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The gut microbiota and metabolites are closely related to hypertension;

however, the changes in the composition of the gut microbiome and

metabolites linking a high salt diet to elevated blood pressure are not

established. In this study, traditional Chinese medicine (TCM) syndrome of

hypertension caused by high salt had been diagnosed and the pathogenesis

of hypertension was explored from the perspective of intestinal microecology.

Rats in a high salt diet-induced hypertension group (CG) and normal group

(CZ) were compared by 16S rRNA gene full-length sequencing and liquid

chromatography andmass spectrometry to identify di�erences in the bacterial

community structure, metabolites, and metabolic pathways. Hypertension

induced by a high salt diet belongs to liver-Yang hyperactivity syndrome.

Alpha and beta diversity as well as the composition of microbiota from

the phylum to species levels di�ered substantially between the CG and CZ

groups. In an analysis of di�erential metabolites in the intestines, a high salt

diet mainly a�ected the metabolism of amino acids and their derivatives;

in particular, γ-aminobutyric acid (GABA) was down-regulated and glutamic

acid and its derivatives were up-regulated under a high salt diet. Based on

a KEGG analysis, high salt intake mainly altered pathways related to GABA

and the glutamate/glutamine metabolism, such as the GABAergic synapse

pathway and glutamatergic synapse pathway. The correlation analysis of

di�erential gut microbes and di�erential metabolites suggested that a high

salt diet promoted hypertension via the inhibition of Clostridiaceae_1 growth

and alterations in the GABA metabolic pathway, leading to increased blood

pressure. These findings suggest that a high salt diet induces hypertension of
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liver-Yang hyperactivity syndrome bymediating themicrobiota associatedwith

the glutamate/GABA-glutamine metabolic cycle via the gut–brain axis.

KEYWORDS

high salt diet, hypertension, liver-yang hyperactivity syndrome, gut microbiota,
metabolite, glutamate/GABA-glutamine cycle

GRAPHICAL ABSTRACT | The process of animal experimental verification.

Introduction

Hypertension is a key contributor to cardiovascular disease

and a major risk factor for morbidity and mortality worldwide

(1). Hypertension is a complex disease characterized by

persistently elevated blood pressure in the arteries, and damage

to the kidneys, brain, and vascular system could increase

the risk of hypertension (2). However, the pathogenesis of

hypertension is not fully understood. Thus, elucidating the

pathogenesis and identifying new strategies for the treatment

of hypertension will have a significant impact on human health

and wellbeing. The diagnosis and treatment of hypertension

with TCM had the advantages of individualized and precise

treatment and small side effects (3). Experts of Society of

cardiovascular diseases, China association of Chinese medicine

consensus on diagnosis and treatment of hypertension with
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traditional Chinese medicine and they standardized the

identification of hypertension syndrome type and the use of

prescription (4).

Salt is an essential micronutrient that enhances taste and is

widely used in the food industry as a preservative. Owing to

dietary habits and trends in the food industry, salt consumption

is far more than the recommended 6 g/day limit and the

threat of health issues due to a high salt diet is becoming

increasingly apparent (5). In clinical research on hypertension,

a high salt diet is an important cause, and daily sodium intake

is positively associated with the aggravation of hypertension

(6, 7). Epidemiological studies have also confirmed that salt

intake is closely associated with increased blood pressure (8–

10).

The gut microbiota has been recognized as an important

and independent metabolic organ. The gut microbiota and

its metabolites are considered key regulators of brain–

gut function (11) and have attracted widespread attention

owing to associations with chronic diseases (12). Diet

affects the composition of the gut microbiota and dysbiosis

of gut microbiota has been found in both patients with

hypertension and preclinical models (13–16). Salt intake

affects the gut microbiota, microbial metabolite composition,

and blood pressure (17). Traditional Chinese medicine

(TCM) syndrome of hypertension caused by high salt had

been diagnosis and we characterized changes in the gut

microbiota and metabolites induced by a high salt diet and

evaluated correlations between microbial alterations and

differential metabolites. These results provide an insight into

the pathogenesis of high salt diet-induced hypertension.

Correlation analysis of gut microbiota, metabolites and

related pathways can provide a theoretical basis for the

treatment of hypertension in TCM from the perspective of

intestinal microecology, and can guide people to use dietary

salt rationally.

Materials and methods

Animals

Male Wistar rats (3 to 4 weeks old, 55–75 g) were

purchased from Beijing Vital River Laboratory Animal

Technology Co., Ltd. (Beijing, China), with license number

SCXK (Jing) 2016-0006. Wistar rats were raised in a shielded

environment at the Animal Experiment Center of the

Hunan University of Chinese Medicine with license number

SYXK (Xiang) 2015-0003 under a 12/12 dark–light cycle

(21 ± 2◦C with a relatively constant humidity of 45

± 10%). Mice were provided ad libitum access to food

and water.

Hypertension modeling induced by a
high salt diet

Twelve Wistar rats were randomly divided into a normal

group (CZ group) and hypertension model group (CG group)

(six rats per group). Rats in the CG group were given 8% high

salt animal feed and those in the CZ group were given normal

animal feed. High salt feed and normal feed were obtained from

the same feed company (Beijing Vital River Laboratory Animal

Technology Co., Ltd.) and had the same nutrient contents,

except for the salt content. In the analysis of the development of

hypertension, blood pressure was measured by rat caudal artery

manometry once a week.

Intestinal content collection

The intestinal tract tissue from the pylorus of the stomach to

the ileocecus was cut longitudinally with sterile scissors to peel

away the contents. Samples of the intestinal contents in the CZ

group and CG group were collected in sterilized tubes and stored

at −80◦C. For the CZ and CG groups, four samples from each

group were selected for gut microbiota detection by 16S rRNA

gene sequencing and five samples were selected for intestinal

metabolite detection by UPLC-MS.

16S rRNA PacBio SMRT gene full-length
sequencing

PacBio SMRT sequencing technology was used to accurately

obtain full-length 16S rRNA gene sequences (18, 19). Total

microbial genomic DNAs of intestinal contents samples were

extracted following the manufacturer’s instructions and stored

at −20◦C. Total microbial genomic DNA samples were

extracted using the OMEGA DNA Isolation Kit (D5625-01;

Omega, Knoxville, TN, USA) following the manufacturer’s

instructions. The DNA concentration was determined using

the NanoDrop ND-1000 spectrophotometer (Thermo Fisher

Scientific, Waltham, MA, USA). PCR amplification of the

nearly full-length bacterial 16S rRNA gene was performed using

the forward primer 27F (5′-AGAGTTTGATCMTGGCTCAG-

3′) and the reverse primer 1492R (5′-ACCTTGTTACGACTT-

3′). The extracted DNA was amplified by two-step PCR, with

sample-specific 16 bp barcodes incorporated into the forward

and reverse primers for multiplex sequencing in the second PCR

step. Next, the TruSeq Nano DNA LT Library Prep Kit was used

to prepare the sequencing library. The library was tested using

the Agilent High Sensitivity DNA Kit on the Agilent Bioanalyzer

(Santa Clara, CA, USA). Finally, the amplified DNA fragment

was sequenced using the MiSeq sequencer to obtain 2 × 300 bp

paired-end reads with the MiSeq Reagent Kit V3 (600 cycles).
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TABLE 1 Blood pressure of Wistar rats with a high salt diet (mmHg).

Time CZ CG

SBP DBP SBP DBP

Initial value 95.47± 21.40a 81.40± 19.42A 98.38± 17.53a 67.56± 21.65A

The first week 109.10± 13.31b 84.30± 16.41A 120.89± 19.65a 88.86± 17.71A

The second week 119.42± 14.67b 95.24± 15.23A 135.22± 20.34a 88.42± 17.44A

The third week 112.19± 27.34b 94.48± 28.36B 159.84± 36.75a 113.00± 29.16A

The fourth week 139.53± 27.32b 119.92± 26.08B 188.80± 30.10a 140.71± 29.01A

The fifth week 135.13± 16.86b 104.64± 21.97B 190.92± 41.31a 140.81± 34.15A

The sixth week 149.08± 16.52b 118.32± 13.34B 190.92± 41.31a 145.76± 40.61A

CZ, normal group, CG, hypertensive group, DBP represents diastolic blood pressure, SBP represents systolic blood pressure. 2. Upper case letters were used to compare DBP between the

CZ and CG groups, lower case letters were used to compare SBP between the CZ and CG groups, different letters indicated significant differences (P < 0.05).

SMRT sequencing technology and the PacBio Sequel platform

were used for analyses at Shanghai Personal Biotechnology Co.,

Ltd. (Shanghai, China).

Bioinformatics and statistical analyses

All fastq files were subjected to quality control using the

QIIME 1.9.1 workflow. The remaining high-quality sequences

were clustered into operational taxonomic units (OTUs) at

a 97% sequence identity threshold using UCLUST (20). The

Biological Observation Matrix (BIOM) file was used for the

downstream analysis using the QIIME 1.9.1 pipeline and

R language (v3.2.0). Alpha diversity was measured based

on the number of observed OTUs and Chao1, Simpson,

ACE, and Shannon indices rarified at the same sequencing

depth. Beta diversity was analyzed to investigate structural

variation in microbial communities across samples based on

UniFrac distance metrics and a principal coordinate analysis

(PCoA). The Wilcoxon rank sum test was used to analyze

differences in the relative abundance of microbial taxa. Linear

discriminant analysis effect size (LEfSe) was performed to

identify differences in the microbial structure between groups,

with default parameters.

Untargeted omics detection of intestinal
metabolites by UPLC-MS and statistical
analyses

Metabolite extraction

After 100mg (±1%) of each sample was added to a 2mL

EP tube, 0.6mL of 2-chlorophenylalanine (4 ppm) methanol

(−20◦C) was added and vortexed for 30 s (samples of less

than 50mg were extracted by half of the experimental system).

Then, 100mg of glass beads was added, placed in a tissue

grinder, and ground for 90 s at 55Hz. Samples were subjected

to ultrasound treatment at room temperature (26◦C) for 10min

and centrifugation at 12,000 rpm and 4◦C for 10min. Then,

200 µL of the supernatant was filtered through a 0.22µm

membrane, and the filtrate was added to a detection bottle.

A volume of 20 µL was obtained from each sample for

quality control (QC). (These QC samples were used to monitor

deviations in the analytical results from pooled samples and

errors caused by the analytical instrument itself.) Samples were

then used for LC-MS detection following previously described

methods (21–24).

Detection

Chromatographic conditions were as follows.

Chromatographic separation was accomplished using the

Thermo Ultimate 3000 system equipped with an ACQUITY

UPLC R© HSS T3 (150 × 2.1mm, 1.8µm; Waters, Milford,

MA, USA) column maintained at 40◦C. The temperature

of the autosampler was 8◦C. Gradient elution of analytes

was carried out with 0.1% formic acid in water (C) and

0.1% formic acid in acetonitrile (D) or 5mM ammonium

formate in water (A) and acetonitrile (B) at a flow rate of

0.25 mL/min. Injection of 2 µL of each sample was done after

equilibration. An increasing linear gradient of solvent B (v/v)

was used as follows: 0–1min, 2% B/D; 1–9min, 2–50% B/D;

9–12min, 50–98% B/D; 12–13.5min, 98% B/D; 13.5–14min,

98–2% B/D; 14–20min, 2% D-positive model (14–17min, 2%

B-negative model).

Mass spectrometry conditions were as follows. The ESI-MS

experiments were executed on the Thermo Q Exactive Focus

mass spectrometer with a spray voltage of 3.5 kV and −2.5

kV in positive and negative modes, respectively. Sheath gas and

auxiliary gas were set at 30 and 10 arbitrary units, respectively.

The capillary temperature was 325◦C. The Orbitrap analyzer

scanned over a mass range of m/z 81–1000 for full scans at a

mass resolution of 70,000. Data-dependent acquisition (DDA)

MS/MS experiments were performed with HCD scans. The
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normalized collision energy was 30 eV. Dynamic exclusion was

implemented to remove unnecessary information in MS/MS

spectra (25). Variable importance in projection VIP (value

importance in projection) ≥ 1, P ≤ 0.05, and one-way ANOVA

P ≤ 0.05 were used as thresholds to identify metabolites

with significant differences (biomarker). We performed an

integrated metabolic pathway analysis using KEGG to evaluate

candidate biomarkers.

Correlations between the gut microbiota
and metabolites

The correlation between the gut microbiota and metabolite

profile was analyzed. Spearman’s correlation coefficients were

used to evaluate the correlations between the gut microbiota and

the host metabolome.

Statistical analysis

Results are presented as means ± SEM. Bar plots

were generated and statistical analyses were performed using

GraphPad Prism 7 by using one-way ANOVA and t-tests. P

< 0.05 was considered significant. P-values are represented as

follows: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, and N.S., not

significant (P > 0.05).

Results

Hypertension induced by a high salt diet
and traditional chinese medicine (TCM)
syndrome

As shown in Table 1, there were no significant differences

in systolic blood pressure (SBP) or diastolic blood pressure

(DBP) between the CZ and CG groups before the administration

of a high-salt diet. From week one, SBP values in the CG

group were significantly higher than those in the CZ group

(P < 0.05). For DBP, from week three, DBP values in the CG

group were significantly higher than those in the CZ group

(P 0.05). At weeks 5 and 6, DBP and SBP values in the CG

group were over 20% higher than those in the CZ group, and

every rat in the CG group developed hypertension. These results

suggested that Wistar rats in the experimental group developed

hypertension induced by a high salt diet. According to the

degree of hyperactivity and irritability, rotation tolerance and

behavior test and other indicators, it could be determined that

the hypertension induced by a high salt diet belonged to the liver

-Yang hyperactivity syndrome.

Diversity and composition of the
microbiota

Microbial diversity and OTU identification from
phylum to species levels

The OTU number did not differ between the CZ and CG

groups (Figure 1A). High salt intake significantly perturbed

alpha diversity, as determined by Chao1 (P= 0.021) and ACE (P

= 0.032) indices (Figure 1C 2, 3), with no significant differences

in Simpson and Shannon indices between groups (Figure 1C

1, 4). Beta diversity, as evaluated by PCoA and non-metric

multidimensional scaling (NMDS), also differed significantly

between the CZ and CG groups (P = 0.009 and 0.042 for PCoA

and NMDS, respectively) (Figure 1B 1, 2). Alpha diversity and

beta diversity were based on OTUs.

From the phylum to species levels, bacterial communities

were systematically classified and compared between the CZ

and CG groups. Members of the phylum Firmicutes were the

most abundant in the CZ and CG groups, accounting for 62.69

and 51.12% of OTUs, respectively, followed by members of the

phyla Bacteroidetes and Actinobacteria. Firmicutes showed a

significant difference in abundance between groups (Figure 1D

1, P > 0.05), while Bacteroidetes and Actinobacteria did not

differ in abundance between the CG and CZ groups (Figure 1D

1, P > 0.05). The phyla Chloroflexi and Cyanobacteria were only

detected in the CZ group and Armatimonadetes, Deinococcus-

Thermus, FBP, and Planctomycetes were only detected in the

CG group.

At the genus level, the top three genera were Lactobacillus,

Romboutsia, and Streptococcus; however, there were no

differences in relative abundance between groups (Figure 1D

2, P > 0.05). The relative abundance of Allobaculum

in the CZ group was significantly lower than that in

the CG group, and Dubosiella was only observed in the

CG group.

At the species level, among the top 15 dominant species,

the top four were all Lactobacillus: L. johnsonii, L. vaginalis,

L. murinus, and L. reuteri. The frequencies of the four species

did not differ significantly between groups (Figure 1D 3, P

> 0.05). Bifidobacterium animalis had a significantly higher

frequency in the CG group than in the CZ group. Eubacterium

plexicaudatum (0.07% vs. 0) was unique to the CZ group,

and Pasteurella multocida (0 vs. 0.59%) was unique to the

CG group.

Microbial composition and key bacteria

Beta diversity and two indicators of alpha diversity,

Chao1 and ACE, differed significantly between groups

(Figures 1B,C). Our study of the gut bacterial species

involved in hypertension induced by a high salt diet was

largely based on taxon abundance, rather than OTUs.

Based on analyses of relative abundance from the phylum
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FIGURE 1

Hypertension of liver-Yang hyperactivity syndrome induced by a high salt diet alters intestinal microbiota diversity and composition. (A) Bar plots

of observed operational taxonomic unit (OTUs). (B) Box plots of β - diversity index of PCoA1 and NMDS of OTUs, represented by the space

distance among groups. (C) Bar plots of α - diversity index of OTUs (Chao1, Simpson, ACE, and Shannon). (D) Relative mean abundance of (1)

phyla, (2) genus and (3) species in the intestinal contents, (A–D) *P < 0.05, **P < 0.01; N.S., not significant (P > 0.05). CZ, normal group, CG,

hypertensive group.
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FIGURE 2

The diversity, composition and key bacteria of intestinal microbiota with hypertension of liver-Yang hyperactivity syndrome induced by a high

salt diet at species level. (A) Venn diagram of OTU distribution at species level. (B) Cluser analysis of PCoA based on the OTUs of taxonomic

bacterial species. (C) Heatmap clustering of community species abundance at species level, and the closer the color is to red, the higher the

abundance. (D) Cladogram generated from the LEfSe analysis indicating the phylogenetic distribution from family to species of the microbiota

(LDA score ≥ 2, P < 0.05). CZ, normal group, CG, hypertensive group.
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FIGURE 3

Determination and heat map of intestinal metabolites we focus in hypertension of liver-Yang hyperactivity syndrome induced by a high salt diet.

(A) Quality assurance results diagramof positive ions. (1) The middle green dots are samples (the figure is measured together with multiple

groups of data, two of which are used in this paper), the red dots are QC samples. (2) The left ordinate is the proportion of RSD < 30%, the right

ordinate is the specific value, and the abscissa is the range of RSD value. (B) (1) PLS-DA score plot of positive ions, (2) Permutation testing of

positive ions. (C) The heat map of cluster analysis of di�erential metabolites. CZ, normal group, CG, hypertensive group.
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FIGURE 4

Fifteen significantly di�erent metabolites we focus of hypertension of liver-Yang hyperactivity syndrome induced by a high salt diet. CZ, normal

group, CG, hypertensive group. *P < 0.05.
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TABLE 2 The top five di�erential metabolite pathways.

Pathway name Total Hits Raw p -log(p) Holm adjust FDR Impact

GABAergic synapse 9 3 0.0058928 5.134 1 0.17875 0.529

Nicotine addiction 7 3 0.002622 5.9438 0.7027 0.1193 0.429

Glutamatergic synapse 8 2 0.04587 3.0819 1 0.76927 0.400

Renal cell carcinoma 3 1 0.12726 2.0616 1 1 0.400

Alanine, aspartate and glutamate metabolism 8 1 0.30459 1.1888 1 1 0.393

Total: the total number of compounds in the pathway. Hits: the number of differential metabolites in target metabolic pathways. Raw p: p value of hypergeometric distribution test. The

original p value calculated from the enrichment analysis. -log(p): take the negative value of the natural log of the p value; Holm adjust p: the p value adjusted by Holm–Bonferroni method.

FDR p: p value adjusted using False Discovery Rate. Impact: the pathway impact value calculated from pathway topology analysis.

to species level, the composition of the gut microbiota

differed between groups (Figure 1D 1–3). A Venn diagram

of the species level results revealed 55 and 38 OTUs in

the CZ and CG groups, with 26 shared OTUs (Figure 2A).

Additionally, based on the OTUs of taxonomic bacterial

species, 75.38% of the total variance was explained by principal

components 1 and 2 in the clustering analysis and the

PCoA diagram showed obvious separation between groups

(Figure 2B).

A heatmap of community species abundance at the species

level revealed that the top 30 species in the CZ and CG groups

were dominated by Firmicutes, followed by Proteobacteria

(Figure 2C). In the LEfSe analysis, the two groups had a

significant structural difference and 58 signature bacterial

taxa differentiated the groups (LDA Score > 2) (Figure 2D).

Excluding the unculturable taxa, we identified 8 species,

14 genera, and 8 families with differences in abundance.

The LEfSe analysis showed that Lactobacillus acidophilus,

Clostridium sp., Parabacteroides distasonis, Bifidobacterium

animalis, Parabacteroides johnsonii, Aerococcus urinaeequi, and

Bacteroides vulgatus were identified as key discriminant taxa.

The four species Parabacteroides johnsonii, Parabacteroides

distasonis, Bacteroides vulgatus, and Aerococcus urinaeequi were

found to be only present in the CG group. Lactobacillus

acidophilus and Clostridium sp. were found to be only

present in the CZ group. The species identified in this

analysis might be indicators of hypertension induced by high

salt intake.

Intestinal metabolite analysis and key
di�erential metabolites

Intestinal metabolites vary with the gut microbiota. We

evaluated intestinal metabolites in the CZ and CG groups.

The total ion current (TIC) chromatograms of typical LC/MS

for non-targeted metabolomics in positive and negative

modes revealed an obvious difference between the two

groups. As shown in Figure 4A, the ratio of characteristic

peaks with RSD < 30% was 85.5% and R2 was 0.595,

indicating that the detection data were reliable. PLS-DA

showed that the two groups could be separated and showed

a significant difference in metabolite profiles (Figures 3A,B

1, 2).

We used VIP ≥ 1, P ≤ 0.05, and one-way ANOVA P ≤ 0.05

to screen metabolites (26, 27). We found that the differential

metabolites were primarily short chain fatty acids (mainly

butyric acid), amino acids (mainly glutamic acid), and their

derivatives (Figure 4). Among 15 metabolites shown in Figure 4,

levels of 3 metabolites in the CZ group were significantly

higher than those in the CG group (P < 0.05); in contrast,

levels of 12 metabolites were higher in the CG group than in

the CZ group (P < 0.05). A heat map tree of the clustering

analysis (Figure 3C) were constructed to visualize the 15

differential metabolites. The contents of gamma-aminobutyric

acid and 2-aminobenzoic acid were significantly lower in the

CG group and the contents of glutamic acid and its derivatives

(e.g., glutathionylspermidine, L-glutamic acid, L-glutamic

gamma-semialdehyde, epsilon-(gamma-L-Glutamyl)-L-lysine

and gamma-L-glutamyl-L-2-aminobutyrate) were significantly

higher in the CG group than in the CZ group.

Di�erential metabolite pathways

A pathway enrichment analysis of significantly dysregulated

metabolites was performed. On the basis of the impact

value and P-value, we identified the five most influential

metabolic pathways (Table 2 and Figure 5A). The GABAergic

synapse pathway (impact value = 0.529) was the most

relevant pathway, followed by the nicotine addiction

pathway (impact value = 0.429), glutamatergic synapse

pathway (impact value = 0.4), renal cell carcinoma

(impact value = 0.400), and alanine, aspartate, and

glutamate metabolism (impact value = 0.393). These five

pathways were consistently related to GABA and the

glutamate/glutamine metabolism. In particular, the GABA

content was lower and glutamic acid and its derivatives

content was higher in the CG group than in the CZ

group (Figure 5B 1, 2).
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FIGURE 5

The significantly di�erent metabolites enriched KEGG pathways analysis. (A) Pathways of di�erential metabolites, the size and color are based

on the p-value and impact value, small p-value and big pathway impact value indicate that the pathway is greatly influenced. (B) (1) Overall

perspective of GABAergic synapse pathway metabolism map; (2) Overall perspective of Glutamatergic synapse pathway metabolism map. In the

overall perspective of pathway map, red represents increased and blue represents decreased.
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FIGURE 6

Correlation analysis of gut microbiota and metabolites from family to species level. (A) Family level. (B) Genus level. (C) Species level. Heat maps

indicated positive (red) and negative (blue) correlations between the dominant species and 15 di�erential metabolites we focus. The legend

shows correlation values from −1 to 1 and assigns the appropriate color to them (Red for positive correlations and blue for negative

correlations). (A–C) *P < 0.05, **P < 0.01.
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Correlations between the gut microbiota
and metabolite profile

The composition of the gut microbiota is in a

dynamic state and is affected by diet, and intestinal

metabolites vary with the gut microbiota (28, 29). For

the CZ and CG groups, as we described earlier, we

identified 8 species, 14 genera, and 8 families as key

discriminants. To explore the associations between the

relative abundances of these key discriminant taxa and

concentrations of 15 differential metabolites we focus,

we performed correlation analyses based on Spearman

correlation coefficients.

The KEGG analysis revealed that differential metabolites

between the CZ and CG groups were enriched for pathways

related to GABA and glutamate/glutamine metabolism;

accordingly, these were the focus of subsequent analyses. GABA

was decreased and Glu was increased in the CG group compared

with the CZ group. At the species level, Parabacteroides

distasonis was significant positively correlated with glutamic

acid and its derivatives metabolism (P < 0.05) (Figure 6C).

At the genus level, Parabacteroides was significant positively

correlated with glutamic acid and its derivatives metabolism

(P < 0.05) (Figure 6B), while significant negative correlations

were observed for Ruminococcus_2 and Butyricicoccus. At

the family level, Clostridiaceae_1 was significantly negatively

correlated with GABA metabolism and positively correlated

with glutamic acid and its derivatives metabolism (P < 0.05)

(Figure 6A).

Discussion

The occurrence of hypertension is influenced by many

factors, including environmental and dietary factors. There

is substantial evidence that long-term high salt intake could

raise blood pressure; however, the mechanism underlying

this effect is unclear. When food enters the digestive tract

orally, it inevitably interacts with the intestinal microbiota. The

digestion and absorption of food depends on decomposition

and metabolism by the gut microbiota (30–32). In addition,

changes in intestinal microecology in response to ingested

substances determine nutrient absorption to a certain extent

(33). Diet changed the gut microbiota composition, structure,

and metabolites, some of which can be absorbed into the

circulation and affect host health, with the potential to result

in hypertension or heart failure (34–36). Probiotic effector

molecules were particularly important for the rugulation of

gut microbiota (37). The roles of interactions between the

host, gut microbiota, and metabolites in the pathogenesis

of hypertension have become a focus of research (38, 39).

These interactive effects prompted questions regarding which

components of the gut microbiota and metabolites and

which metabolic pathways are altered by a high salt diet to

elevate blood pressure. Our results address this question.

We diagnosed the TCM syndrome of hypertension induced

by a high salt diet and determined that the hypertension

induced by a high salt diet belonged to the liver-Yang

hyperactivity syndrome. Based on 16S rRNA SMRT gene

full-length sequencing and UPLC-MS, we analyzed the

bacterial species composition, biodiversity, and differential

metabolites between the CG and CZ groups. We provide

the first evidence that a high salt diet inhibits the growth

of Clostridiaceae_1 and affects the glutamate/GABA-

glutamine metabolic cycle, thereby promoting the increase

in blood pressure.

According to the expert consensus on diagnosis and

treatment of hypertension with TCM, the clinical symptoms

of hypertension of liver-Yang hyperactivity syndrome were

dizziness, tinnitus, headache, irritability, etc. These kinds of

clinical symptom transformed to the rat were the degree of

resistance to capture increased, and the spirit is excited and

so on (4). Hypertensive rats induced by a high salt diet

showed the typical characteristics of liver-Yang hyperactivity

syndrome, such as impatience and irritability. The reason is

that hypertension is greatly affected by environmental and

dietary factors. The mice in CG group lived in the same

environment and have the same dietary structure. High salt

diet caused increased drinking water and urine output, so as

to caused kidney burden. We could be sure that hypertension

induced by a high salt diet is the syndrome of liver-

Yang hyperactivity.

We found that the Chao1 and ACE indexes of alpha

diversity were significantly increased in hypertensive rats,

with no obvious differences in beta diversity between CZ

and CG groups. Combined with our PCoA and NMDS

results, a high salt diet clearly changed the structure of

the gut microbiota, and intestinal bacteria may show

increased growth in hypertensive animals. In fact, many

recent studies have reported that increased growth of gut

bacteria is common in patients with a variety of diseases

(40, 41).

At the phylum level, the relative abundance of Firmicutes

was higher in the CZ group than in the CG group, while

the opposite pattern was observed for Tenericutes. The

abundance of Bacteroidetes in the CG group was higher

than that in the CZ group; however, the difference was

not significant. The observed differences at the phylum

level were consistent with previous results indicating that

a decrease in Firmicutes and increase in Bacteroidetes

are associated with hypertension (42, 43). At the species

level, the P. distasonis was only present in the CG

group and was significant positively correlated with

glutamate/glutamine metabolism. P. distasonis had been

proved to be closely related to modulate host metabolism,

such as produced secondary bile acids and succinate to
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alleviate obesity and metabolic dysfunctions (44). We did

not detect associations between bacterial species and GABA

metabolism, which may be explained by the unculturable

species identified in the analysis (Figure 2). At the family

level, the abundance of Clostridiaceae_1 was significantly

negatively correlated with GABA metabolism and positively

correlated with glutamate/glutamine metabolism (P < 0.05).

These results suggested that high salt intake inhibits the

growth of Clostridiaceae_1, which might be contribute

to hypertension.

GABA and Glu(or derivatives) were the key differential

metabolites identified in this study. The GABA content

was significantly decreased and Glu(or derivatives) content

increased in CG group compared with the CZ group. These

changes can induce hypertension. Glutamate/GABA-glutamine

cycle is associated with movement of ammonia nitrogen

between the two cell types and pyruvate carboxylase, enzymes

glutamine synthetase and phosphate-activated glutaminase were

the key enzyme required for this cycle (45). GABA is a

non-proteinogenic amino acid found in plants, vertebrates,

and microorganisms. GABA is involved in the synaptic

transmission modulation and neuronal development, among

other physiological processes (46). GABA is widely distributed

in different regions of the brain and is a main inhibitory

neurotransmitter in the central nervous system (47, 48).

Glutamate and glutamine are precursors of GABA production.

Bacteroides plays a very important role in the regulation

of the GABAergic system in the human gut, and the gut

microbiota could produce GABA, thereby modulating the gut–

brain axis (49, 50). GABA-salt could reduce hypertension

by reducing endothelial cell dysfunction and M1 polarization

(51). On non-neuronal peripheral tissues and organs, GABA

has intestinal protective, anti-microbial, and anti-hypertensive

properties (52, 53). Glutamatergic and GABAergic signals are

related to neurotransmitter vesicle loading, signal inactivation,

and neurotransmitter supplementation in the central nervous

system (54, 55). In the brain, Glu and GABA are the main

excitatory and inhibitory amino acids, and they can modulate

the neuronal excitation of the rostral ventrolateral medulla

and the firing activity of blood pressure-related neurons (56).

GABA can drive sympathetic tone to inhibit the activity of the

glutamatergic neurons directly (57). It is released from local

GABAergic interneurons to mediate the hypertensive response,

and the GABAergic system is related to Na(+)-dependent

hypertension (58, 59). Our results suggested that high salt

induces hypertension via pathways associated with GABA and

glutamate/glutamine metabolism.

Conclusion

Our results provide novel insight into the microbial

mechanisms underlying hypertension induced by a high

salt diet and provide a basis for the TCM diagnosis and

treatment of hypertension. Hypertension induced by a

high salt diet belonged to the liver-Yang hyperactivity

syndrome and high salt intake altered the gut microbiota,

inhibited the growth of Clostridiaceae_1, and affected

GABA metabolism-related pathways, resulting in GABA

and glutamate/glutamine metabolic disorders and thereby

increasing blood pressure. GABA is distributed in a

wide range of brain regions. Accordingly, it is a key

neurotransmitter by which the bacterial community

contributes to the brain–gut interaction. Our results

suggested that a high salt diet induced hypertension

of liver-Yang hyperactivity syndrome by mediating the

microbiota associated with the glutamate/GABA-glutamine

metabolic cycle via the gut–brain axis. Next step, we can

focus on the relationship between TCM treatment of

hypertension induced by high-salt diet and gut microbiota

and metabolites, which can provide a basis for TCM treatment

of hypertension.
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