparing A-AM versus H-AM estimates within group 
All, Males or Females (P < 0.05)

Data Model σ̂
2
a σ̂

2
m σ̂

2
e

All A-AM 5007 (482.2)* 1414.5 (104.5) 17,062 (249.1)*

All H-AM 12,498 (337.6)* 1269.8 (755.5) 13,775 (144.7)*

Males A-AM 5208 (610.8) 1888.7 (152.7) 21,459 (329.5)*

Males H-AM 6606 (385.8) 1920.8 (120.6) 20,567 (217.0)*

Females A-AM 4653 (450.1)* 1117.1 (96.4)* 11,734 (233.1)*

Females H-AM 23,524 (297.4)* 594.7 (56.3)* 4485 (80.3)*
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For the simulated data, prediction accuracy and infla-
tion were compared between three H-AM using dif-
ferent VC: VC estimated in H-AM or A-AM, or VC of 
the base population (Tables 7, 8). The results show that 
when using H based on selective genotyping, the accu-
racy was lower for genotyped and ungenotyped birds 

when using VC from H-AM than from A-AM and when 
using VC from the base population. Within the same 
scenario, prediction accuracies were higher for random 
genotyping than for selective genotyping when compar-
ing within genotyped or ungenotyped birds and for the 

Table 4  Estimates of variance components (SE) from H-AM using three subsets of the real data

σ̂ 2
a  : genetic variance

σ̂ 2
m : variance of maternal permanent environmental effects

σ̂ 2
e  : residual variance

H-AM Animal model with combined pedigree-based and genomic relationship matrix
*  Significantly different comparing against the H-AM estimates for the same group (All, Male, Female) in Table 3 (P < 0.05)
a  For description of the Subsets see the main text

Subseta Data σ̂
2
a σ̂

2
m σ̂

2
e

Number of genotyped birds 
(genotyping proportion  %)

1 All 29,054 (297.4)* 643.0 (56.3)* 6719 (104.5)* 17,838 (16.43)

Male 6341 (514.4) 1872.6 (128.6) 20,824 (281.3) 3000 (5.57)

2 Female 14,651 (409.9)* 755.5 (72.3) 7065 (176.8)* 8000 (14.62)

Female 6020 (434.0) 1068.9 (80.4)* 11,011 (225.0)* 4000 (7.31)

3 Male 31,722 (1824.4)* 1977.1 (401.9) 10,979 (691.2)* 3000 (30)

Table 5  Average VC estimates across replicates (averaged standard error) in the simulation study

σ̂ 2
a  : genetic variance; σ̂ 2

e  : residual variance

H-AM animal model with combined pedigree-based and genomic relationship matrix, A-AM animal model with pedigree-based relationship matrix
a  Significantly different from the A-AM variance in Scenario 3 (P < 0.05)
b  Significantly different from the base-population variances (P < 0.05)

Selection method in simulation Analysis model Analysis genotyping strategy 
and proportion (%)

σ̂
2
a  (SE) σ̂

2
e  (SE)

Scenario 1: H-AM with 20% selective genotyping in SR21-40 H-AM Selective 10 13,358 (635)ab 22,358 (324)ab

20 40,597 (729)ab 11,904 (243)ab

30 55,051 (639)ab 8695 (136)ab

Random 10 9265 (469) 24,231 (270)ab

20 8967 (440) 24,382 (243)

30 8873 (421) 24,461 (223)

A-AM 11,475 (544)ab 23,148 (312)56

Scenario 2: H-AM with 20% random genotyping in SR21-40 H-AM Selective 10 13,370 (641)ab 22,379 (328)ab

20 43,302 (697)ab 10,911 (223)ab

30 55,735 (635)ab 8462 (133)ab

Random 10 8645 (449)b 24,581 (265)

20 8408 (423)b 24,729 (241)

30 8507 (410)b 24,689 (222)

A-AM 9598 (477)a 24,125 (289)ab

Scenario 3: A-AM in SR1-40 H-AM Selective 10 11,402 (561)ab 23,346 (305)ab

20 37,343 (735)ab 12,947 (260)ab

30 53,307 (633)ab 9037 (142)ab

Random 10 8347 (441)b 24,825 (267)

20 8427 (425)b 24,789 (244)

30 8470 (404)b 24,740 (223)

A-AM 8206 (433)b 24,902 (278)
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same proportion of genotyping. When genotyped and 
ungenotyped birds were compared, prediction accuracy 
was higher for genotyped than for ungenotyped birds 
in all scenarios and for all genotyping strategies. The 
bias was particularly strong for the ungenotyped group 
when using VC from H-AM with selective genotyping 
and a high proportion of genotyping (20 and 30%).

Discussion
The first and main aim of our study was to show that 
there is a (large) overestimation of the genetic variance 
by H-AM with selective genotyping at a sufficienly high 
proportion of genotyping. Using the broiler dataset, we 
showed that the proportion of genotyping is higher for 
females than for males, and genotyping is performed only 
on heavy animals (Table  1, Figs.  1, 2). The estimates of 

Table 6  Predictive abilitya and bias of predictionsb in the commercial data

A-AM animal model with pedigree-based relationship matrix using VC estimated from A-AM, H-AM animal model with combined pedigree-based and genomic 
relationship matrix using VC estimated from H-AM, H-AM(VC-A) animal model with combined pedigree-based and genomic relationship matrix using VC estimated 
from A-AM
a  Predictive ability is correlation between predicted breeding value and corrected phenotype
b  Bias of predicted breeding value is measured by the regression coefficients of predicted breeding values on corrected phenotypes, deviation from unity indicates a 
bias (inflation or deflation) in breeding values
c  Regression coefficients of predicted breeding values on corrected phenotypes

Model Male Female

Genotyped Ungenotyped Genotyped Ungenotyped

Predictive ability A-AM 0.15 0.21 0.25 0.26

H-AM 0.31 0.22 0.40 0.28

H-AM (VC-A) 0.40 0.42 0.44 0.49

Regression coefficientc A-AM 0.93 0.96 0.89 0.95

H-AM 1.01 0.98 0.83 0.77

H-AM (VC-A) 0.99 0.90 0.98 0.89

Table 7  Average prediction accuracya using H-AM with different variance components (VC) in the simulated data

H-AM animal model with combined pedigree-based and genomic relationship matrix, VC-H VC estimates from H-AM, VC-A VC estimates from A-AM (animal model 
with pedigree-based relationship matrix), VC-bp VC of the base population
a  Prediction accuracy is correlation between true and predicted breeding value

Scenario Genotyping strategy 
(%)

VC-H VC-A VC-bp

Genotyped Ungenotyped Genotyped Ungenontyped Genotyped Ungenotyped

1 Selective 10 0.78 0.54 0.78 0.54 0.78 0.54

20 0.73 0.40 0.83 0.53 0.83 0.54

30 0.70 0.35 0.84 0.52 0.84 0.53

Random 10 0.81 0.57 0.81 0.57 0.81 0.57

20 0.86 0.58 0.86 0.57 0.86 0.58

30 0.88 0.58 0.88 0.58 0.88 0.58

2 Selective 10 0.78 0.54 0.79 0.56 0.79 0.56

20 0.72 0.40 0.83 0.55 0.82 0.55

30 0.70 0.36 0.84 0.54 0.84 0.54

Random 10 0.83 0.59 0.83 0.59 0.83 0.59

20 0.87 0.59 0.87 0.59 0.87 0.59

30 0.88 0.60 0.88 0.60 0.88 0.60

3 Selective 10 0.80 0.59 0.80 0.60 0.80 0.60

20 0.75 0.45 0.83 0.59 0.83 0.59

30 0.72 0.39 0.85 0.58 0.85 0.58

Random 10 0.84 0.62 0.84 0.62 0.84 0.62

20 0.87 0.63 0.87 0.63 0.87 0.63

30 0.89 0.63 0.89 0.63 0.89 0.63
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genetic variance by H-AM and A-AM were similar and 
did not differ significantly for males, whereas for females 
the H-AM estimate of genetic variance was more than 5 
times larger than the A-AM estimate, which represents 
a highly significant difference (Table  3). This suggests 
that the extreme high estimate of the genetic variance by 
H-AM for females is due to the females having a higher 
proportion and more selectively genotyped individuals. 
Further editing of the data showed that we could increase 
or decrease H-AM estimates of genetic variance by 
modifying the genotyping stratetegy and proportion of 
genotyping, which corroborates the connection between 
large estimates of genetic variance by H-AM and a high 
proportion of selectively genotyped individuals in the 
analysis (Table 4). In the simulation study, we could rep-
licate these effects and confirmed that H-AM estimates 
of genetic variance could be highly biased upwards under 
selective genotyping: we simulated a genetic variance in 
the base population of 9644, but with a high proportion 
(30%) of selective genotyping, H-AM obtained estimates 
of genetic variance larger than 50,000 (Table  5). These 
findings based on both real and simulated data clearly 
show that the estimation of VC by H-AM is very sensi-
tive to genotyping strategy and proportion of genotyp-
ing, with large overestimates of genetic variance under 

selective genotyping when the proportion of genotyped 
individuals is high.

Few studies have used H-AM for VC estimation. One 
study estimated VC in pigs [22] and reported similar her-
itabilities for three of the traits studied, and an increased 
heritability for a fourth trait (from 0.29 (SE 0.04) using 
A-AM to 0.36 (SE 0.03) using H-AM). Selection and 
genotyping strategies are not described in [22], but if 
genotyping was (close to) random with respect to the first 
three traits, and selective based on the fourth trait, this 
result could support our findings.

H-AM is A-AM with genotype data added for part of 
the individuals, and if the proportion of genotyping is 
low, it is logical that H-AM and A-AM lead to similar 
results and that the amount of bias in H-AM from selec-
tive genotyping depends on the proportion of genotyped 
animals. We were able to show this effect clearly: with 
the commercial data, we created an edited dataset with 
5.57% of selectively genotyped males, and observed no 
difference between the variance estimates obtained with 
H-AM and A-AM (Table 4). In the simulated datasets, at 
a proportion of genotyping of 10%, we found a significant 
but still modest upwards bias in H-AM (Table 5). Hence, 
up to a proportion of 10% of genotyped individuals, over-
estimation of genetic variance by H-AM under selective 

Table 8  Average bias of predictionsa from H-AM with different variance components (VC) in the simulated data

H-AM animal model with combined pedigree-based and genomic relationship matrix, VC-H VC estimates from H-AM, VC-A VC estimates from A-AM (animal model 
with pedigree-based relationship matrix), VC-bp VC of the base population
a  Bias of predicted breeding values is presented as the regression coefficient of the true breeding values on the predicted breeding values; deviation from 1 implies 
bias, regression coefficients lower than 1 imply inflation in the predictions

Scenario Genotyping strategy 
(%)

VC-H VC-A VC-bp

Genotyped Ungenotyped Genotyped Ungenotyped Genotyped Ungenotyped

1 Selective 10 0.96 0.76 0.96 0.82 0.96 0.88

20 0.93 0.33 0.99 0.85 0.99 0.91

30 0.97 0.26 1.04 0.88 1.04 0.93

Random 10 0.91 0.87 0.88 0.79 0.91 0.86

20 0.94 0.89 0.91 0.80 0.93 0.87

30 0.95 0.90 0.93 0.81 0.95 0.88

2 Selective 10 1.01 0.80 1.02 0.92 1.02 0.93

20 0.98 0.31 1.06 0.95 1.06 0.96

30 1.01 0.27 1.10 0.98 1.10 0.98

Random 10 0.96 0.95 0.94 0.91 0.95 0.92

20 0.99 0.96 0.97 0.91 0.97 0.92

30 0.98 0.96 0.97 0.92 0.97 0.93

3 Selective 10 1.01 0.91 1.03 1.00 1.02 0.97

20 0.99 0.41 1.07 1.02 1.06 0.99

30 1.06 0.31 1.11 1.03 1.11 1.01

Random 10 0.99 0.99 0.99 1.00 0.97 0.95

20 0.99 0.99 0.99 1.00 0.98 0.96

30 0.99 1.00 0.99 1.00 0.98 0.96
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genotyping remained small. From a proportion of ~ 20% 
selective genotyping, overestimation of genetic variance 
by H-AM became large.

Based on our simulation studies, we could separate 
two effects related to selective genotyping: (1) the effect 
of using selective genotyping in the genomic selection; 
and (2) the effect of using a selective sample of genotyped 
individuals in the H matrix. When we analyzed Scenario 
1, which was under genomic selection with selective gen-
otyping, and used a set of random genotypes to construct 
H , no strong biases were observed (Table 5). Hence, the 
bias does not arise from using genomic selection with 
selective genotyping. However, in Scenario 2, which was 
under genomic selection with random genotyping, and in 
Scenario 3, which did not use genomic selection at all, we 
obtained highly biased estimates from H-AM when using 
a selective sample of genotypes in the H matrix (Table 5). 
Hence, the bias in H-AM is uniquely associated with the 
use of a selective group of genotypes in the H matrix, 
irrespective of the underlying selection process. An asso-
ciate editor of this journal suggested that the cause of the 
bias in H-AM under selective genotyping is related to the 
G-matrix not properly modelling the “segmental nature 
of inheritance of DNA” [23], i.e., the standard procedures 
to construct G do not account for the physical linkage 
between markers, and the recombination events that 
create shared identical by descent (IBD) genomic seg-
ments between parents and progeny. This suggests that 
the problems, which we observed, could be repaired by 
constructing estimates of genomic relationships that are 
based on tracing segregation and IBD based on pedigree 
data. Other studies have addressed the issue that the esti-
mators of genetic variance based on G (or H ) ignore LD 
between QTL, which can cause both underestimation 
[24] and overestimation [25] of genetic variance, depend-
ing on the predominant sign of the LD between QTL. 
Under selection, this LD should be negative, leading to 
overestimation [25]. In our results, we did not see over-
estimation with random genotyping, but only with selec-
tive genotyping. This could imply that selection in itself 
was not strong enough to cause significant LD between 
QTL, but with selective genotyping such an effect may 
have been induced and led to overestimation of genetic 
variance.

The second objective of this study was to investigate 
the hypothesis that A-AM could provide biased estimates 
of genetic variance in populations under genomic selec-
tion, and whether H-AM with random genotyping can be 
an alternative approach. This is based on the simulation 
study for which we know the underlying QTL and genetic 
variances. One issue in interpreting the results from the 
simulation study is that, as described in Methods, we 
expect genetic variance estimates to be lower than that 

of the original base population because (1) the selection 
history up to SR 30 was hidden by not including pheno-
types from these SR in the analysis; and (2) we used a 
finite-locus model to simulate genomic selection causing 
the genetic variance to decrease across generations due 
to the change in allele frequencies at the QTL. Thus, we 
compared VC estimates both to the original base popu-
lation variance (9644), and to the A-AM estimate for 
populations under A-AM selection (Scenario 3), which 
estimated genetic variance at 8206 (Table 5).

The results with A-AM in populations under genomic 
selection (Scenario 1 and 2) showed that A-AM esti-
mates were clearly biased upwards in Scenario 1, but 
in Scenario 2 the conclusion is ambiguous because the 
genetic variance estimate did not differ significantly 
from the variance of the base population, but did dif-
fer significantly from the A-AM estimate in the popula-
tion without genomic selection (Table 5). The difference 
between Scenarios 1 and 2 can be explained by genomic 
selection being more efficient in Scenario 1 (based on 
selective genotyping) than in Scenario 2 (based on ran-
dom genotyping). Hence, we conclude that VC estimates 
from A-AM are indeed biased for populations under 
genomic selection, but the bias may not be clearly vis-
ible when genomic selection is less efficient. The upward 
bias in estimates of genetic variance from A-AM can be 
explained by genomic selection being more efficient than 
what A-AM can explain based on information from phe-
notypes and pedigree. The selection response in popu-
lations under genomic selection is likely higher than 
what the phenotypic selection differential can explain, 
and as a consequence A-AM needs to inflate its herit-
ability in order to explain the extra selection response 
due to exploitation of genomic information. Hence, the 
common assumption that A-AM can give unbiased VC 
estimates is no longer met after implementing genomic 
selection, because A-AM cannot capture the effects 
of selection based on genomic information. In the long 
term, breeding programs must not overlook the bias in 
VC estimates from A-AM, and alternative models and 
methods to estimate VC in populations under genomic 
selection should be developed.

We verified whether H-AM with random genotyping 
could be an alternative for estimating genetic variance in 
populations under genomic selection and we found that 
the estimates were significantly smaller than the variance 
of the base population for Scenarios 2 and 3, but for all 
scenarios they did not differ from the Scenario 3 A-AM 
estimate for a population that was not under genomic 
selection. If one assumes that analysis of this data should 
retreive the variance of the base population, these 
lower estimates are difficult to explain. However, if one 
assumes, for the reasons explained above, that analysis 
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of this data should result in estimates of genetic variance 
smaller than the variance of the base population, then the 
Scenario 3 A-AM estimate and all H-AM estimates with 
random genotyping fit this expectation. We concluded 
that the results from H-AM with random genotyping 
remain ambiguous, but suggest that H-AM with random 
genotyping may be more appropriate than A-AM for 
the estimation of genetic variance in populations under 
genomic selection.

As already noted above, H-AM with a low proportion 
of genotyping should perform similarly to A-AM. Since 
we have established that A-AM overestimates genetic 
variances for populations under genomic selection, at 
least clearly in Scenario 1 with strong genomic selection, 
then H-AM with a low proportion of genotyping should 
also overestimate genetic variances. Indeed, in Scenario 
1 estimates of genetic variance from H-AM with ran-
dom genotyping tend to increase when the proportion of 
genotyping decreases. This trend is small and not signifi-
cant, but in line with the overestimation by A-AM. We 
also observed that H-AM with 10% random genotyp-
ing is sufficient to make a significant downward adjust-
ment on the overestimate of A-AM in the scenario with 
genomic selection using selective genotyping (in Scenario 
1, the H-AM estimate of 9265 ± 469 differs significantly 
from the A-AM estimate of 11,475 ± 544, t-value = 3.08). 
The results from using H-AM with random genotyping 
in the population under genomic selection with selective 
genotyping (Scenario 1), suggest that a dual genotyping 
strategy could be used: selective genotyping for estima-
tion of BV using H-AM, which is known to lead to high 
accuracy, and a random genotyping for estimation of VC.

Use of inappropriate VC can generate bias in predicted 
BV [26], with “bias” here referring to bias in the classi-
cal animal breeding literature on unbiased prediction 
[27]. The use of unbiased predictors is a cornerstone in 
animal breeding, as it allows comparison of BV and selec-
tion across groups for which different amounts of infor-
mation are available [27]. The results from the simulation 
study clearly showed that, in several cases, the variance of 
predicted BV was too large, because the regression coef-
ficients were mostly smaller than 1 in populations under 
genomic selection (Scenarios 1 and 2 in Table 8). When 
using VC estimated from H-AM with a high propor-
tion of genotyping (20 and 30%) among the preselected 
heavy birds, the regression coefficients for ungenotyped 
birds ranged only from 0.26 to 0.31, whereas the regres-
sion coeffients for genotyped birds were higher than 0.9. 
This means that predicted BV for ungenotyped birds 
were severely inflated, which would introduce subopti-
mal selection across genotyped and ungenotyped birds. 
However, when using VC from A-AM or base popula-
tion parameters, or when using random genotyping, the 

regression coefficients were much closer to 1 and more 
similar between genotyped and ungenotyped birds. The 
inflation in predicted BV reflected the bias in VC esti-
mates which was used in MME to predict BV. In the near 
future, as breeding programs tend to genotype more indi-
viduals, the genotyping strategy should be considered 
not only for maximizing genetic gain, but also for ensur-
ing unbiased VC estimates in order to predict BV with-
out (different) biases for genotyped and ungenotyped 
animals.

Our findings imply that populations under genomic 
selection need a proper strategy to collect genotypes, 
which should ensure that the current statistical models 
can provide unbiased VC estimates and thus unbiased 
prediction of BV. We showed that genotyping a high pro-
portion of heavy birds in broiler breeding caused strong 
overestimation of the genetic variance, which also leads 
to bias in predicted BV. In addition, we showed that 
A-AM also overestimates the genetic variance in popu-
lations under genomic selection, although in our results 
this was clearly significant only in the scenario with the 
strongest genomic selection. Finally, our results suggest 
that H-AM with random genotyping could provide plau-
sible estimates of VC. As in one of our scenarios, it is pos-
sible to combine selective genotyping for the purpose of 
selecting breeding animals, with random genotyping for 
the purpose of estimating VC. In addition, other selective 
genotyping strategies besides random genotyping have 
been considered in the literature, for instance genotyp-
ing both low and high extreme phenotypes was described 
for prediction of BV by [14, 15]. It could be interesting to 
investigate these alternative genotyping strategies also for 
estimating VC. Without better models, we recommend 
to avoid the use of selectively genotyped individuals for 
the estimation of VC using H-AM.

Conclusions
In this study, we showed that estimates of genetic vari-
ance from a single-step animal model, in which genomic 
and pedigre relationships are combined (H-AM), can be 
severely overestimated when using selective genotyp-
ing at a high proportion. We found that, for populations 
under genomic selection, genetic variances estimated 
from the pedigree-based animal model (A-AM) were 
also biased. This is due to the inability of A-AM to cap-
ture the effect of genomic selection. When we used a ran-
dom genotyping strategy, genetic variance estimates from 
H-AM were close to expected values. In addition, we 
demonstrated that predicted breeding values were biased 
when using inappropriate variance estimates, and more 
so for ungenotyped than for genotyped animals, which 
would lead to suboptimal selection across genotyped 
and ungenotyped animals. Therefore, we recommend to 



Page 14 of 14Wang et al. Genet Sel Evol           (2020) 52:31 

ensure that individuals from the whole distribution of 
phenotypes are genotyped.
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