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Background: Traditional Chinese medicine (TCM) is increasingly extensively being applied as a 
complementary and alternative therapy for gastric cancer (GC); however, there is a lack of large-scale 
evidence-based deep learning for the guidance of its clinical prescription. 
Methods: The combinational search terms of “Gastric cancer and/or gastric malignancy” and “Traditional 
Chinese Medicine” were used to retrieve clinical study-based herbal prescriptions from public database 
over the past 3 decades [1990–2020]. Association rules mining (ARM) was used to analyze the prescription 
patterns of the herbs extracted from the eligible studies. Deep machine learning and computational 
prediction were conducted to explore candidate prescriptions with general applicability for GC. The action 
mechanism of the preferred prescription was investigated through network pharmacology, and further 
validated via in vivo and in vitro experiments.
Results: A total of 194 clinical study-based herbal prescriptions with good efficacy for GC were collected. 
TCM with focus on invigorating the Spleen and tonifying the vital-Qi is a promising adjuvant therapy for 
GC. The preferred prescription is composed of Atractylodis Macrocephalae Rhizoma, Astragali Radix, Pinelliae 
Rhizoma, Citri Reticulatae Pericarpium, Herba Hedyotidis Diffusae, Crataegi Fructus, and so on. We screened 74 
bioactive compounds and 2,128 predictive targets of the preferred prescription from public databases. Eventually, 
135 GC-related genes were identified as the targets of the preferred prescription. The compound-target network 
revealed that the crucial substances in the preferred prescription are quercetin, kaempferol, baicalein, and 
nobiletin. Experimentally, the preferred prescription was validated to modulate GC cell survival and inhibit tumor 
progression mainly via the hTERT/MDM2-p53 signaling pathway in vivo and in vitro.
Conclusions: TCM aimed at invigorating the Spleen and tonifying the vital-Qi is a promising adjuvant 
therapy for GC, which offers a guidance for worldwide use of TCM in the treatment of GC.
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Introduction

Globally, gastric cancer (GC) is the fourth most common 
cancer and the second leading cause of cancer deaths (1). 
Current approaches to GC management largely consist 
of endoscopic detection followed by gastrectomy and 
chemotherapy (CT) or chemo-radiotherapy (CRT); however, 
the available treatments have adverse side effects and are 
associated with high recurrence rates (2). Therefore, there 
is a need to address the current limitations of the various 
therapeutic strategies to facilitate possible clinical applications. 

With the development of personalized and complementary 
medicine, multi-compound and multi-targeting traditional 
Chinese medicine (TCM) has been shown to be clinically 
effective in treating GC (3,4). However, due to the lack of 
large-scale evidence-based medicine, the extensive application 
of TCM remains inhibited. The use of TCM as an adjuvant 
therapy is greatly subjective because understanding on GC 
treatment varies among physicians in terms of etiology, 
syndrome differentiation, and medicinal prescriptions. 
Generally, the principal theory of Chinese traditional 
medicine for GC is invigorating the Spleen and tonifying the  
vital-Qi, and eliminating blood stasis and removing toxins. The 
largely unknown mechanism of these empirical prescriptions 
is another limiting factor for the use of TCM. Therefore, it 
is important and innovative to screen clinical prescriptions 
with good efficacy, based on which the obtainment of a basic 
prescription with general applicability for treating GC could be 
achieved by machine learning. What’s more, the elucidation of 
prescription patterns by data mining may promote both clinical 
application and basic researches on herbal pairs. To the best of 
our knowledge, another study with such an aim has not been 
previously reported. 

In this study, we proposed a method of combining 
data mining and network pharmacology to systematically 
elucidate the prescription patterns of TCM, and unravel 
the modular functions and potential action mechanisms 
of TCM for treating GC. Additionally, the effects of 
the machine learning-based preferred prescription were 
validated in vivo and in vitro. We present the following 
article in accordance with the ARRIVE reporting checklist 
(available at https://dx.doi.org/10.21037/atm-21-6301).

Methods

Big data mining and machine learning

Source of literature, inclusion and exclusion criteria
All literature was obtained from the China National 

Knowledge Infrastructure (CNKI) database, which is the 
world’s largest Chinese knowledge portal website. The 
sources of the literature included the Academic Journals 
Full-text Database, Doctoral Dissertations Full-text 
Database, and Masters’. These Full-text Database (01/1990–
12/2020). The combinational search terms were “Gastric 
cancer and/or gastric malignancy” and “Traditional Chinese 
Medicine”. Literature with the following criteria were 
included: (I) relevant to clinical research on using TCM in 
treating GC; (II) containing randomized controlled trial 
(RCT) as the study design; (III) containing prescriptions 
with complete and specific names of Chinese herbs; (IV) 
studies must have reported one or more of the following 
efficacy endpoints: progression-free survival (PFS), overall 
survival (OS), objective response rate (ORR), or adverse 
events (AEs) (5). The exclusion criteria were as follows: 
(I) duplicate publications reporting the same group of 
participants; (II) non-clinical studies including experimental 
research on cell lines, xenografts or animal models, or 
theoretical studies; (III) where TCM and western medicines 
were integrated as a therapeutic regimen; (IV) non-oral 
administrations including injection and nasogastric tube 
nutrition; (V) non-decoction dosage types including 
Chinese patent medicines and TCM for external use; (VI) 
use of prescriptions composed of an unspecified or single 
herb. 

Data extraction
Firstly, the names of the prescriptions (ancient prescriptions 
or recombinant personalized prescriptions) and their 
constituent herbs were extracted from the eligible literature. 
Secondly, we referred to the Chinese Pharmacopoeia  
(2020 Edition) Volume I to standardize the names of each 
herb (6). Furthermore, the basic information on each herb 
was extracted from the Chinese Pharmacopoeia, including its 
Latin name, property, taste, and meridian tropism. The 5 
properties of TCM herbs include cold, hot, warm, cool, 
and neutral. The 5 tastes of TCM herbs include sour, bitter, 
sweet, pungent, and salty. The various combinations of 
property and taste determine the herbs’ specific attributes, 
which can influence the Yin and Yang of the body. For 
example, herbs with warm and hot properties are used 
to invigorate the Yang in patients with heat-deficiency 
disorders. Likewise, sour, bitter, and salty tastes are related 
to Yin, whereas pungent and sweet pertain to Yang. The 
meridian serves as the pathway for the transportation of Qi 
and Blood throughout the body, and its tropism represents 
the selective therapeutic effects of a medicinal herb on 
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a certain region of the human body (7). Moreover, the 
principal function of each herb was classified according to 
the Chinese Pharmacy (8).

Association rule mining (ARM)
To investigate the rules of herbal combinations in the 
prescriptions used in various studies, ARM, an in-silico 
screening process, was applied. In this scheme, the 
dataset and the association rules are defined as follows: an 
association rule has the form left hand side (LHS) ⇒ right 
hand side (RHS), where LHS and RHS are sets of items, 
with the likely occurrence of the RHS whenever the LHS 
set occurs (9). The Apriori algorithm was used to extract 
the significant associations from all possible combinations 
of the items from the main dataset (10). There are 3 
evaluation metrics which are critical in describing the 
power and significance of the rules generated by ARM (11).  
Support is the frequency of the rule occurrence in the total 
dataset, measuring whether an association between the 
LHS and the RHS happens by chance. Confidence is the 
frequency of rule occurrence in the cases of the dataset 
fulfilling the LHS of the rule, thus, representing the 
reliability of the association. Lift is the ratio of observed 
support to the expected support when the LHS and the 
RHS are independent, indicating the dependency of the 
occurrences of the 2 items when its value is larger than 
1 (12). To establish a proper threshold, we detected the 
central tendency of the association rules to be more obvious 
at the support of 0.1 and confidence of 0.6 in the correlation 
analysis of herbal combination patterns. Then, the herbs 
were categorized in Microsoft Excel 2010 (Microsoft Corp., 
Redmond, WA, USA) according to their properties, tastes, 
meridian tropisms, and functions. The software platform 
IBM SPSS Modeler 18.1 (IBM Corp., Armonk, NY, USA) 
was used to analyze the categorization-based frequency and 
the correlations of the prescription patterns and to generate 
a visual network diagram. 

Cluster analysis
Clustering is central to many data-driven bioinformatics 
research and serves a powerful computational method. Deep 
learning can be effective means to transform mappings from 
a high-dimensional data space into a lower-dimensional 
feature space, leading to improved clustering results (13). In 
this study, we used IBM SPSS Modeler software platform 
to perform deep learning-based cluster analysis to identify 
the preferred regroups of the most frequently used herbs 
based on their attributes (14). In our study, k-means cluster 

analysis was considered since the variables were quantitative 
at the interval or ratio level rather than being binary 
or counts. To avoid unreliable results through omitted 
variable bias, we included all the attributes, including the 5 
properties, 5 tastes, and meridian tropism, and investigated 
the therapeutic preferences of the candidate clusters. To 
assess the reliability of a given solution, we compared the 
results from analyses with different permutations of the 
initial center values to ensure an appropriate number of 
clusters. 

Mechanism investigation of the candidate formulae by 
network pharmacology

Compounds library construction and active components 
screening of the candidate formulae
To build a compound library of the core herbs for GC, 
we extracted all the compounds of the candidate formulae 
from the Traditional Chinese Medicines for Systems 
Pharmacology Database and Analysis Platform (TCMSP; 
http://lsp.nwu.edu.cn/index.php), Traditional Chinese 
Medicines Integrated Database (TCMID; http://bionet.
ncpsb.org/batman-tcm/), Bioinformatics Analysis Tool for 
Molecular Mechanism of Traditional Chinese Medicine 
(BATMAN-TCM; http://bionet.ncpsb.org/batman-tcm/), 
and wide-scale literature mining (15,16). To optimize 
the use of the high cost and time-consuming biological 
experiments and clinical research, absorption, distribution, 
metabolism, and excretion (ADME) evaluations are critical 
procedures for active components screening (17). In this 
study, oral bioavailability (OB) ≥30% and drug-likeness (DL) 
≥0.18 were set as the threshold; however, compounds that 
did not meet these inclusion criteria but were supported by 
the literature were retained.

Therapeutic targets prediction of the candidate 
formulae 
Computational predictions of bioactive molecule targets based 
on similarity with known ligands are powerful in narrowing 
down the number of potential targets and the rationalization 
of possible side effects of the known molecules (18).  
The prediction algorithms of the ligand-based strategies 
inc lude  sys temat ic  drug target ing  (SysDT) (19)  
and weighted ensemble similarity (WES) models (20). 
The SysDT model was developed based on random 
forest (RF) and support vector machine (SVM), which 
performed impressively on systematic predictions for drug-
target associations and interactions involving enzymes, 

http://bionet.ncpsb.org/batman-tcm/
http://bionet.ncpsb.org/batman-tcm/
http://bionet.ncpsb.org/batman-tcm/
http://bionet.ncpsb.org/batman-tcm/
http://bionet.ncpsb.org/batman-tcm/
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ion channels, nuclear receptors, and G-protein coupled 
receptors (19). In the WES model, the standardized 
ensemble similarities (Z score) by Bayesian network are 
utilized and the targets are predicted using the multi-
variate kernel approach (21). In our study, the predictive 
therapeutic targets of the candidate formulae were obtained 
from web tools including Search Tool for Interacting 
Chemicals (STITCH; http://stitch.embl.de/), similarity 
ensemble approach (SEA; http://sea.bkslab.org/) and 
SwissTargetPrediction (www.swisstargetprediction.ch)  
(22-24). Targets with RF ≥0.7, SVM ≥0.8, or Z score ≥7 were  
considered for further analysis and standardized to 
corresponding genes for homo sapiens through the UniProt 
database (https://www.uniprot.org/uploadlists/).

To evaluate the performances of the candidate formulae 
in treating GC, we mapped the predictive therapeutic 
targets to the GC-related genes/proteins, which were 
comprehensively collected from online databases including 
MalaCards (https://www.malacards.org/), Online Mendelian 
Inheritance in Man (OMIM; https://omim.org/), and 
DisGeNET v7.0 (https://www.disgenet.org/home/) (25,26). 
We visualized the results and generated an additional 
protein-protein interaction (PPI) network using Metascape 
(https://metascape.org/gp/index.html).

Construction and topological analysis of the 
compound-target network of the preferred prescription
Cytoscape v3.7.2 (https://cytoscape.org/) was used to 
construct a compound-target (C-T) network of the 
preferred prescription, and to analyze its degree, a key 
topological parameter for evaluation (15). In the C-T 
network, compounds sharing interactions with GC-related 
genes were determined as components that were beneficial 
for GC. Moreover, we considered the targets (compounds) 
with degree values equal to or above the mean value to be 
the predominant therapeutic targets (crucial substances). 

Gene Ontology (GO) and pathway enrichment analysis 
of the preferred prescription
GO analysis, Kyoto Encyclopedia of Genes and Genomes 
(KEGG), and Reactome pathway enrichment of the 
preferred prescription were carried out using the Database 
for Annotation, Visualization, and Integrated Discovery 
system v6.8 (DAVID; https://david.ncifcrf.gov/) (27). We 
also used ClueGO, a Cytoscape v3.7.2 plug-in to identify 
the interactions among the various signaling pathways 
by generating a functionally grouped network (28,29). 
Based on the mechanism of GC, we further constructed 

a multi-regulation map of KEGG pathways of the crucial 
components in the core herbs. 

Moreover, the modular functional characteristics of 
TCM in GC treatment were demonstrated in PPI networks, 
which visualized the interactions among significant targets 
that could be regulated by the crucial components in the 
preferred prescription. The PPI networks were generated 
by the GeneMANIA web site (http://genemania.org/) 
which offers a fast prediction on the functions of the given 
gene sets through the application of a guilt-by-association 
approach (30).

Molecular docking
The three-dimensional (3D) structures of the predominant 
targets of the preferred prescription were collected from protein 
data bank (PDB; http://www.rcsb.org). AutoDock Tools 1.5.6 
software (https://autodock.scripps.edu/) was used to remove 
the water molecules, isolate proteins, add nonpolar hydrogen, 
and calculate Gasteiger charges for the structure (31). The 
preprocessed structures were saved as PBD with partial changes 
and AutoDock 4 atom types (PDBQT) files. The PubChem 
database (https://pubchem.ncbi.nlm.nih.gov/) was applied 
to download the two-dimensional (2D) structures of the 
crucial substances of the preferred prescription. The 2D 
structure was processed and transformed into PDB format 
via Open Babel (32), and then saved in PDBQT format as 
docking ligands in AutoDock Tools 1.5.6 software. The 
target proteins were used as receptors while the substances 
were used as ligands. The active site of molecular docking 
was determined by the complex of ligand and target protein. 
Autodock Vina 1.1.2 (https://vina.scripps.edu/) was used 
to dock small molecules with their target proteins. The 
conformation with the best affinity was selected as the 
final docking conformation and visualized in Pymol 2.5  
(https://pymol.org/2/).

Experimental validation

Preparation of the preferred prescription and 
components identification
Crude TCM herbs [dried roots of Atractylodes macrocephala 
Koidz. 12 g, dried roots of Astragalus membranaceus (Fisch.) 
Bge. 30 g, dried mature pericarp of Citrus reticulata Blanco 
10 g, dried tuber of Pineilia ternate (Thunb.) Breit. 9 g, 
dried root of Aucklandia lappa Decne. 6 g, dried mature 
fruits of Amomum villosum Lour. 3 g, dried immature 
fruits of Citrus aurantium L. 10 g, dried gizzard lining of 
Gallus gallus domesticus Brisson 10 g, dried mature fruits 

http://www.swisstargetprediction.ch)
https://www.uniprot.org/uploadlists/
https://omim.org/
https://www.disgenet.org/home/
https://metascape.org/gp/index.html
https://cytoscape.org/
https://david.ncifcrf.gov/)52
https://autodock.scripps.edu/
https://pubchem.ncbi.nlm.nih.gov/
https://vina.scripps.edu/
https://pymol.org/2/
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of Crataegus pinnatifida Bge. 12 g, dried mature fruits of 
Hordeum vulgare L. 15 g, Radix Actinidiae Chinensis 15 g, 
and Herba Hedyotidis Diffusae 15 g] were provided by Sanyue 
Chinese Traditional Medicine Co. (Nantong, China). All 
the herbs were soaked for 30 min in 1,800 mL double-
distilled water and then boiled at minimum temperature 
for 30 min before being refluxed and extracted. The boiling 
process was repeated with 1,800 mL double-distilled water 
for 30 min. Then, 2 parts of the extracted solutions were 
mixed and vaporized to 60 mL. The decoction was finally 
concentrated to 1 g/mL and stored at −20 ℃ after being 
sterilized and filtered through a 0.22 μm filter. The extracts 
of the preferred prescription were detected and analyzed 
using high-performance liquid chromatography diode array 
detection (HPLC-DAD) (detailed information shown in the 
Supplementary materials).

In vitro, to determine the decoction dose, the half-
maximal inhibitory concentration (IC50) of different GC 
cell lines were assessed by 3-(4,5-Dimethyl-2-thizolyl)-
2,5-diphenyltetrazolium bromide (MTT) assay (detailed 
information shown in the Supplementary materials), and 
the dose range of 2, 4, 8 mg/mL was selected. 

Cell apoptosis and cell cycle analyses
Human GC cell lines AGS, HGC27, MKN28, and 
SGC7901 were purchased from the Cell Bank of the 
Chinese Academy of Sciences (Shanghai, China). All cell 
lines were kept in a humidified atmosphere of 5% CO2 

at 37 ℃. For apoptosis analysis, the cells were measured 
using Annexin V-FITC/PI apoptosis detection kit (Keygen 
Biotech Co., Nanjing, China) by flow cytometry [Becton, 
Dickinson, and Co. (BD) Biosciences, Franklin Lakes, NJ, 
USA] according to the manufacturer’s instructions. Cell 
cycle distributions were determined using a cell cycle and 
apoptosis analysis kit (Beyotime Biotech Co., Shanghai, 
China) by flow cytometry (BD Biosciences).

Wound-healing assay
Cells (1,000×103 cells/well) were seeded into 6-well plates 
for 24 h, and scraped with a sterile pipette tip when 80% of 
the cells were adherent to the walls. Cells were treated with 
various concentrations of the preferred prescription after 
removing debris by phosphate-buffered saline (PBS). The 
scratch area was observed by microscopy at 0, 12, 24, and 
48 h, respectively.

Invasion assay
The upper surface of the Transwell inserts (8 μm pore size, 

Merck & Millipore, Darmstadt, Germany) were coated 
with Matrigel (100 μL, diluted 1:29 with PBS) (Corning, 
Corning, NY, USA) before serum-free medium containing 
2×105 cells were loaded. The lower chamber included  
500 μL media containing 10% fasting blood sugar (FBS) 
and various concentrations of the preferred prescription. 
After 48 h, the chambers were removed, and nonpenetrative 
cells were washed from the top chamber with PBS. The 
invaded cells were fixed with 95% ethanol and stained 
with crystal violet. Image J (https://imagej.nih.gov/ij/) was 
applied to count the number of cells in images randomly 
taken under a microscope.

Western blot assay
Protein lysates were separated using sodium dodecyl 
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 
and transferred to polyvinylidene difluoride (PVDF) 
membranes. Membranes were blocked with 5% bovine 
serum albumin (BSA) for 1 h and incubated with primary 
antibodies at 4 ℃ overnight. The primary antibodies 
included β-actin, Bax, Bcl2, N-cadherin, Snail, Slug, 
hTERT, MDM2, p53, p21, cyclinE, and CDK2 [all 
antibodies were purchased from Cell Signaling Technology 
(CST) Danvers, MA, USA]. The secondary goat anti-rabbit 
horseradish peroxidase-conjugated antibody (ZSGB-BIO, 
Beijing, China) was incubated at room temperature for 1 h. 
Signals were examined using the Image Lab system, version 
5.1 (Bio-Rad, Hercules, CA, USA).

In vivo study
Male BALB/c athymic nude mice (4–6 weeks old,  
18–20 g) obtained from Charles River Co. (Beijing, China) 
were housed in a specific pathogen-free (SPF) environment. 
An appropriate amount of the preferred prescription 
extracts was collected and prepared into the 0.735 g/mL 
solution with distilled water, and used for the intragastric 
administration of the experimental animals. The MKN28 
cells were collected and cultured in the logarithmic growth 
phase, and the density was adjusted to 5×107/mL. Each 
mouse was inoculated with 0.2 mL of cell suspension 
in the right armpit after disinfection. After 10 days, the 
diameter of the induration reached 3−7 mm, suggesting 
the establishment of a successful model. The 20 nude mice 
were divided into 4 groups (n=5 each) as follows: (I) model 
group with transplanted tumors given the gavage of distilled 
water; (II) 5-fluorouracil (5-FU) group with transplanted 
tumors given the intraperitoneal injection at a dose of  
20 mg/kg body weight (BW) every 3 days; (III) preferred 

https://cdn.amegroups.cn/static/public/ATM-21-6301-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-6301-supplementary.pdf


Xu et al. Data mining and network pharmacology-based identification

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(24):1777 | https://dx.doi.org/10.21037/atm-21-6301

Page 6 of 25

prescription group with transplanted tumors given the 
gavage of decoction at a dose of 14.7 g/kg BW every day 
for 14 days; (IV) the 5-FU+ preferred prescription group 
with transplanted tumors given the intraperitoneal injection 
at a dose of 20 mg/kg BW every 3 days and gavage of 
decoction at a dose of 14.7 g/kg BW every day for 14 days. 
To calculate the volume of the tumors, the dimension was 
measured by length (L) and width (W) using a caliper every 
3 days. Mice were sacrificed by cervical dislocation, and the 
tumors were excised and weighed. 

Ethical statement
This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). Animal 
experiment was performed under a project license (No. 
2021DW-35-01) granted by the Animal Ethics Committee 
of Affiliated Hospital of Nanjing University of Chinese 
Medicine (Nanjing, China), in compliance with the 
recommendations in  the Guide for the Care and Use of 
Laboratory Animals of the National Institutes of  Health. A 
protocol was prepared before the study without registration. 

Statistical analysis
The data were described as means ± standard error of the 
mean (SEM). Statistical significance was determined using 
one-way analysis of variance (ANOVA, comparison between 
multiple groups) and Tukey multiple comparison processing 
(comparison between the two groups), with a P value <0.05 
indicating statistical significance. All experiments were 
repeated at least three times under the same conditions. 
The statistical analyses were performed using GraphPad 
Prism software (GraphPad Software, La Jolla, CA, USA).

Results

Screening of eligible literature, clinical study-based 
prescriptions, core herbs, and frequency distributions 
according to herbal attributes and principal functional 
categorizations

The framework of this study can be summarized as follows: 
(I) screening of clinical study based TCM prescriptions for 
GC treatment; (II) data mining of the treatment principles, 
prescription patterns, and generation of candidate formulae 
by deep machine learning; (III) prediction of the action 
mechanism of the preferred prescription by network 
pharmacology; (IV) validation of the antitumor effects 
of the preferred prescription by experiments in vivo and  

in vitro (Figure 1A). 
A total of 194 eligible prescriptions and 148 herbs 

with standardized names were screened from clinical 
studies spanning from January 1990 to December 2020. 
The screening process is summarized as a PRISMA flow 
diagram (33) (Figure 1B). The total cumulative occurrences 
of the 148 herbs in 194 prescriptions were 2,103 times. 
Herbs with over 20 times frequency of occurrence were 
selected as predominant ones used in clinic. The top 24 
core herbs and their functional categorizations are listed 
in Table S1. Descriptive statistics of herbal attributes are 
shown in Figure 2A. In terms of the 5 properties; herbs with 
warm property were the most frequently prescribed. With 
regards to the 5 tastes, herbs with bitter (44.59%), pungent 
(39.86%), and sweet (36.49%) tastes ranked the top 3 in 
clinical application. In terms of meridian tropism, herbs 
with a propensity for the Liver (LR) (43.24%), Stomach 
(ST) (39.19%), and Spleen (SP) meridians were the most 
frequently used. The top 3 principal functions of the core 
herbs are demonstrated in Figure 2B. In summary, the 
treatment principle of TCM in GC is mainly invigorating 
the Spleen and tonifying the vital-Qi. 

To facilitate better application of the core herbs in 
clinic, we summarized their clinical indications (Table S2). 
Particularly, herbs with the 3 major functions that embody 
TCM treatment principles for GC are listed in Table 1. 

Frequently prescribed herbal combination patterns by 
ARM and novel candidate formula prediction by cluster 
analysis

The ARM method was applied to analyze the combination 
patterns of the 194 prescriptions. Guided by the theory of 
synergy and attenuation in TCM, couplet herbs are 2 herbs 
administered together to enhance therapeutic effects or 
reduce toxicity. With a threshold of minimum support of 0.1 
and confidence of 0.6, the prescribed pairs of couplet herbs 
with the top 3 confidence included; Atractylodis Macrocephalae 
Rhizoma (Bai Zhu) paired with Dioscoreae Rhizoma (Shan 
Yao; 92.31%), Atractylodis Macrocephalae Rhizoma paired 
with Aucklandiae Radix (Mu Xiang; 90%), and Atractylodis 
Macrocephalae Rhizoma paired with Codonopsis Radix (Dang 
Shen; 88.57%) (Table 2). Triplet herbs are a combination 
of 3 herbs, which interact with each other and are usually 
contained in a decoction or used as an independent 
decoction. Based on the established threshold above, the 
triplet combinations of herbs with the top 3 confidence 
included Poria (Fu Ling)-Aucklandiae Radix-Glycyrrhizae 

https://cdn.amegroups.cn/static/public/ATM-21-6301-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-6301-supplementary.pdf
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Figure 1 The technical roadmap of the current study. (A) The framework of the current study is summarized as data mining and machine 
learning combined with network pharmacology and experimental validation. (B) Flow chart of literature mining. A total of 1,333 records 
were retrieved, and 194 prescriptions were extracted. 
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Radix (Gan Cao) (100%), Atractylodis Macrocephalae 
Rhizoma-Aucklandiae Radix-Codonopsis Radix (100%), 
and Atractylodis Macrocephalae Rhizoma-Galli Gigeriae 
Endothelium Corneum (Ji Nei Jin)-Codonopsis Radix (100%) 
(Table S3). A network diagram was generated to visualize 
the association rules among the core herbs (Figure 2C). 

Additionally, the core herbs in the 194 prescriptions 
were regrouped into 4 clusters by machine learning. The 
cluster analysis result was presented in a 2D scatter diagram 
(Figure 2D). Cluster 1 (candidate formula 1, CF 1) included; 
Atractylodis Macrocephalae Rhizoma, Astragali Radix (Huang 
Qi), Pinelliae Rhizoma (Zhi Ban Xia), Citri Reticulatae 
Pericarpium (Chen Pi), Herba Hedyotidis (Bai Hua She She 
Cao), Galli Gigeriae Endothelium Corneum, Aucklandiae Radix, 
Amomi Fructus (Sha Ren), Hordei Fructus Germinatus (Mai 

Ya), Aurantii Fructus (Zhi Ke), Radix Actinidiae Chinensis 
(Mi Hou Tao Gen), Crataegi Fructus (Shan Zha); cluster 2 
(candidate formula 2, CF 2) included; Paeoniae Radix Alba 
(Bai Shao), Scutellariae Barbatae Herba (Ban Zhi Lian), 
Salviae Miltiorrhizae Radix et Rhizoma (Dan Shen), Ligustri 
Lucidi Fructus (Nu Zhen Zi); cluster 3 (candidate formula 3, 
CF 3) included; Poria, Codonopsis Radix, Glycyrrhizae Radix, 
Coicis Semen (Yi Yi Ren), Pseudostellariae Radix (Tai Zi Shen), 
Dioscoreae Rhizoma; and cluster 4 (candidate formula 4, CF 4)  
included; Angelicae Sinensis Radix (Dang Gui), Curcumae 
Rhizoma (E Zhu). For a clearer understanding of the 
functions of the candidate formulae, the herbal attributes 
preferences of the 4 candidate formulae are shown in a 
distribution histogram (Figure 2E-2H). The CF 1 and 
CF 2 were composed of more herbs with warm and cold 

Figure 2 Frequently prescribed herbal combination patterns and novel candidate formulae prediction. (A) Descriptive statistics of herbal attributes 
including the 5 properties, 5 tastes, and the meridian tropism. (B) The top 3 principal functions of the core herbs for treating GC. (C) Network 
diagram of herbal combination patterns (support ≥10%, confidence ≥60%). (D) Novel candidate formulae prediction. Proportion distributions of 
the four clusters (candidate formulae) according to 5 properties (E), 5 tastes (F), 12 meridians tropism (G), and principal functional categorization 
(H). a1: Qi-tonifying medicinal; a2: Yin-tonifying medicinal; a3: Blood-tonifying medicinal; a4: Yang-tonifying medicinal; b: heat-clearing medicinal; 
c: blood-activating and stasis-dispelling medicinal; d: Qi-regulating medicinal; e: cough-suppressing and panting-calming medicinal; f: interior-
warming medicinal; g: Liver-pacifying medicinal; h: digestant medicinal; i: dampness-draining diuretic medicinal; j: exterior-releasing medicinal; k: 
dampness-resolving medicinal; l: hemostatic medicinal; m: wind-dampness dispelling medicinal; n: astringent medicinal; o: purgative medicinal; p: 
orifice-opening medicinal; q: repellent medicinal; r: attacking poison, insects and itch-relieving medicinal. GC, gastric cancer.
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properties respectively, while the property of CF 3 appeared 
to be milder. With regards to the 5 tastes, the majority of 
the herbs in the CF 1 possessed sour and pungent tastes, 
while most herbs with sweet tastes were clustered in CF 
3. Meridian tropism represents the selective therapeutic 
effects of a Chinese herb on a certain region of the human 
body (7). The CF 1, CF 2, and CF 3 prescribed more herbs 
belonging to SP (ST), LR, and KI meridians, respectively. 
Specifically, the CF 1 and CF 3 clusters were distinguished 
for tonifying Qi and invigorating the Spleen, and regulating 
Qi and resolving dampness, which meant both of them 
could increase appetite, alleviate lassitude, fullness sensation 
in the upper abdomen, and loose stools, as well as help 

GC patients feel less depressive. While the CF 2 and CF 
4 seemed to play a significant role in tonifying the Blood 
and promoting blood circulation, which indicated they are 
more applicable for GC patients with symptoms like pale 
complexion, dizziness, insomnia, distending pain of the 
hypochondrium, and so on. 

Active components library construction and therapeutic 
targets prediction of the candidate formulae

Complied with OB ≥30% and DL ≥0.18, 305 compounds 
of the 24 core herbs were screened out as bioactive 
components (Table S4). The numbers of active components 

Table 1 Top 3 functions of TCM for GC treatment and clinical indications of the representative herbs

Herbal 
nature

Principal 
functional 

categorizations

Number of 
prescriptions 

using the 
herbs

Frequency 
of use (%)

Syndromes Key signs & symptoms
Treatment 
principles

Representative herbs

Sweet, 
warm

Qi-tonifying 182 93.81 Middle-Jiao 
Deficiency

Poor appetite, dislike to 
talk, lassitude, weak limbs, 
borborygmus, loose stools, 

heavy descending sensation in 
abdominal cavity, prolapse of 

rectum.

Tonify 
Middle-
Jiao Qi

Atractylodis 
Macrocephalae 

Rhizoma, Astragali 
Radix, Codonopsis 
Radix, Glycyrrhizae 

Radix, Pseudostellariae 
Radix, Dioscoreae 

Rhizoma

Pungent, 
warm/bitter, 
warm

Qi-regulating 119 61.34 Stagnation of 
Liver Qi

Mental depression, restlessness, 
sighing, distension, wandering 

pain in the costal and 
hypochondriac region, distress 
in epigastrium, poor appetite 
or vomiting, irregular bowel 

movements, thin greasy tongue 
coating, wiry pulse.

Disperse 
Liver Qi

Citri Reticulatae 
Pericarpium, 

Aucklandiae Radix, 
Aurantii Fructus, 
Fructus Evodiae

Qi stagnation 
transforming 

into Fire

Irritability, stuffiness in the chest, 
hypochondriac distension, acid 
regurgitation, dry & bitter mouth, 

constipation or headache, tinnitus, 
red tongue & yellow coating, wiry-

rapid pulse.

Purge Fire 
from Liver

Sweet, 
neutral

Food abating 55 28.35 Stomach 
excessive

Epigastric and abdominal distension 
and fullness or pain, which are 

aggravated by food intake, 
belching with foul smell, anorexia, 
constipation, acidic regurgitation, 
nausea, vomiting, diarrhea with 

foul smell or fermented contents or 
constipation

Dissolve 
the 

stagnation

Galli Gigeriae 
Endothelium Corneum, 

Hordei Fructus 
Germinatus, Crataegi 

Fructus

TCM, traditional Chinese medicine; GC, gastric cancer.

https://cdn.amegroups.cn/static/public/ATM-21-6301-supplementary.pdf
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in CF 1-4 were 74, 106, 154, and 5, respectively. With 35 
compounds hitting no corresponding targets, a total of 
2,128 predictive targets were retrieved and normalized via 
prediction databases and UniProt, with the potential to 
interact with 305 active components. 

To investigate the relationship between the predictive 
targets and GC, 429 GC-related genes were screened, 
and 136 targets overlapped. As shown in Figure 3A, CF 
1 targeted the most GC-related genes and was defined 
as the “preferred prescription” in our study. The CF 
1-4 contributed to 135, 12, 13, and 4 genes/proteins, 
respectively. As shown in Figure 3B, the shared genes/
proteins among the 4 formulae included human telomerase 
reverse transcriptase (hTERT), tyrosine-protein phosphatase 
non-receptor type 11 (PTPN11), estrogen receptor (ESR1), and 
sonic hedgehog protein (SHH), G2/mitotic-specific cyclin-B1 
(CCNB1), fibroblast growth factor 2 (FGF2), and so on. 

Construction and topological analysis of the compound-
target network of the preferred prescription

Topological analysis of the C-T network was conducted 
to identify the crucial components and targets in the 
preferred prescription. As shown in Figure 3C, the network 
embodied 505 nodes (11 herbs, 61 active components, and 
429 target genes/proteins), and 952 C-T interactions. The 
mean degree of the active components was 15.61. There 
were 23 compounds with a degree value higher than 15.61. 
In this network, crucial substances quercetin (Astragali 

Radix, Herba Hedyotidis, Radix Actinidiae Chinensis, Crataegi 
Fructus), kaempferol (Astragali Radix), baicalein (Pinelliae 
Rhizoma), and nobiletin (Citri Reticulatae Pericarpium, 
Aurantii Fructus) targeted 256, 191, 144, and 131 GC-
related genes, respectively. There were 49 targets with 
degree values higher than 6.57, the mean degree of the 
predicted targets. The TP53, hTERT, vascular endothelial 
growth factor A (VEGFA), caspase-3 (CASP3), murine 
double minute 2 (MDM2), matrix metalloproteinase 2 
(MMP2), and apoptosis regulator Bcl-2 (BCL2) genes 
were targeted by 26, 19, 16, 16, 14, 14, and 12 compounds 
respectively, which indicated they may be involved in the 
underlying mechanisms of the preferred prescription. 

GO and pathway enrichment analysis of the preferred 
prescription

To explore the potential mechanism of the preferred 
prescription, we utilized the DAVID database to decipher 
the information related to gene ontology. The GO analysis 
on the targets of the preferred prescription is shown in 
Figure 4A. The significant biological processes (BP) (P<0.05) 
included apoptotic process (GO: 0006915), cell adhesion 
(GO: 0007155), cell cycle arrest (GO: 0007050), and signal 
transduction (GO: 0007165). The significant molecular 
functions (MF) (P<0.05) included protein kinase activity 
(GO: 0004672), cadherin binding involved in cell-cell 
adhesion (GO:0098641), enzyme binding (GO:0019899), 
and ubiquitin-protein ligase binding (GO:0031625). The 

Table 2 Top 10 pairs of couplet herbs used in clinical prescriptions

Herb (LHS)
Number of 

prescriptions
Herb (RHS)

Number of 
occurrences

Support (LHS) 
(%)

Confidence (LHS ≥ 
RHS) (%)

LIFT

Atractylodis Macrocephalae  Rhizoma 145 Dioscoreae Rhizoma → 26 13.40 92.31 1.24 

Atractylodis Macrocephalae Rhizoma 145 Aucklandiae Radix → 30 15.46 90.00 1.20 

Atractylodis Macrocephalae Rhizoma 145 Codonopsis Radix → 105 54.12 88.57 1.19 

Astragali Radix 107 Ligustri Lucidi Fructus → 24 12.37 87.50 1.59 

Atractylodis Macrocephalae Rhizoma 145 Poria → 126 64.95 87.30 1.17 

Atractylodis Macrocephalae Rhizoma 145 Coicis Semen → 63 32.47 87.30 1.17 

Poria 126 Pseudostellariae Radix → 29 14.95 86.21 1.33 

Poria 126 Amomi Fructus → 28 14.43 85.71 1.32 

Atractylodis Macrocephalae Rhizoma 145 Amomi Fructus → 28 14.43 85.71 1.15 

Codonopsis Radix 105 Hordei Fructus 
Germinatus 

→ 25 12.89 84.00 1.55 

LHS, left hand side; RHS, right hand side.
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Figure 3 Target mapping of the candidate formulae to GC-related genes and compound-target network construction of the preferred 
prescription. (A) Overlapping diagram. The segments of the outside circle represent GC-associated genes (light orange), CF 1 targets 
(red), CF 2 targets (blue), CF 3 (green) and CF 4 targets (purple). The inside circle, specifically, the dark orange segments represent the 
overlapping parts. (B) PPI network of GC-related genes of the candidate formulae. The nodes represent GC-related genes/proteins from 
CF 1 targets (red), CF 2 targets (blue), CF 3 (green), and CF 4 targets (purple). Nodes with more than 1 color represent the shared genes/
proteins among different formulae. (C) Compound-target network of the preferred prescription. The nodes represent Chinese herbs (red 
ellipse), active components (yellow ellipse), GC-associated genes (light blue ellipse), GC-related (turquoise ellipse), and GC-unrelated (green 
ellipse) predicted targets of the preferred prescription. GC, gastric cancer; CF, candidate formula; PPI, protein-protein interaction.
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significant cellular components (CC) (P<0.05) included 
nucleus (GO:0005634), cytoplasm (GO:0005737), plasma 
membrane (GO:0005886), and cytosol (GO:0005829). 

The significant KEGG pathways were mainly the 
pathways in cancer, T cell receptor signaling pathway, 
Toll-like receptor signaling pathway, apoptosis, and the 
VEGF signaling pathway (Figure 4B). Cross-talk pathways 
network of the preferred prescription is shown in Figure 4C. 
Moreover, a multi-regulation map of KEGG pathways was 
demonstrated, indicating the preferred prescription may 
exert inhibition on both tumorigenesis and progression of 
GC (Figure 4D). 

Modular characteristics and molecular mechanism of the 
preferred prescription for GC treatment 

To elucidate modular characteristics of the preferred 
prescription, we summarized the significantly enriched BP, 

KEGG signaling, and reactome pathway of the decoction, 
which was mainly distributed in the modules of immune 
regulation, epithelial-mesenchymal transition (EMT), 
and cell apoptosis/cell cycle (Table 3). Then, an herb-
crucial compound-biological functional module-molecule 
network was constructed to determine the relationships 
among these elements  (Figure 5A ) .  For example, 
Atractylodis Macrocephalae Rhizoma, a core herb in different 
combinational patterns, is known to invigorate the Spleen 
and tonify the vital-Qi, which predominantly regulates 
the immune module. Astragali Radix, Pinelliae Rhizoma, 
Citri Reticulatae Pericarpium, Amomi Fructus, Hordei Fructus 
Germinatus, and Aurantii Fructus are known to regulate the 
movement of Qi, promote blood circulation, and disperse 
blood stasis, which mainly regulate the EMT module. In 
addition, GeneMANIA was used to analyze the interactions 
among the significant targets, which were enriched in the 
pathways of each functional biological module. The results 
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Figure 4 GO and pathway enrichment analysis of the preferred prescription. (A) GO analysis of significant BP, MF, and CC (P<0.05). (B) 
The significant KEGG pathways (P<0.05). (C) Cross-talk pathways network of the preferred prescription. The nodes represent KEGG 
pathway terms (P<0.05), and the closer colors they have, the more similar potential functions they possess. The size of nodes represents 
the enrichment significance of KEGG pathway terms. (D) Multiregulation map of KEGG pathways reflects interactions among crucial 
components and targets overlapped with GC-related genes. GO, Gene Ontology; BP, biological process; MF, molecular function; 
CC, cellular component; KEGG, Kyoto Encyclopedia of Genes and Genomes; GC, gastric cancer; MSS, microsatellite stability; MSI, 
microsatellite instability; EMT, epithelial-mesenchymal transition. 
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Table 3 Modular functional pathways of the targets in the preferred prescription

Module Type
GO biological process/KEGG signaling 

pathway/reactome pathway
P value (Benjamini adjusted)

Immune Reactome Immune system 6.18E-05

KEGG T cell receptor signaling pathway 5.71E-09

KEGG Toll-like receptor signaling pathway 8.98E-08

KEGG NOD-like receptor signaling pathway 2.66E-04

Cell apoptosis/cell cycle KEGG Apoptosis 1.35E-06

KEGG Cell cycle 9.49121E-08

Epithelial mesenchymal transition GO Angiogenesis 0.000915735

Reactome Extracellular matrix organization 3.78222E-05

KEGG Focal adhesion 4.85619E-08

KEGG Wnt signaling pathway 0.005181823

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; NOD, nucleotide-binding and oligomerization domain.

indicated that the preferred prescription has the exact 
substance basis to regulate the biological modules related to 
the pathophysiology of GC.

To confirm the molecular mechanism underlying the 
preferred prescription, molecular docking was performed. 
Based on the sub-network between the crucial substances 
and predominant targets of the preferred prescription 
(Figure 5B), we found that both nobiletin and kaempferol 
have strong affinity with TERT and MDM2 molecules, and 
p53 may function as a downstream target (Figure 5C-5F). 

The preferred prescription suppressed GC proliferation and 
induced cell apoptosis

The typical HPLC-DAD chromatogram of all 12 major 
components in the preferred prescription is shown in 
Figure 6. The calycosin 7-O-glucoside, rutin, narirutin, 
naringin, hesperidin, neohesperidin, calycosin, naringenin, 
kaempferol, formononetin, nobiletin and atractylenolide II 
contents in the decoction were determined as 0.010, 0.014, 
0.229, 0.214, 0.253, 0.239, 0.002, 0.002, 0.004, 0.001, 0.003, 
and 0.002 mg/g, respectively. 

To determine the effect of the preferred prescription on 
GC cells, the AGS, HGC27, MKN28, and SGC7901 cell 
activities were assessed by MTT assay. As shown in Figure 7A,  
the cellular viabilities of the 4 GC cell lines were all 
significantly inhibited. In nude mouse xenograft models, 
we further validated that the preferred prescription-
treated mice showed dramatically decreased tumor weights 

compared to the control (Figure 7B,7C). Notably, body mass 
did not change over the preferred prescription treatment 
time courses and mice appeared healthy over the duration 
of the experiments, suggesting that no significant adverse 
side-effects were experienced (Figure 7D, Figure S1). These 
results suggested that the preferred prescription treatment 
suppressed GC proliferation in vivo and in vitro. 

Inducing the apoptosis of cancer cells is a vital way for 
anticancer drugs to take effect. Therefore, the GC cells 
were treated with different concentrations of the preferred 
prescription, and Annexin V-positive cells were detected 
by FITC analysis to evaluate whether the preferred 
prescription could induce apoptotic cell death. As shown 
in Figure 7E,7F, the preferred prescription significantly 
and dose-dependently increased the apoptosis rates of GC 
cells compared to the control. We also detected that the 
preferred prescription significantly increased the expression 
of pro-apoptotic protein Bax and decreased the expression 
of antiapoptotic Bcl2 protein in a concentration-dependent 
manner (Figure 7G-7I). Similar results were found in vivo 
(Figure 7J,7K). Taken together, our findings indicated that 
the preferred prescription inhibited the growth of GC by 
inducing apoptosis both in vivo and in vitro. 

The preferred prescription induced GC cell cycle arrest via 
hTERT/MDM2-p53 signaling pathway

From the results of KEGG pathway enrichment and 
the sub-network among the crucial substances and 

https://cdn.amegroups.cn/static/public/ATM-21-6301-supplementary.pdf
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Figure 5 Modular characteristics and molecular docking of the preferred prescription. (A) Herb-key compound-biological functional 
module-molecule network. Gray dotted line stands for the predicted relationship between herb and crucial compound. Black dotted line 
stands for the predicted relationship between herb and functional module of the predictive targets. The prefuse force directed layout of the 
PPI network by GeneMANIA is based on edge betweenness score. The black nodes represent queried proteins. The network weighting of 
relationships between proteins are shown at the left top. (B) Sub-network among the crucial substances and predominant targets. Molecular 
docking scores of kaempferol and nobiletin with TERT and MDM2 protein targets were −8.1 (C), −7.6 (D), −9.0 (E), −8.4 (F) kcal/mol, 
respectively. PPI, protein-protein interaction; TERT, telomerase reverse transcriptase; MDM2, murine double minute 2.
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Figure 6 The HPLC-DAD chromatogram of the main components in the preferred prescription. 1: calycosin 7-O-glucoside; 2: rutin; 
3: narirutin; 4: naringin; 5: hesperidin; 6: neohesperidin; 7: calycosin; 8: naringenin; 9: kaempferol; 10: formononetin; 11: nobiletin; 12: 
atractylenolide II. The contents of them in the preferred prescription were 0.010, 0.014, 0.229, 0.214, 0.253, 0.239, 0.002, 0.002, 0.004, 
0.001, 0.003, and 0.002 mg/g respectively. HPLC-DAD, high-performance liquid chromatography diode array detection.
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the predominant targets, the effects of the preferred 
prescription were evaluated on the hTERT/MDM2-p53 
signaling pathway. The activation of the p53 protein 
initiates a program of cell cycle arrest, cellular senescence, 
or apoptosis (34). During different phases of cell cycle, 
p53 controls both the G1 and G2/M checkpoints (35). 
Therefore, we performed flow cytometry assay to evaluate 
whether the preferred prescription modulated the cell cycle 
of GC cells. As shown in Figure 8A,8B, the proportion 
of MKN28 cells in the G1 phase was increased and the 
proportion of cells in the S phase was decreased, while there 
was a significant increment in G2/M in AGS, HGC-27, 
SGC-7901 cells.

By binding to p53, MDM2 inactivates the suppressive 
function of the tumor in p53 and prevents it from 
intervening in the cell cycle (36). Cells lacking TERT 
possessed elevated p53 levels and transcriptional signatures 
were consistent with p53 up-regulation. Thus, we examined 
the lysates of the MKN28 cells treated with different 
concentrations of the preferred prescription using western 
blot assay. As shown in Figure 8C, the preferred prescription 
treatment significantly and dose-dependently decreased 
the expressions of hTERT and MDM2, and significantly 
increased the expression of p53. A major player in the p53-
mediated G1 arrest is the p21 gene product that inhibits 
cyclin E-cdk2 (34). Therefore, we further detected the 

expressions of p21, cyclinE, and CDK2. It was found 
that the preferred prescription significantly increased the 
expression ratio of p21 and reduced the ratios of cyclinE 
and CDK2 in MKN28 cells (Figure 8C,8D). Similar 
results were verified in nude mouse xenograft models  
(Figure 8E,8F). The above findings implied that the preferred 
prescription induced cell cycle arrest in GC cells via hTERT/
MDM2-p53 signaling pathway. It also supported the causal 
link between the elevated p53 by the preferred prescription 
and the induction of pro-apoptosis proteins of Bax, and the 
depletion of anti-apoptosis proteins Bcl-2.

 

The preferred prescription inhibited EMT of GC cells via 
the hTERT/MDM2-p53 signaling pathway 

In cancer, EMT is associated with tumor initiation, 
invasion, metastasis, and resistance to therapy (37). The 
role of p53 in EMT has been well studied (38). Recently, 
it has been reported that p53, p21, and MDM2 bind to 
the EMT-inducing transcriptional factors Snail/Slug, and 
promote its ubiquitin-mediated proteasomal degradation 
(39,40). Based on these existing studies and our findings 
above, we hypothesized that the preferred prescription 
also exerted inhibition on EMT of GC via the hTERT/
MDM2-p53 signaling pathway. We performed wound 
healing assay, which revealed that the preferred prescription 
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Figure 7 The preferred prescription suppressed GC cells proliferation and induced cell apoptosis. (A) MTT assay showing a concentration-
dependent effect of the preferred prescription on the viability of AGS, HGC27, MKN28, and SGC7901 cells. (B) The inhibitory effect of 
the preferred prescription on the tumor growth of nude mouse xenograft models. The weights of the tumors (C), and the weights of the 
nude mice (D) were monitored (n=5). (E,F) Flow cytometry depicting cell apoptosis of GC cells treated with different concentrations of the 
preferred prescription. (G-I) The pro- and anti-apoptotic proteins were detected in MKN28 cells treated with different concentrations of 
the preferred prescription by western blotting. (J-K) The pro- and antiapoptotic proteins were detected in tumors of nude mouse xenograft 
models (n=5) by western blotting; *, P<0.05, **, P<0.01, ***, P<0.001, ****, P<0.0001 vs. Control. GC, gastric cancer; MTT, 3-(4,5-Dimethyl-
2-thizolyl)-2,5- diphenyltetrazolium bromide.

A
po

pt
ot

ic
 c

el
ls

, %

R
el

at
iv

e 
ex

pr
es

si
on

 o
f B

cl
2

R
el

at
iv

e 
ex

pr
es

si
on

 o
f B

ax

R
el

at
iv

e 
ex

pr
es

si
on

 o
f p

ro
te

in
s

In
hi

bi
tio

n 
ra

te
, %

Tu
m

or
 w

ei
gh

t, 
m

g

N
ud

e 
m

ic
e 

w
ei

gh
t, 

g

20

18

16

14

12

10

8

6

4

2

0

1.0

0.8

0.6

0.4

0.2

0.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

100

80

60

40

20

0

2.5

2.0

1.5

1.0

0.5

0.0

30

25

20

15

0

AGS Control

Control

Control

Con
tro

l

Control

Control

Con
tro

l

Con
tro

l

Control

Bcl2

Bcl2

Bcl2

Bax

Bax

Bax

β-actin

β-actin

Control

A
G

S

AGS

H
G

C
27

HGC27

M
K

N
28

MKN28

MKN28

S
G

C
79

01

SGC7901

2 mg/mL

2 mg/mL

2 m
g/

m
L

2 m
g/

m
L

2 mg/mL

2 mg/mL

4 mg/mL

4 mg/mL

4 m
g/

m
L

4 m
g/

m
L

4 mg/mL

4 mg/mL

8 mg/mL

8 mg/mL

8 m
g/

m
L

8 m
g/

m
L

8 mg/mL

8 mg/mL

Con
tro

l

5-FU

5-FU

5-FU5-
FU

5-
FU

**

0 3 6

Days after treatment

9 12 15

***

***

**

****
****

****

***
*

*

*

*

**

***

*** ** **
** *

Preferred

Preferred prescription

Preferred prescription

Pre
fer

re
d p

re
sc

rip
tio

n

Pre
fer

re
d p

re
sc

rip
tio

n

prescription

5-FU + Preferred

5-FU + Preferred prescription

5-FU + Preferred prescription5-
FU

 +
 P

re
fer

re
d 

pre
sc

rip
tio

n

5-
FU

 +
 P

re
fer

re
d 

pre
sc

rip
tio

n

prescription

SGC7901
HGC27

MKN28

5 10 15 20

Preferred decoction concentration, mg/mL

A

H

E F

G

B

I

C

J

D

K

Control 2mg/mL 4mg/mL 8mg/mL

A
G

S
H

G
C2

7
M

K
N

28
SG

C7
90

1



Annals of Translational Medicine, Vol 9, No 24 December 2021 Page 19 of 25

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(24):1777 | https://dx.doi.org/10.21037/atm-21-6301

Figure 8 The preferred prescription induced GC cell cycle arrest via hTERT/MDM2-p53 signaling pathway. (A,B) Flow cytometry 
depicting the effect of the preferred prescription on cell cycle checkpoints in GC cells treated with different concentrations of the preferred 
prescription. The expressions of hTERT, MDM2, p53, p21, cyclinE, and CDK2 proteins were detected and quantified in MKN28 cells 
treated with different concentrations of the preferred prescription (C,D), and in extracts from transplanted tumors (n=5) (E,F) by western 
blotting; *, P<0.05, **, P<0.01, ***, P<0.001, ****, P<0.0001 vs. Control. GC, gastric cancer; hTERT, human telomerase reverse transcriptase; 
MDM2, murine double minute 2; CDK2, cyclin-dependent kinase 2.
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remarkably suppressed the migration of MKN28 cells in a 
concentration-dependent manner, and notably the wound 
healing area of the preferred prescription (8 mg/mL) 
group was still large after culturing for 48 h (Figure 9A,9B). 
Transwell assay revealed that the preferred prescription 
dramatically inhibited GC invasion, even at the lowest 
concentration of 2 mg/mL (Figure 9C,9D). Further, we 
examined the EMT-related markers, and found that after 
the preferred prescription treatment, N-cadherin, Snail, 
and Slug expression ratios were significantly reduced in 
MKN28 GC cells (Figure 9E,9F) and in vivo (Figure 9G,9H) 
compared to the controls. Collectively, these data suggest 
that the preferred prescription may suppress EMT of GC 
via the hTERT/MDM2-p53 signaling pathway. 

Discussion

Globally, GC is the most common cancer and is the 
leading cause of cancer deaths (1). Therefore, the discovery 
of novel therapeutic strategies is urgent to enhance the 
therapeutic effects of existing drugs. Recently, with the 
development of bioinformatics and network pharmacology, 
more researchers have applied these methods to unravel the 
therapeutic effects of TCM formulae (4,41). Elaborately 
prescribed herbal formulae are being increasingly beneficial 
for GC patients in relieving adverse events caused by CT 
or CRT, expediting postoperative recovery, and reducing 
recurrence or metastasis incidence. However, the modular 
functional characteristics and molecular mechanisms of 
TCM in ameliorating GC have remained unclear. In the 
current study, we conducted a comprehensive data mining 
of clinical prescriptions, based on which, we obtained a 
basic TCM prescription with general applicability for 
GC treatment via machine learning. Based on network 
pharmacology exploration, the pharmacological mechanism 
of this preferred prescription against GC was also clarified 
via experimental verification. 

In this study, all the TCM prescriptions for GC 
treatment from eligible clinical studies over the past 3 
decades were collected via CNKI, which is a predominant 
academic database containing the most comprehensive 
and authoritative information on TCM. A total of 194 
prescriptions were retrieved, among which the most 
common used couplet herb pairs and triplet herbal 
combinations were analyzed through ARM. The top 
3 recommended herb pairs were all led by Atractylodis 
Macrocephalae Rhizoma. As one of the most potent herbs 
to invigorate the Spleen and tonify the Qi, it is especially 

indicated for poor appetite, loose stools, and diarrhea, which 
are the common manifestations in GC patients, especially 
after postoperative CT or CRT. When paired with Dioscoreae 
Rhizoma, with the potential to nourish the Yin and tonify the 
Lung and Kidney, it improves appetite, and mitigates loose 
stools. When paired with Aucklandiae Radix, it promotes 
digestion and relieves pain. Codonopsis Radix can be used 
with Atractylodis Mcacrocephalae Rhizoma in GC patients 
with weak physique and lassitude, or those experiencing 
cold pain in the stomach and abdomen, vomiting, or 
diarrhea (8). In addition, we found that Poria-Pseudostellariae 
Radix-Atractylodis Mcacrocephalae Rhizoma was one of the 
most recommended triplet herbal combinations. Notably, 
they are the major compositions of Si Jun Zi decoction, 
a classic traditional Chinese herbal prescription, which is 
well known for treating digestive function disorders (42).  
A deep machine learning method-based cluster analysis 
was further conducted to obtain an optimized prescription. 
In this preferred prescription, Atractylodis Macrocephalae 
Rhizoma and Astragali Radix were found to be major herbs 
responsible for tonifying the Middle-Jiao and invigorating 
the Spleen, which could relieve fatigue, poor appetite, 
loose stools, and other symptoms in GC patients. Pinelliae 
Rhizoma, Citri Reticulatae Pericarpium, Aucklandiae Radix, 
Amomi Fructus, and Aurantii Fructus worked cooperatively to 
alleviate symptoms like fullness in the abdomen, belching, 
nausea, and vomiting in GC patients with dampness 
stagnation. Dyspepsia is very common among GC patients, 
especially after surgery. Thus, Galli Gigeriae Endothelium 
Corneum, Hordei Fructus Germinatus, and Crataegi Fructus in 
the preferred prescription were used to improve digestive 
dysfunction. For patients enduring a long course of the 
disease, Herba Hedyotidis and Radix Actinidiae Chinensis could 
help in the elimination of internal toxins. Generally, the 
treatment principles and clinical indications of the preferred 
prescription are summarized in Figure S2. 

Next, we identified the bioactive components and the 
potential molecule targets of the preferred prescription by 
network pharmacology. A total of 74 bioactive components 
were acquired from literature and various public databases, 
2,128 genes relevant to the preferred prescription were 
obtained via target prediction, and 429 GC-related targets 
were retrieved from disease databases. Eventually, 135 
overlapping genes were identified as disease-associated 
targets. The disease of GC is heterogeneous, whereby the 
presence of molecular heterogeneity has been described 
based on anatomic histopathology, the anatomic site, gene 
expression, and so on (43). The multi-compound and 

https://cdn.amegroups.cn/static/public/ATM-21-6301-supplementary.pdf
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Figure 9 The preferred prescription inhibited EMT of GC cells via the hTERT/MDM2-p53 signaling pathway. Wound healing assay 
and Transwell assay detecting the migration (A,B) and invasion (C,D) abilities of MKN28 cells treated with different concentrations of the 
preferred prescription (scale bar =80 μm). The expressions of EMT-related markers were detected and quantified in MKN28 cells treated 
with different concentrations of the preferred prescription (E,F), and in extracts of the transplanted tumors (n=5) (G,H) by western blotting; 
*, P<0.05, **, P<0.01, ***, P<0.001, ****, P<0.0001 vs. Control. EMT, epithelial-mesenchymal transition; GC, gastric cancer; hTERT, human 
telomerase reverse transcriptase; MDM2, murine double minute 2.
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multi-target characteristics of the preferred prescription 
potentiate its multiple biological functions in treating GC. 
To acquire an in-depth understanding of the overlapping 
targets, GO, KEGG, and reactome pathway enrichment 
were performed. The modular functional network revealed 
part of the combinational rules of herbs in the context of 
biological functional molecules (Figure 5A). In this study, 
the crucial compounds ranked by degree were quercetin, 
kaempferol, baicalein, nobiletin, and luteolin. Existing 
studies on these bioactive substances have shown diverse 
anti-GC mechanisms. For example, luteolin could shift 
the Bax/Bcl ratio in human GC cells by increasing the 
expressions of pro-apoptotic proteins (44-46). Treatment 
with luteolin was also observed to up-regulate p21/cip1 
(CDKN1A), a TP53 activity signature (47). The mixture 
of Radix Actinidiae Chinensis could down-regulate the 
expressions of stromal cell-derived factor-1 (SDF-1), 
MMP-2, and MMP-9 in SGC-7901 cells (48). Quercetin 
was found to restrain transforming growth factor (TGF)-
β1-induced EMT by inhibiting Twist1 and regulating 
E-cadherin expression (49). Also, quercetin-3-methyl 
ether (Q3ME) is a natural flavonoid compound capable 
of inhibiting esophageal carcinogenesis by targeting the 
receptor tyrosine kinases (RTKs) (50). Although there 
was no literature on some crucial components associated 
with GC, the efficacy was noteworthy in other cancers. All 
literature, together with the experimental studies, provided 
a valuable hint in identifying the action mechanism of the 
preferred prescription against GC. 

From the in vivo results, it was revealed that treatment 
with the preferred prescription significantly suppressed 
tumor growth compared to the control. Notably, the 
preferred prescription did not compromise the mice’s body 
weights compared to the 5-FU group, indicating that it has 
a better safety profile, or at least in part, is favorable for 
patients who are intolerant of 5-FU treatment. To explore 
the potential mechanism, multiple biological function assays 
were conducted in vitro in GC cell lines, including AGS, 
HGC27, MKN28, and SGC-7901. It was demonstrated 
that the preferred prescription promoted cellular apoptosis 
and attenuated the metastatic capability in GC cells. 

From the results of target prediction and pathway 
analysis, the preferred prescription might suppress the 
survival and metastasis of GC cells via the hTERT/
MDM2-p53 signaling pathway. The TERT protein is 
often overexpressed in tumor cells and mediates cellular 
immortalization (51). Recent research revealed that 
cells lacking TERT possessed elevated p53 levels and 

transcriptional signatures were consistent with p53 up-
regulation. The up-regulation of the MDM2 oncogene 
plays a role in the diffuse type of GC (52). By binding to 
p53, MDM2 inactivates the anti-tumor function of p53 
and prevents it from intervening in the cell cycle (36). The 
activation of p53 induces p53-dependent cell death and p53- 
and p21-dependent cell cycle arrests, which is characterized 
by depletion of the S-phase cells and accumulation at the 
G1/S and/or G2/M phase boundaries of the cell cycle (53). 
In the present study, the flow cytometry and western blot 
results supported the prediction. After treatment with the 
preferred prescription, the proportion of MKN28 cells in 
the G1 phase was increased and the proportion of cells in 
the S phase was decreased, while there was a significant 
increment in G2/M in AGS, HGC-27, and SGC-7901 cells. 
Additionally, we validated that the preferred prescription 
exerted negative modulation on the expressions of hTERT 
and MDM2, and positively modulated the expressions of 
p53 and p21. The activation of p53 stimulates the synthesis 
of the p21 protein, which inhibits cyclin E-cdk2 activity, 
and this in turn acts upon the retinoblastoma (Rb)-MDM2 
complex that promotes p53 activity and apoptosis (34). 
In this study, we demonstrated that after the preferred 
prescription treatment, increased p53 activity induced the 
pro-apoptosis protein Bax and depleted the anti-apoptosis 
protein Bcl-2. We also detected decreased expressions of 
Slug and Snail under the preferred prescription treatment, 
which was possibly due to p53, p21, and MDM2 interacting 
with the EMT-inducing transcriptional factors, and leading 
to their ubiquitination (39). Taken together, the preferred 
prescription might play a role in inducing cell cycle arrest, 
cellular apoptosis, and inhibiting EMT process of GC via 
the hTERT/MDM2-p53 signaling pathway.

Meanwhile, our research had several limitations. Firstly, the 
eligible literature in our study was drawn only from Chinese 
databases. With the development of TCM, we will be able 
to include more information from other Asian countries like 
Japan and South Korea. Secondly, the bioactive substances 
of the Chinese herbs screened in the existing databases need 
further preclinical and clinical verification. Lastly, a clinical 
trial on the preferred prescription is required to reliably assess 
the roles of TCM in the recurrence and metastasis of GC.

Conclusions

To conclude, data mining and machine learning combined 
with network pharmacology analysis and experimental 
verification may elucidate the modular functions and 
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pharmacological mechanisms of TCM on GC from an 
innovative perspective. It was demonstrated that the 
preferred prescription may suppress the survival and 
metastasis of GC cells via modulating the hTERT/
MDM2-p53 signaling pathway. Meanwhile, in-depth 
pharmacological mechanisms by which the preferred 
prescription ameliorates GC need to be further explored. 
Also, as the core concept of TCM, syndrome differentiation 
cannot be completely replaced by the results of machine 
learning. Hence, clinically effective combinations of herbs 
should also be encouraged as individualized strategies for 
GC patients. This study will facilitate the application of 
TCM in GC treatment with the purpose of improving 
therapeutic strategy in clinic. 

Acknowledgments

Funding: This study was supported by the National Natural 
Science Foundation of China (81973609, 81704031, 
81973782); Jiangsu Provincial Medical Youth Talent 
(QNRC2016641); Jiangsu Provincial Hospital of Traditional 
Chinese Medicine Academic Talent Program (Y2018RC33); 
the Open Projects of the Discipline of Chinese Medicine of 
Nanjing University of Chinese Medicine Supported by the 
Subject of Academic priority discipline of Jiangsu Higher 
Education Institutions (ZYX03KF019, ZYX03KF021, 
ZYX03KF029); Jiangsu Province Scientific Research 
and Practice Innovation Program (SJCX21_0738, 
SJCX20_0568).

Footnote

Reporting Checklist: The authors have completed the 
ARRIVE reporting checklist. Available at https://dx.doi.
org/10.21037/atm-21-6301

Data Sharing Statement: Available at https://dx.doi.
org/10.21037/atm-21-6301

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://dx.doi.
org/10.21037/atm-21-6301). The authors have no conflicts 
of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. This study was 

conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). Animal experiment was performed 
under a project license (No. 2021DW-35-01) granted by 
the Animal Ethics Committee of Affiliated Hospital of 
Nanjing University of Chinese Medicine (Nanjing, China), 
in compliance with the recommendations in the Guide for 
the Care and Use of Laboratory Animals of the National 
Institutes of Health. 

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Jemal A, Bray F, Center MM, et al. Global cancer statistics. 
CA Cancer J Clin 2011;61:69-90.

2. Guo S, Shang MY, Dong Z, et al. A nomogram for 
predicting cancer-specific survival in different age groups 
for operable gastric cancer: a population-based study. 
Transl Cancer Res 2020;9:2758-68. 

3. Zhao Y, Wang XW, Lu Y, et al. Effect of Xiaotan Sanjie 
Decoction treatment based on syndrome differentiation on 
quality of life of patients with intermediate and advanced 
gastric cancer. Ti Erh Chun I Ta Hsueh Hsueh Pao 
2016;37:1333-7.

4. Pan B, Wang Y, Wu C, et al. A Mechanism of Action 
Study on Danggui Sini Decoction to Discover Its 
Therapeutic Effect on Gastric Cancer. Front Pharmacol 
2020;11:592903.

5. Catenacci DV, Chao J, Muro K, et al. Toward a Treatment 
Sequencing Strategy: A Systematic Review of Treatment 
Regimens in Advanced Gastric Cancer/Gastroesophageal 
Junction Adenocarcinoma. Oncologist 2021;26:e1704-29.

6. Pharmacopoeia Committee of the People’s Republic of 
China (Beijing). Chinese Pharmacopoeia. 2020 ed. Beijing: 
Chinese Medical Science and Technology Press, 2020.

7. Liu P, Liu S, Chen G, et al. Understanding channel 
tropism in traditional Chinese medicine in the context of 
systems biology. Front Med 2013;7:277-9.

8. Gao XM. Chinese Pharmacy. 8th ed. Beijing: China 
Traditional Chinese Medicine Publishing Press, 2007.

https://dx.doi.org/10.21037/atm-21-6301
https://dx.doi.org/10.21037/atm-21-6301
https://dx.doi.org/10.21037/atm-21-6301
https://dx.doi.org/10.21037/atm-21-6301
https://dx.doi.org/10.21037/atm-21-6301
https://dx.doi.org/10.21037/atm-21-6301
https://creativecommons.org/licenses/by-nc-nd/4.0/


Xu et al. Data mining and network pharmacology-based identification

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(24):1777 | https://dx.doi.org/10.21037/atm-21-6301

Page 24 of 25

9. Creighton C, Hanash S. Mining gene expression databases 
for association rules. Bioinformatics 2003;19:79-86.

10. Agrawal R, Tomasz, Arun S. Mining association rules 
between sets of items in large databases. Acm Sigmod 
Conference on Management of Data 1993;22:207-15.

11. Vougas K, Sakellaropoulos T, Kotsinas A, et al. Machine 
learning and data mining frameworks for predicting 
drug response in cancer: An overview and a novel in 
silico screening process based on association rule mining. 
Pharmacol Ther 2019;203:107395.

12. Leem J, Jung W, Kim Y, et al. Exploring the combination 
and modular characteristics of herbs for alopecia treatment 
in traditional Chinese medicine: an association rule mining 
and network analysis study. BMC Complement Altern 
Med 2018;18:204.

13. Karim MR, Beyan O, Zappa A, et al. Deep learning-based 
clustering approaches for bioinformatics. Brief Bioinform 
2021;22:393-415.

14. Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in 
healthcare: past, present and future. Stroke Vasc Neurol 
2017;2:230-43.

15. Ru J, Li P, Wang J, et al. TCMSP: a database of systems 
pharmacology for drug discovery from herbal medicines. J 
Cheminform 2014;6:13.

16. Liu Z, Guo F, Wang Y, et al. BATMAN-TCM: a 
Bioinformatics Analysis Tool for Molecular mechANism of 
Traditional Chinese Medicine. Sci Rep 2016;6:21146.

17. Su X, Kong L, Lei X, et al. Biological fingerprinting 
analysis of traditional Chinese medicines with targeting 
ADME/Tox property for screening of bioactive 
compounds by chromatographic and MS methods. Mini 
Rev Med Chem 2007;7:87-98.

18. Gfeller D, Michielin O, Zoete V. Shaping the interaction 
landscape of bioactive molecules. Bioinformatics 
2013;29:3073-9.

19. Yu H, Chen J, Xu X, et al. A systematic prediction of 
multiple drug-target interactions from chemical, genomic, 
and pharmacological data. PLoS One 2012;7:e37608.

20. Zheng C, Guo Z, Huang C, et al. Large-scale Direct 
Targeting for Drug Repositioning and Discovery. Sci Rep 
2015;5:11970.

21. Li J, Zhao P, Li Y, et al. Systems pharmacology-based 
dissection of mechanisms of Chinese medicinal formula 
Bufei Yishen as an effective treatment for chronic 
obstructive pulmonary disease. Sci Rep 2015;5:15290.

22. Szklarczyk D, Santos A, von Mering C, et al. STITCH 
5: augmenting protein-chemical interaction networks 
with tissue and affinity data. Nucleic Acids Res 

2016;44:D380-4.
23. Keiser MJ, Roth BL, Armbruster BN, et al. Relating 

protein pharmacology by ligand chemistry. Nat Biotechnol 
2007;25:197-206.

24. Daina A, Michielin O, Zoete V. SwissTargetPrediction: 
updated data and new features for efficient prediction 
of protein targets of small molecules. Nucleic Acids Res 
2019;47:W357-64.

25. Rappaport N, Twik M, Plaschkes I, et al. MalaCards: an 
amalgamated human disease compendium with diverse 
clinical and genetic annotation and structured search. 
Nucleic Acids Res 2017;45:D877-87.

26. Piñero J, Bravo À, Queralt-Rosinach N, et al. DisGeNET: 
a comprehensive platform integrating information on 
human disease-associated genes and variants. Nucleic 
Acids Res 2017;45:D833-9.

27. Dennis G Jr, Sherman BT, Hosack DA, et al. DAVID: 
Database for Annotation, Visualization, and Integrated 
Discovery. Genome Biol 2003;4:P3.

28. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes 
and genomes. Nucleic Acids Res 2000;28:27-30.

29. Bindea G, Mlecnik B, Hackl H, et al. ClueGO: a 
Cytoscape plug-in to decipher functionally grouped gene 
ontology and pathway annotation networks. Bioinformatics 
2009;25:1091-3.

30. Warde-Farley D, Donaldson SL, Comes O, et al. The 
GeneMANIA prediction server: biological network 
integration for gene prioritization and predicting gene 
function. Nucleic Acids Res 2010;38:W214-20.

31. Morris GM, Huey R, Lindstrom W, et al. AutoDock4 
and AutoDockTools4: Automated docking with selective 
receptor flexibility. J Comput Chem 2009;30:2785-91.

32. O'Boyle NM, Banck M, James CA, et al. Open Babel: An 
open chemical toolbox. J Cheminform 2011;3:33.

33. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting 
items for systematic reviews and meta-analyses: the 
PRISMA statement. PLoS Med 2009;6:e1000097.

34. Wu D, Prives C. Relevance of the p53-MDM2 axis to 
aging. Cell Death Differ 2018;25:169-79.

35. Agarwal ML, Agarwal A, Taylor WR, et al. p53 controls 
both the G2/M and the G1 cell cycle checkpoints and 
mediates reversible growth arrest in human fibroblasts. 
Proc Natl Acad Sci U S A 1995;92:8493-7.

36. Momand J, Zambetti GP, Olson DC, et al. The mdm-
2 oncogene product forms a complex with the p53 
protein and inhibits p53-mediated transactivation. Cell 
1992;69:1237-45.

37. Pastushenko I, Blanpain C. EMT Transition States during 



Annals of Translational Medicine, Vol 9, No 24 December 2021 Page 25 of 25

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(24):1777 | https://dx.doi.org/10.21037/atm-21-6301

Tumor Progression and Metastasis. Trends Cell Biol 
2019;29:212-26.

38. Powell E, Piwnica-Worms D, Piwnica-Worms H. 
Contribution of p53 to metastasis. Cancer Discov 
2014;4:405-14.

39. Wang SP, Wang WL, Chang YL, et al. p53 controls 
cancer cell invasion by inducing the MDM2-mediated 
degradation of Slug. Nat Cell Biol 2009;11:694-704.

40. Kim J, Bae S, An S, et al. Cooperative actions of p21WAF1 
and p53 induce Slug protein degradation and suppress cell 
invasion. EMBO Rep 2014;15:1062-8.

41. Wang T, Feng Y, Wang H, et al. The Mechanisms of 
Sijunzi Decoction in the Treatment of Chronic Gastritis 
Revealed by Network Pharmacology. Evid Based 
Complement Alternat Med 2020;2020:8850259.

42. Liu L, Han L, Wong DY, et al. Effects of Si-Jun-Zi 
decoction polysaccharides on cell migration and gene 
expression in wounded rat intestinal epithelial cells. Br J 
Nutr 2005;93:21-9.

43. Cristescu R, Lee J, Nebozhyn M, et al. Molecular analysis 
of gastric cancer identifies subtypes associated with distinct 
clinical outcomes. Nat Med 2015;21:449-56.

44. Lu J, Li G, He K, et al. Luteolin exerts a marked 
antitumor effect in cMet-overexpressing patient-derived 
tumor xenograft models of gastric cancer. J Transl Med 
2015;13:42.

45. Liu JF, Ma Y, Wang Y, et al. Reduction of lipid 
accumulation in HepG2 cells by luteolin is associated with 
activation of AMPK and mitigation of oxidative stress. 
Phytother Res 2011;25:588-96.

46. Lee WJ, Wu LF, Chen WK, et al. Inhibitory effect of 

luteolin on hepatocyte growth factor/scatter factor-induced 
HepG2 cell invasion involving both MAPK/ERKs and 
PI3K-Akt pathways. Chem Biol Interact 2006;160:123-33.

47. Imran M, Rauf A, Abu-Izneid T, et al. Luteolin, a 
flavonoid, as an anticancer agent: A review. Biomed 
Pharmacother 2019;112:108612.

48. Zhang F, Zhang N, Liang F, et al. Effects of Tengligen 
Mixture on Expression of MMP-2,MMP-9 and SDF-1 in 
Gastric Cancer SGC-7901 Cells. Acta Chinese Medicine 
2018;33:175-80.

49. Feng J, Song D, Jiang S, et al. Quercetin restrains 
TGF-β1-induced epithelial-mesenchymal transition by 
inhibiting Twist1 and regulating E-cadherin expression. 
Biochem Biophys Res Commun 2018;498:132-8.

50. Zhao S, Jiang Y, Zhao J, et al. Quercetin-3-methyl ether 
inhibits esophageal carcinogenesis by targeting the AKT/
mTOR/p70S6K and MAPK pathways. Mol Carcinog 
2018;57:1540-52.

51. Konnikova L, Simeone MC, Kruger MM, et al. Signal 
transducer and activator of transcription 3 (STAT3) 
regulates human telomerase reverse transcriptase (hTERT) 
expression in human cancer and primary cells. Cancer Res 
2005;65:6516-20.

52. Günther T, Schneider-Stock R, Häckel C, et al. Mdm2 
gene amplification in gastric cancer correlation with 
expression of Mdm2 protein and p53 alterations. Mod 
Pathol 2000;13:621-6.

53. Shangary S, Wang S. Small-molecule inhibitors of the 
MDM2-p53 protein-protein interaction to reactivate p53 
function: a novel approach for cancer therapy. Annu Rev 
Pharmacol Toxicol 2009;49:223-41.

Cite this article as: Xu X, Chen Y, Zhang X, Zhang R,  
Chen X, Liu S, Sun Q. Modular characteristics and the 
mechanism of Chinese medicine’s treatment of gastric cancer: a 
data mining and pharmacology-based identification. Ann Transl 
Med 2021;9(24):1777. doi: 10.21037/atm-21-6301


