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Abstract

An individual’s antibody titers to influenza A strains are a result of the complicated interplay

between infection history, cross-reactivity, immune waning, and other factors. It has been

challenging to disentangle how population-level patterns of humoral immunity change as a

function of age, calendar year, and birth cohort from cross-sectional data alone. We ana-

lyzed 1,589 longitudinal sera samples from 260 children across three studies in Nicaragua,

2006–16. Hemagglutination inhibition (HAI) titers were determined against four H3N2

strains, one H1N1 strain, and two H1N1pdm strains. We assessed temporal patterns of HAI

titers using an age–period–cohort modeling framework. We found that titers against a given

virus depended on calendar year of serum collection and birth cohort but not on age. Titer

cohort patterns were better described by participants’ ages relative to year of likely introduc-

tion of the virus’s antigenic cluster than by age relative to year of strain introduction or by

year of birth. These cohort effects may be driven by a decreasing likelihood of early-life

infection after cluster introduction and by more broadly reactive antibodies at a young age.

H3N2 and H1N1 viruses had qualitatively distinct cohort patterns, with cohort patterns of

titers to specific H3N2 strains reaching their peak in children born 3 years prior to that virus’s

antigenic cluster introduction and with titers to H1N1 and H1N1pdm strains peaking for chil-

dren born 1–2 years prior to cluster introduction but not being dramatically lower for older

children. Ultimately, specific patterns of strain circulation and antigenic cluster introduction

may drive population-level antibody titer patterns in children.
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Author summary

The human antibody response to influenza A viruses is complex, in part because these

viruses readily mutate to evade our immune systems. Occasional greater genetic changes

can establish a new group of viruses, called an antigenic cluster, based on the similarity of

our antibody responses. A better understanding of how our antibody responses change

over time could improve vaccination strategies around strain selection, vaccination tim-

ing, whether yearly vaccination is optimal, and how much variability in vaccination

response by age to expect. In this study, we examined how antibody responses change

along three dimensions of time, namely age, calendar year, and birth cohort. As expected,

antibody titers depended on what years each influenza subtype circulated. We also found

that antibody responses to a virus depended on one’s age when a related virus from the

same antigenic cluster first circulated, not when that specific virus circulated. We also find

evidence young children may have antibodies that cross-react with strains that have not

yet circulated, possibly indicating that their immune systems are creating a wide array of

antibodies, which could inform possible mechanisms of antigenic seniority. Our results

shed new light on the dynamics of antibody titer levels.

Introduction

The human immunological response to influenza A viruses is comprised of highly complex

antibody and cellular responses [1]. In particular, antibodies to influenza surface proteins,

especially hemagglutinin (HA), are known to be protective against infection [2]. This immu-

nological response creates evolutionary pressure on the virus, leading to continual antigenic

drift, punctuated by larger changes in antigenicity that lead to the formation of antigenic clus-

ters [3]. Antigenic cartography, or mapping, of antigenic data has been one approach used to

better visualize the antigenic relatedness of strains, demonstrating which strains form anti-

genic clusters [4]. There are different approaches to defining antigenic similarity and thus clus-

tering, such as using ferret sera [4, 5] or models of HA sequences [6, 7]. Ultimately, an

antigenic cluster should define a set of viruses for which immune recognition is similar.

Our understanding of the immune response to influenza is complicated by the complex

interplay of the cross-reactivity of antibodies to related viruses (whether in the same antigenic

cluster or not), possible antigenic seniority or imprinting effects, cellular immunity, waning

immunity, and other factors [1, 8]. Thus, our understanding of the immunology and correlates

of protection against infection or disease remains imperfect, hampering our abilities to under-

stand who is at risk and to develop more effective vaccines against seasonal and pandemic

influenza strains.

Infection histories are important for understanding an individual’s antibody response to

influenza, as measured, for example, by the hemagglutination inhibition (HAI) assay. An indi-

vidual’s titer levels depend on the exact timing and set of infections [9, 10], and previous work

has explored whether individual infection histories can be inferred from individual longitudi-

nal titers [10–13]. Antibody patterns aggregated at the population level can also help to eluci-

date underlying antibody dynamics [9, 14], although they can be difficult to interpret,

especially in cross-sectional data. We must disentangle the contributions of age, age relative to

the time of virus introduction (which is a way of understanding birth cohorts), and patterns of

virus circulation across different years to population-average antibody levels for a given virus.

In particular, there is a growing interest in understanding drivers and implications of cohort

effects for influenza [8, 14–16].
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Here, we analyze population-level patterns of HAI titers to seven influenza viruses from

two influenza A subtypes—H3N2 and H1N1—in a longitudinal cohort of young adolescents

and children, many starting from birth, allowing us to better understand how antibody titer

patterns change through infancy and childhood. This analysis will allow us to better under-

stand the role of age, patterns of virus circulation, and viral changes, both between and within

subtypes, on antibody responses.

Methods

Ethics statement

All studies that provided data for this analysis were approved by the appropriate institutional

review boards (at one or more of the Nicaraguan Ministry of Health, University of California

Berkeley, and University of Michigan), and parents/guardians of all participants gave written,

informed consent to participate and to share data across these studies.

Data

Sera samples were collected from 260 participants enrolled in at least one of three studies in

District II of Managua, Nicaragua administered by the Sustainable Science Institute in 2006–

2016: the Nicaraguan Influenza Cohort Study (NICS), the Nicaraguan Pediatric Influenza

Cohort Study (NPICS), and the Nicaraguan Influenza Birth Cohort Study (NIBCS) [17–19].

The studies initially consisted only of children ages up to age 12, but NPICS expanded up to

age 14 in 2013. Enrollment of participants prior to 1 year of age began in 2011. All participants

were born in 1995 or later. Sera samples were collected annually (July or August prior to 2011;

March or April in 2011 and after). Additional, intermittent samples timed between the annual

samples were available for a subset of participants. In Nicaragua, influenza A circulation typi-

cally peaks mid-year (June/July) or at the end of the year (November/December). Influenza A

incidence by subytpe in the pediatric cohorts (as determined by RT-PCR testing of in swabs of

symptomatic study participants) and the timing of the annual sera sample collection is given

in Fig 1. Additional details on the study site, population, and design may be found in [17–19].

In total, 1,589 samples were analyzed. A table of number of samples by age and year is included

in Table A in S1 Appendix.

Laboratory assays

HAI assays were performed for four H3N2 influenza vaccine strains (A/Wisconsin/67/2005,

A/Perth/16/2009, A/Victoria/361/2011, A/Texas/50/2012, the former belonging to the WI05

antigenic cluster and latter three belonging to the same PE09 antigenic cluster [4, 20–22]) and

three H1N1 influenza vaccine strains (seasonal A/Solomon Islands/3/2006 and pandemic A/

California/7/2009 and A/Michigan/45/2015, the last two belonging to the same CA09 antigenic

cluster). Serological testing was performed at the University of Michigan. Participants with

undetectable titers were assumed to have a titer of 1:5. Molecular testing for influenza was per-

formed at the National Virology Laboratory of the Centro Nacional de Diagnóstico y Referen-

cia, which is an WHO National Influenza Center and part of the Nicaraguan Ministry of

Health.

Age–period–cohort modeling

Age–period–cohort (APC) modeling is a generalized linear modeling technique used to distin-

guish between different effects of time (age, period or calendar year, and cohort or birth year)

in longitudinal data [23–26]. Hexamaps offer one way of visualizing the underlying data, with
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the three axes representing age, period, and birth cohort (Fig 2) [27]. The general formulation

of an APC model for HAI titer y as a function of age ta, period tp, and cohort tc is

log y ¼ b0 þ baðtaÞ þ bpðtpÞ þ bcðtcÞ ð1Þ

For each subtype, we considered both strain-specific models and subtype-specific models,

namely, for strain ij in influenza subtype i, we defined the strain-specific model

log yij ¼ b0;ij
þ ba;ij

ðtaÞ þ bp;ij
ðtpÞ þ bc;ij

ðtcÞ; ð2Þ

and the subtype-specific model

log yij ¼ b0;ij
þ ba;iðtaÞ þ bp;iðtpÞ þ bc;iðtcÞ: ð3Þ

The difference between these models is whether the time effects can be considered fixed for

all strains in a subtype (β does not depend on j), or whether each strain requires its own time

effects (β depends on j). In the subtype-specific models, there are several different ways to spec-

ify the cohort tc. We considered three here: birth year, age at strain introduction, and age in a

strain-specific year, which we interpret as the time of the introduction of a genetically similar

virus, i.e., a virus in the same antigenic cluster.

In this analysis, βa and βc were cubic B-splines with 3 and 4 degrees of freedom, respectively,

and βp was a step function taking different values for each calendar year. Because ta = tp − tc,
the parameters of (1) are not identifiable without further assumptions. In this analysis, we con-

sidered models with only two of ta, tp, and tc at a time.

We compared models using a variety of model metrics, including R2, root mean squared

error, negative log-likelihood, and the Schwarz Information Criterion (SIC). The SIC, also

known as the Bayesian Information Criterion (BIC), is a measure of model fit with a penalty

Fig 1. Incidence of influenza A by subtype in the Nicaraguan Influenza Cohort Study (NICS) and Nicaraguan Pediatric Influenza Cohort Study

(NPICS). Incidence is defined as RT-PCR-confirmed cases of influenza in study participants presenting at the study health clinic with fever or

influenza-like illness. In Nicaragua, influenza A circulation typically peaks mid-year (June/July) or at the end of the year (November/December). Sera

samples were collected annually (July or August prior to 2011; March or April in 2011 and after). Grey bars give the period of sera sampling. Incidence

before and after 2011 should not be directly compared. The cohort prior to 2011 was larger, but only a randomized subsample of eligible participants

were tested, while after 2011 the cohort was smaller, but all eligible participants were tested.

https://doi.org/10.1371/journal.ppat.1010317.g001
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for the number of parameters, which controls overfitting, and it is particularly helpful here in

comparing whether the added parameters of the strain-specific models compared to the sub-

type-specific models are justified. The SIC is defined as logðnÞ � k � 2 log L, where n is the

sample size, k is the number of model parameters and L is the model likelihood. The model

with the lowest SIC value can be thought of as the simplest model that fits the data well.

Results

Participant and sample statistics

Characteristics of the participants are summarized in Table 1. Of the 260 participants, 55%

(142) were recruited prior to their first birthday. Of those not recruited prior to age 1, the

median age of recruitment was 3, with a range of 1 to 11. At participants’ baseline visits, 62%

(162) exhibited titers of at least 1:20 to at least one of the four H3N2 strains (including 57%

(81) of participants recruited prior to 1 year of age), and 34% (88) exhibited titers to at least

one of the three H1N1 strains (including 26% (37) participants recruited prior to 1 year of

age). The participants had a median of 5 analyzed samples, with a range of 1 to 19 samples

(including both annual and intermittent samples). There were 53 confirmed (e.g., by vaccine

card) and 39 probable (e.g., self-reported and consistent with clinic administration dates of

vaccine administration) influenza vaccinations among 63 participants within the span of the

data. Most vaccinations occurred in May or June of 2012, 2014, or 2015, after the sera sampling

period for that year. We did not exclude these individuals from the analysis but instead inter-

pret the antibody titer results, particularly period effects in these years, as potentially being

impacted by vaccination rather than infection, if any effect of vaccination on antibody titers

was still detectable by the sera sampling period the following year.

Fig 2. Hexamaps. Hexamaps visualize longitudinal population survey data by distinguishing by age, calendar year

(period), and birth cohort along each of three axes. All points along an isoline share the same value one of the temporal

characteristics.

https://doi.org/10.1371/journal.ppat.1010317.g002
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Data visualization

We present the mean log titers as hexamaps illustrating age, calendar year, and birth cohort

patterns for the H3N2 strains in Fig 3a and the H1N1 strains in Fig 4a. The sample size under-

lying each hex is given in Fig A in S1 Appendix. Individual log-titers are presented in Figs B

and C in S1 Appendix; correlations between an individual’s titers to each virus is given in Fig

D in S1 Appendix. In these hexamaps, there were clear patterns in each plot by year of sample

collection and participant birth cohort; patterns by age, if any, are less apparent. In the H3N2

data, samples collected in 2007 and 2010 have noticeably high titers. This result is not surpris-

ing, given that collection of the samples in 2007 and 2010 was directly after H3N2 epidemics

(Fig 1). Titers to A/Wisconsin/67/2005 began to decrease around the 2008 birth cohort. Titer

patterns to A/Perth/16/2009, A/Victoria/361/2011, and A/Texas/50/2012 were nearly identical,

with higher titers in the samples collected after 2009 for birth cohorts prior to 2004 and higher

titers in those collected after 2007 for birth cohorts 2004 and later. Seasonal H1N1 strains

stopped circulating in 2009 with the introduction of H1N1pdm viruses, and the strongest

effects for A/Solomon Islands/3/2006 were seen by birth cohort, with very low titers in birth

cohorts 2009 and later. For the H1N1pdm strains A/California/7/2009 and A/Michigan/45/

2015, titers were low prior to 2009, except for participants in the 2005–06 birth cohorts, who,

Table 1. Characteristics of the study cohort at time of each participant’s first sera sample.

Characteristics % (N) or mean (range)

Age 1.8 (0–11)

Sex

Female 45% (116)

Male 55% (144)

Ever received influenza vaccine

Yes 24% (63)

No 76% (197)

Number of household residents 8.1 (1–30)

Mother is literate

Yes 76% (198)

No 3% (9)

Unknown 20% (53)

Water available inside the home

Yes 54% (140)

No 26% (68)

Unknown 20% (52)

Home has dirt floor

Yes 12% (32)

No 66% (172)

Unknown 22% (56)

Cook with firewood in the home

Yes 11% (29)

No 50% (130)

Unknown 39% (101)

Animals in the home

Yes 35% (92)

No 27% (71)

Unknown 37% (97)

https://doi.org/10.1371/journal.ppat.1010317.t001
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surprisingly, had titers prior to 2009. (Note: there were no participants in the study at the time

who were in the 2007–08 birth cohorts). These pre-2009 titers were not driven by single indi-

viduals. Three of the 7 participants who were age 2 at sample collection in 2007 and 4 of the 8

participants who were age 2 in 2008 had positive titers to A/California/7/2009. Titers to the

H1N1pdm strains decreased in the birth cohorts after 2012.

Fig 3. H3N2 hexamaps for HAI titers. a) Hexamaps visualizing H3N2 HAI mean log titers as a function of age, calendar year, and birth year in the

data. b) Corresponding hexamaps for the mean log titers predicted by the H3N2 subtype-specific model. Black hexagons represent points with no

participants.

https://doi.org/10.1371/journal.ppat.1010317.g003
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Fig 4. H1N1 hexamaps for HAI titers. a) Hexamaps visualizing H1N1 HAI mean log titers as a function of age, calendar year, and

birth year in the data. b) Corresponding hexamaps for the mean log titers predicted by the H1N1 specific model with separate time

effects for seasonal and pandemic strains. Black hexagons represent points with no participants.

https://doi.org/10.1371/journal.ppat.1010317.g004
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Model comparisons and changes in titer by cohort

As expected from the patterns identified in the data visualization, we find that the strain-spe-

cific models are best described by period–cohort models (as determined by a variety of model

metrics given in Tables B and C in S1 Appendix). In Fig 5a and 5b, we plot the cohort effects

for each model as a function of age at the time of the corresponding strain introduction. We

see that, as a function of age at strain introduction, the effects have similar shapes within sub-

type but are offset. In Fig 5c and 5d, we control for that offset. Specifically, rather than age at

strain introduction, we plot the cohort effects as a function of age in a strain-specific year:

2005 for A/Wisconsin/67/2005, 2010 for A/Perth/16/2009, A/Victoria/361/2011, and A/Texas/

50/2012, 2004 for A/Solomon Islands/3/2006, and 2009 for A/California/7/2009 and A/Michi-

gan/45/2015. We interpret these years as the time that a virus of the same antigenic cluster first

circulated locally. We also observe that titers to H3N2 viruses appear to increase and decline

symmetrically by cohort, peaking in children born approximately 3 years before the virus’s

antigenic cluster introduction, while the titers to the H1N1 strains, which peak in children

born 1–2 years prior to cluster introduction, may also be higher for older children. Only one

cluster change was observed for each of H3N2 and H1N1, and we estimate that the previous

cluster was dominant for about 5 years (2005–2010 for WI05, 2004–2009 for the cluster prior

to CA09). These shapes reflect averages over the study period for individuals in each birth

Fig 5. Cohort effects on HAI titers. a) Difference in mean log titer in the H3N2 strain-specific models by age at strain introduction. b) Difference in

mean log titer in the H1N1 strain-specific models by age at strain introduction (note: for A/Michigan/45/2015 we linearly impute the effect to age 0). c)

Difference in mean log titer in the H3N2 strain-specific models and the H3N2 subtype model by age at antigenic cluster introduction. d) Difference in

mean log titer in the H1N1 strain-specific models and the H1N1pdm model by age at antigenic cluster introduction. In each plot, the difference in

mean log titer is relative to age 0 at strain or cluster introduction, and the bands give the 95% confidence intervals.

https://doi.org/10.1371/journal.ppat.1010317.g005
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cohort (i.e., averaging individual’s trajectories) adjusting for calendar year effects. Analogous

figures giving the raw mean log titers are given in the Fig E in S1 Appendix and bootstrap

cohort effects for the subtype-specific models are given in Fig F in S1 Appendix.

Analysis of the children included prior to their first birthday suggests that these patterns are

largely driven by when children have their first infection and how that depends on time since

cluster introduction. Specifically, the fraction of children who have antibodies (i.e., HAI titers

greater than 1:5) prior to their first birthday (likely from early-life infection, as maternal anti-

bodies would likely have waned by the time sera was collected, at least 6 months after birth

[28]) decreased with time since cluster introduction (Fig G in S1 Appendix). Children with

early-life antibodies may or may not maintain them, leading to slight waning of the population

average over the next 5 years (Fig H in S1 Appendix). Children who did not have an infection

prior to their first birthday catch up over those 5 years, so that the two groups become largely

indistinguishable. In these data, this merging takes 2–4 years for H3N2 strains and 4–5 years

for H1N1 strains. Although, the cohort of children enrolled prior to age 1 does not span the

full data (as they belong to birth cohorts of 2010 and later), these results suggest that this

cohort effect on the population average HAI titers may be driven in part by the age at first

infection increasing with time since cluster introduction.

Looking at the full sample patterns reinforces the importance of a child’s birth year relative

to the time of antigenic cluster introduction (Fig I in S1 Appendix). Children in the birth

cohorts shortly preceding the antigenic cluster introduction (those with the highest titers over-

all) had cross-reactive antibodies prior to circulation of the first virus in the new antigenic clus-

ter. Children in earlier birth cohorts have lower titers to the newer cluster viruses overall

because they initially begin with lower titers to those viruses but then have titers boosted

around the time of circulation. Children born while strains of that virus’s antigenic cluster are

circulating appear to maintain relatively high levels of HAI antibodies cross-reactive to that

strain, at least as long as strains in that cluster are circulating. Children born after strains in a

given antigenic cluster have stopped circulating had few cross-reactive HAI antibodies to

strains in that cluster.

In Table 2, we compare the strain- and subtype-specific models with period and cohort

effects for the different definitions of cohort (lower/more negative values indicate better fits)

using the SIC (a broader comparison of models and model metrics is given in Tables B and C

in S1 Appendix). For the strain-specific models, changing the cohort definition is equivalent to

changing the referent year, so there is no change to the model SIC. When two strains share

period and cohort effects, however, as in the subtype-specific models, the specification of the

cohort effect does matter. Here, we see that the subtype-specific H3N2 model with cohort

defined as age at cluster introduction is preferred by the SIC over the strain-specific model.

Table 2. Comparison of period–cohort models for the H3N2 and H1N1 strains.

Model Cohort definition

Birth year Age at strain introduction Age at cluster introduction

H3N2

Strain-specific Ref. Ref. Ref.

Subtype-specific 115.5 -266.0 -346.0

H1N1

Strain-specific Ref. Ref. Ref.

Subtype-specific 58.7 -21.4 -136.3

Values are Schwarz Information Criterion (SIC) relative to the strain-specific SIC. H3N2 strain specific SIC: 24772.2. H1N1 strain-specific SIC: 15849.3.

https://doi.org/10.1371/journal.ppat.1010317.t002
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This result means that we do not need strain-specific period and cohort parameters to explain

the data: viruses of the same subtype have similar period and cohort patterns. Similarly, the

subtype-specific model is preferred for the H1N1 strains. Modeled mean log titers for the

H3N2 subtype-specific model and the H1N1 subtype-specific model, each with cohort defined

as age at cluster introduction, are plotted in Figs 3b and 4b. The overall H3N2 and H1N1

cohort effects are included in Fig 5c and 5d.

Changes in titers by period

The period effects for the strain-specific, H3N2 subtype-specific, and H1N1 seasonal vs pan-

demic strain models are shown in Fig 6. As seen in the hexamaps, 2007 and 2010 are years of

high H3N2 titers, and these correspond to years when H3N2 circulated (Fig 1). After 2010, the

correlation between larger mean log titers and circulation of H3N2 is less pronounced, possi-

bly because of the shift in protocol, starting in 2011, to collecting samples in March/April (on

average 6 months after the previous peak) instead of July/August (typically directly after or

during circulation). For H1N1, 2009 is a high titer year for the seasonal strain, while 2010 is

the high titer year for the pandemic strains, likely because the 2009 samples were taken during

the early phases of the H1N1pdm epidemic (Fig 1). Altogether, the seasonal H1N1 period

effect (relative to 2006) is greater than the pandemic H1N1 period effect before 2010 and lesser

afterward.

Discussion

In this study, we find evidence that population-level antibody patterns to an H3N2 or H1N1

influenza A virus in children depend neither on age, per se, nor on age at the time that virus

first circulated, but instead on the age when a strain from that virus’s antigenic cluster first cir-

culated locally. The patterns of titers to A/Perth/16/2009, A/Victoria/361/2011, and A/Texas/

50/2012, which are all in the Perth 2009 cluster, are consistent with circulation of an H3N2

strain in 2010 that was antigenically distinct from previously circulating viruses [29]. Indeed,

phylogenetic analysis indicates that the 2007 strain was similar to A/Brisbane/10/2007, a virus

in the WI05 cluster [4] and that the 2010 strain similar to A/Perth/16/2009, from the PE09

cluster (Fig J in S1 Appendix). For H1N1, the same pattern arises, with titers to A/California/

7/2009 and A/Michigan/45/2015 being driven by age in 2009, the year that H1N1pdm first cir-

culated in Nicaragua. Previous work has used continuous functions of time between virus

Fig 6. Period (calendar year) effects on HAI titers. Difference in mean log titer relative to 2006 for a) the H3N2 strain-specific and subtype-specific

models and b) the H1N1 strain-specific and seasonal vs pandemic strain models. In each plot, the bars give the 95% confidence intervals.

https://doi.org/10.1371/journal.ppat.1010317.g006
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circulation or of antigenic distance to approximate cross-reactivity [9, 10]. Our work suggests

that cross-reactivity may be closer to a step function that depends on larger antigenic changes

and antigenic clustering.

Our results shift the emphasis from the response to specific strains to the response to viruses

of the same antigenic clusters and from a child’s age to the time patterns of local circulation.

Previous studies have focused on the impact of age at strain introduction and estimated that

antibody titers to H3N2 viruses are highest in children who were born 4–10 years before the

virus was first isolated [12, 14, 20]. Our findings suggest that antibody titers to an H3N2 are

highest in children who were born 3 years prior to local circulation that virus’s antigenic clus-

ter. Our results are not a contradiction of the prior work but instead offer a different perspec-

tive on how we might view trends in antibody titers. Moreover, the specific epidemiological

context and typical patterns of circulation likely determine the specific shape of the cohort

effects, which may not be generalizable. We attribute the cohort effect observed here in part to

the dynamics of first infection because the fraction of children with antibodies prior to their

first birthday drops off after cluster introduction, suggesting that the time to an individual’s

first H3N2 infection increases with time since the introduction of a new antigenic cluster. The

dynamics of infection in adults may be relevant here—if adults gain immunity shortly after an

antigenic cluster introduction, their infants may have a reduced chance of exposure if born

after that antigenic cluster first circulated. The cohort effect may also be a result of age-related

antibody specificity or affinity. We find evidence of cross-reactive antibodies in children under

4 to viruses that are part of antigenic clusters that have not yet circulated. For example, we see

titers to A/California/7/2009 and A/Michigan/45/2015 in samples collected prior to 2009 (Fig

4a). We also see higher antibody titers to A/Perth/16/2009, A/Victoria/361/2011, and A/Texas/

50/2012 in this same subsample prior to the circulation of that cluster in 2010, after which we

see titers rise more among the broader population (Fig 3a). One explanation is that the

immune response of young children is more broadly reactive, creating a wide array of lower-

affinity antibodies, some of which may cross-react to future strains [4, 30]. If young children

are producing antibodies that are more broadly reactive and are ready to be boosted upon clus-

ter change, that would result in the highest antibodies in those born a few years prior to cluster

introduction.

We find that the cohort pattern for H1N1 was somewhat different from that of H3N2: anti-

bodies appeared to peak for those born in the year of circulation of the antigenically distinct

strain but not be dramatically lower for children from earlier cohorts. This pattern may be

driven by the relatively little antigenic change in the H1N1pdm strains and may not hold over

longer periods or periods with more antigenic drift. This pattern may also be related to the

greater frequency of H3N2 circulation compared to H1N1 (which may itself be related to

speed of genetic drift). We found that children that did not have early-life antibodies took lon-

ger to gain titer levels similar to those that did have early life antibodies for H1N1 strains (4–5

years) compared to H3N2 strains (2–4 years).

The question of antigenic seniority, its mechanisms, and its impacts on antibody dynamics

has remained important to the field [30, 31]. Our work suggests that a clear and definitive

understanding of antigenic seniority would require the observation of many different birth

cohorts each with longitudinal data spanning multiple antigenic cluster introductions. Never-

theless, we do see some evidence of the impacts of antigenic seniority in these data. First, we

see boosting of titers to strains from previous clusters when strains in later clusters circulate.

For example, titers to A/Wisconsin/67/2005, a member of the Wisconsin 2005 antigenic clus-

ter, were boosted in 2010 even though the circulating viruses at the time were part of the Perth

2009 antigenic cluster (Fig 3a). More broadly, we see that the population-level average titers to

a strain are highest and generally show little waning for those born prior to the introduction of
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the cluster that strain belongs to (Fig I in S1 Appendix). These results are consistent with con-

tinual boosting of titers to strains in the same cluster that one was exposed to early in life.

Our results regarding the importance of antigenic cluster introduction, while persuasive for

these data, should be viewed as suggestive rather than conclusive. We only observed a limited

number of strains and antigenic cluster changes over the study time period, so the generaliz-

ability of our results more broadly will have to be tested in future work. Additionally, one chal-

lenge of interpreting and applying this work is the difficulty in defining antigenic clusters,

particularly as timing of antigenic clusters may differ regionally. One approach to inferring

antigenic clustering is the use statistical or computational models to predict clustering based

on HA sequences [6, 7]. These methods have shown promise, but it is not always clear when

sequence-based differences will translate into functional antigenic differences. A standard

approach to developing more functional relationship uses ferret sera [4, 5], which has the

advantage of measuring actual cross-reactivity. However, antigenic maps derived from ferret

sera do not always match the patterns seen in humans [4]. The use of human sera would seem

to be a gold standard, but human sera are challenging to use because responses vary with past

exposure. Ultimately, more work is needed as a field to develop a consensus understanding of

influenza A H3N2 and H1N1 antigenic clusters and to continuously characterize newly circu-

lating strains. Our analysis, which uses antigenic clusters as defined by previous work, has

revealed limitations of our existing understanding of antibodies and cross-reactivity; future

work will likely determine better measures of the functional relationship between viruses. The

SIC metric here justified the use of subtype-specific models over strain-specific models for

these data, but future work may suggest that the more complex models are needed in other

contexts.

The strengths of this analysis include data supplied by the large, long-running, longitudinal

cohort studies of children, many of whom have been included since birth. Previous studies

have considered cross-sectional [9, 10, 14] or limited longitudinal [10, 12] samples. The cur-

rent age–period–cohort analysis limits how much we can infer about underlying mechanisms,

such as boosting, cross-reactivity, and waning, or about individual titer trajectories [9, 10], but

the longitudinal design will allow us address these in future work. Finally, previous, similar

studies have also focused only H3N2, making the inclusion of H1N1 here an important

advance, though some of our inferences regarding H1N1 are limited because seasonal H1N1

stopped circulating at the study site and as the H1N1pdm strains had limited antigenic change.

Conclusion

Our work demonstrates that patterns of antibody titers in children and young adolescents may

depend on the timing of antigenic cluster changes (rather than that of individual virus intro-

duction) and local circulation. We also find evidence that young children may create a wide

array of lower-affinity antibodies, which may cross-react with future strains and which may be

relevant to the mechanism of antigenic seniority. Ultimately, a more robust and continually

updated understanding of antigenic clusters is needed to understand patterns of immunity

and predict vaccine effectiveness.

Supporting information

S1 Data. Supporting data. Age–period–cohort data for 1589 sera samples with HAI titers to

four H3N2 viruses, one seasonal H1N1 virus, and two pandemic H1N1 viruses.

(CSV)
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S1 Code. Supporting code. R code that generates the main text figures using S1 Data.

(R)

S1 Appendix. Supporting information. Influenza A circulation and serum collection during

the study period, the number of samples included by age and year, a comparison of APC mod-

els, the raw mean log titers by cohort, several figures developing an interpretation of the popu-

lation-level cohort effects, and a phylogenetic tree for H3N2 influenza viruses circulating in

Nicaragua in 2007 and 2010. Fig A. Number of sera samples by year of collection and partic-

ipant age. The color scheme is linear in the log of the sample size to better show the range of

variation. Fig B. H3N2 log titers and mean log titers by birth cohort and calendar year.

Individual log titers are jittered to avoid overlaps. a, b) A/Wisconsin/67/2005; c, d) A/Perth/

16/2009; e, f) A/Victoria/361/2011; g, h) A/Texas/50/2012. Fig C. H1N1 log titers and mean

log titers. Individual log titers are jittered to avoid overlaps. a, b) A/Solomon Islands/3/2006;

c, d) A/California/7/2009; e, f) A/Michigan/45/2015. Fig D. Correlation of influenza A titers

by virus within individuals. Fig E. Cohort effects in the data. a) Mean log titer of the H3N2

strains by age at cluster introduction. b) Mean log titer of the H1N1 strains by age at cluster

introduction. Fig F. Bootstrap cohort effects for a) H3N2 and b) H1N1. Individual bootstrap

estimates are in grey, and the estimate for the original data set is in black. Fig G. Fraction of

children enrolled prior to age 1 who had antibody titers to the given strain as a function of

the time since cluster introduction. Fig H. Population-level average mean log antibody

titer trajectories. Trajectories for children enrolled prior to age 1, distinguishing between

those who had antibodies to the given strain prior to age 1 and those that did not. Fig I. Mean

log titer in each year for each strain, stratifying the population by birth cohort relative to

the change in antigenic cluster of the circulating virus. Red indicates those born more than

one antigenic cluster before the given strain’s cluster, purple indicates those born in the anti-

genic cluster just prior to the given strain’s cluster, dark blue indicates those born in years the

given strain’s cluster was circulating, and light blue indicates those born in years after the giv-

en’s strains cluster was no longer circulating. Fig J. Maximum likelihood tree of H3 proteins,

2005–10. Nicaraguan viruses are in red, US viruses are in light green, and vaccine viruses are

in blue. The Nicaragua strains from 2007 are BR07-like, and those from 2010 are PE09-like.

Table A. Number of sera samples by year of collection and participant age. Table B. Com-

parison of APC models for H3N2 log-titers. Models are compared by degree of freedom (df),

R2, root mean squared error (
ffiffiffiffiffiffiffiffiffiffi
MSE
p

), negative log-likelihood (NLL), number of parameters

(Npar), and Schwarz Information Criterion (SIC). In the strain specific models, all specifica-

tions of cohort are equivalent. Table C. Comparison of APC models for H1N1 log-titers.

Models are compared by degree of freedom (df), R2, root mean squared error (
ffiffiffiffiffiffiffiffiffiffi
MSE
p

), nega-

tive log-likelihood (NLL), number of parameters (Npar), and Schwarz Information Criterion

(SIC). In the strain specific models, all specifications of cohort are equivalent.
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