
Comparison of neurobehavioral effects of methylmercury 
exposure in older and younger adult zebrafish (Danio rerio)

Xiaojuan Xua,*, Daniel Weberb, Michael J. Carvan IIIc, Ryan Coppensa, Crystal Lamba, 
Stefan Goetza, Lillian A. Schaefera

aDepartment of Psychology, Grand Valley State University, Allendale, MI 49401, United States

bChildren’s Environmental Health Sciences Center, University of Wisconsin-Milwaukee, 
Milwaukee, WI 53204, United States

cSchool of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53204, 
United States

Abstract

It is widely recognized that the nature and severity of responses to toxic exposure are age-

dependent. Using active avoidance conditioning as the behavioral paradigm, the present study 

examined the effect of short-term methylmercury (MeHg) exposure on two adult age classes, 1- 

and 2-year-olds to coincide with zebrafish in relatively peak vs. declining health conditions. In 

Experiment 1, 2-year-old zebrafish were randomly divided into groups and were exposed to no 

MeHg, 0.15% ethanol (EtOH), 0.01, 0.03, 0.1, or 0.3 μM of MeHg (in 0.15% ethanol) for 2 weeks. 

The groups were then trained and tested for avoidance responses. The results showed that older 

zebrafish exposed to no MeHg or EtOH learned and retained avoidance responses. However, 0.01 

μM or higher concentrations of MeHg exposure impaired avoidance learning in a dose-dependent 

manner with 0.3 μM of MeHg exposure producing death during the exposure period or shortly 

after the exposure but before the avoidance training. In Experiment 2, 1-year-old zebrafish were 

randomly divided into groups and were exposed to the same concentrations of MeHg used in 

Experiment 1 for 2 weeks. The groups were then trained and tested for avoidance responses. The 

results showed that younger zebrafish exposed to no MeHg, EtOH, or 0.01 μM of MeHg learned 

and retained avoidance responses, while 0.1 or 0.3 μM of MeHg exposure impaired avoidance 

learning in a dose-dependent manner. The study suggested that MeHg exposure produced learning 

impairments at a much lower concentration of MeHg exposure and more severely in older adult 

compared against younger adult zebrafish even after short exposure times.

Keywords

Active avoidance conditioning; Learning; Memory; Methylmercury; Zebrafish; Fish shuttle-box

Open access under CC BY-NC-ND license.
*Corresponding author at: Department of Psychology, Grand Valley State University, 1 Campus Drive, Allendale, MI 49401, United 
States. Tel.: +1 616 895 2411; fax: +1 616 895 2480. xux@gvsu.edu (X. Xu). 

Conflicts of interest
None.

HHS Public Access
Author manuscript
Neurotoxicology. Author manuscript; available in PMC 2022 January 31.

Published in final edited form as:
Neurotoxicology. 2012 October ; 33(5): 1212–1218. doi:10.1016/j.neuro.2012.06.011.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/3.0/


1. Introduction

It is widely recognized that the nature and severity of responses to toxic exposure are 

age-dependent. Animal studies show that early life history stage, especially embryonic, 

exposures to toxic chemicals are extremely deleterious due to the high sensitivity of actively 

developing organ systems (Şişman, 2010, 2011; Gu et al., 2010; Meier et al., 2010; Jezierska 

et al., 2009; Barry et al., 1995). As animals get older, progressive degeneration of tissue and 

loss of organ function have been observed in animals (Anchelin et al., 2011; Di Cicco et al., 

2011; Durán et al., 2010). Thus, age-related loss of organ function and structural integrity, 

e.g., DNA hypomethylation, neurodegeneration, immunodeficiencies, tissue degeneration 

and decreases in biochemical activity related to metabolic detoxification, may also potentiate 

the harmful effects of chemical contaminant exposures (Madrigano et al., 2011; Risher et al., 

2010; Bollati et al., 2009; Scheuplein et al., 2002; Moser, 1999; Cory-Slechta, 1990; Lin et 

al., 1975; Sansar et al., 2011; Lemire et al., 2010; Peters et al., 2010; Ostachuk et al., 2008; 

López-Diazguerrero et al., 2005; Moser, 1999; Barnett, 1997).

Mercury (Hg2+) compounds including methylmercury (MeHg) induce neurodegeneration, 

oxidative stress, alterations in gene expression and declines in immune function, processes 

that are often associated with the aging process in aquatic animals and humans (Lushchak, 

2011; Cambier et al., 2010; Houston, 2007; Monnet-Tschudi et al., 2006; Berntssen et al., 

2003; Schmechel et al., 2006). Several studies have demonstrated that adult exposures to 

Hg2+ compounds induce alterations in learning and memory in humans (Hilt et al., 2009; 

Yokoo et al., 2003; Smith et al., 1983). However, there are no data in which there is a direct 

comparison on the effects of short-term, adult MeHg exposures vs. behavioral outcomes 

influenced by the normal aging process in any vertebrate species, especially as it relates to 

learning and memory. Therefore, due to its continued presence in fish- and seafood-based 

diets, it is important to investigate the potential role of MeHg, the organic and most common 

environmental form of Hg, plays in age-related behavioral effects.

Zebrafish (Danio rerio) have become a widely used vertebrate model system for examining 

learning and memory (Gómez-Laplaza and Gerlai, 2010; Sison and Gerlai, 2010; Xu et 

al., 2007; Salas et al., 2006; Williams et al., 2002; Xu and Goetz, 2012). The regions 

in the teleost brain responsible for directing those behaviors have been shown to be the 

dorsolateral telencephalon, critical for spatial learning (Salas et al., 1996; Dodson, 1988), 

and dorsomedial telencephalon, critical for avoidance learning (Portavella and Vargas, 2005; 

Xu et al., 2003, 2009). Therefore, zebrafish were used to study the following question: are 

older adult fish more vulnerable to waterborne MeHg exposure than younger adult fish? 

Since zebrafish live to approximately 2 years of age in the wild (Spence et al., 2008), the 

present study examined the effect of short-term MeHg exposure on two adult age classes, 

1- and 2-year-olds to coincide with fish in relatively peak vs. declining health conditions 

(Kanuga et al., 2011). Since life-time accumulation of environmental toxicants can be a 

confounder in age-related effects, as well as a result of the aging process (Bunton et al., 

1987), this study used adult exposures only on test subjects who had previously been raised 

in a MeHg-free environment. Our previous work with zebrafish showed that embryonic 

exposure to MeHg induced learning deficits when tested at 4–8 months of age in a spatial 

alternation task that involves the dorsolateral telencephalon (Smith et al., 2010), and an 
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active avoidance task that involves the dorsomedial telencephalon (Xu et al., 2012). To 

extend those investigations, the present study investigated the neurobehavioral effects of 

late- vs. early-stage adult zebrafish exposures to MeHg using active avoidance conditioning 

as the behavioral paradigm.

2. Material and methods

2.1. Breeding and egg collection

Adult zebrafish (Ekkwill Waterlife Resources, Gibsonton, FL) were acclimated for several 

weeks prior to the initiation of experiments. Fish were maintained at 26–28 °C on a 

14-h light and 10-h dark cycle in a flow-through buffered, dechlorinated water system 

at the Aquatic Animal Facility of the University of Wisconsin-Milwaukee Children’s 

Environmental Health Sciences Center. All experimental procedures were approved by the 

University of Wisconsin-Milwaukee Animal Care and Use Committee. Zebrafish were bred 

in 2-L plastic aquaria with a 1/8 in. nylon mesh false bottom to protect fertilized eggs 

from being consumed by the adults. Eggs were collected ≤2 h post fertilization and placed 

into glass culture dishes (100 mm diameter × 50 mm depth) in E2 medium (each liter 

contains 0.875 g NaCl, 0.038 g KCl, 0.120 g MgSO4, 0.021 g KH2PO4, and 0.006 g 

Na2HPO4) with 0.0 μM MeHg. Fry were fed vinegar eels twice each day until large enough 

to consume Artemia nauplii. Juveniles and adults were fed Aquarian™ flake food (Aquarium 

Pharmaceuticals, Inc., Chalfont, PA) in the morning and Artemia nauplii in the afternoon.

2.2. Exposure regimen

Methylmercury (MeHg; >98% purity) was obtained from ICN Biomedicals (Aurora, OH) 

and dissolved in 0.15% ethanol (EtOH). Fish were raised in MeHg-free and dechlorinated 

water for 12 or 24 months at which time they were exposed to a daily pulse of 0.0, 0.01, 

0.03, 0.10, or 0.30 μM MeHg or the vehicle 0.15% EtOH for 2 weeks. Each exposure group 

was visibly healthy (no aberrant swimming styles, normal eating patterns, normal respiration 

activity as monitored by gill opercular movements, no visible surface fungal growth, etc.) at 

the start of the exposure.

2.3. Housing during avoidance conditioning

During behavioral experiments, adult zebrafish were kept in individual compartments of 

partitioned tanks at 26 ± 1 °C with a 12 h light–dark cycle (0700–1900 light) at the fish 

laboratory of Grand Valley State University. The behavioral experiments were conducted 

during the light cycle and all experimental procedures were approved by the Grand Valley 

State University Institutional Animal Care and Use Committee.

2.4. Apparatus for avoidance conditioning

Zebrafish were trained and tested individually in two identical zebrafish shuttle-boxes 

connected to a programmer/shocker unit. The zebrafish shuttle-box consisted of a water-

filled tank (18 cm in length × 7.5 cm in width × 10 cm in height) separated by an opaque 

divider (7.5 cm in width × 10 cm in height) into two equal compartments. The divider was 

raised 0.6 cm above the floor of the tank during trials allowing zebrafish to swim freely from 

one side of the tank to the other. The crossing movement of zebrafish was monitored by 
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infrared light beams and their corresponding detectors located on the long sides of the tank. 

There was a light at each end of the tank and there were two stainless steel electrode plates 

(6.5 cm in length × 4 cm in height) at each of the long sides of each compartment.

2.5. Active avoidance paradigm

Zebrafish were placed in the shuttle-boxes for 5 min, and then a trial began with the onset of 

the light, the conditioned stimulus (CS), on the side of the fish’s location and the manually 

raised divider 0.6 cm above the floor of the tank. After the light was on for 12 s, a repetitive 

mild electrical shock (0.73 V/cm AC, pulsed 100 ms on and 1400 ms off), the unconditioned 

stimulus (US), was administered, along with the light, for 12 s through the water by means 

of electrodes. At the end of 24 s or at a crossing response by zebrafish during the 24 s, the 

trial ended with both the light and electrical shock switched off and the divider lowered. 

After an intertrial interval (ITI) ranging from 12 to 36 s, another trial began.

Zebrafish initially swam through the raised divider only after receiving several shocks. 

The crossing response made after the onset of both light signal and electrical shock to 

escape the electrical body shock is defined as an escape response. During the training 

sessions, zebrafish gradually learned to swim from the lighted end to the dark end to 

avoid the electrical body shock. The crossing response made after the onset of the light 

signal, but before the onset of electrical shock to avoid the electrical body shock, is defined 

as an avoidance response. The time taken by zebrafish to make the crossing response 

following the onset of the light signal is defined as crossing latency. The measurements 

were the number of avoidances and escapes; and crossing latency. Except the manually 

raised dividers, all experiments were automated through the programmer/shocker unit and a 

Gateway 2000 P5–100 computer that programmed stimuli, monitored and recorded behavior 

of zebrafish.

Zebrafish were trained on Behavioral Experimental Day 1, and tested on Behavioral 

Experimental Day 3. The training session consisted of 30 trials, and the testing session 

consisted of 10 trials. Percentage of avoidance responses and crossing latency were used as 

indicators of learning.

2.6. Experiment 1: the effects of MeHg exposure in 2-year-old zebrafish

This experiment examined the neurobehavioral effects of MeHg exposure in older adult 

zebrafish. Adult zebrafish of 2-year old were randomly divided into groups and were 

exposed to 0.01 μM, 0.03 μM, 0.1 μM, or 0.3 μM of MeHg for 2 weeks. One control group 

was exposed to neither MeHg nor the vehicle, while a vehicle control group was exposed 

only to the vehicle 0.15% EtOH for 2 weeks. Two to three weeks after the completion of 

the exposure, the groups were trained and then tested for avoidance responses. Percentage of 

avoidance responses and crossing latency were used as indicators of learning.

Two-way ANOVAs with one between factor (different groups) and one repeated measure 

(training vs. testing) on the results were carried out first to determine possible significant 

differences, followed by one-way ANOVAs to determine any significant differences among 

groups and correlated t-tests to determine any significant differences between training and 

testing.
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2.7. Experiment 2: the effects of MeHg exposure in 1-year-old zebrafish

This experiment examined the neurobehavioral effects of MeHg exposure in younger adult 

zebrafish. Adult zebrafish of 1-year old were randomly divided into groups and were 

exposed to the same concentrations of MeHg used in Experiment 1, i.e., 0.01 μM, 0.03 

μM, 0.1 μM, or 0.3 μM of MeHg for 2 weeks. One control group was exposed to neither 

MeHg nor the vehicle, while a vehicle control group was exposed only to the vehicle 0.15% 

EtOH for 2 weeks. Two to three weeks after the completion of the exposure, the groups 

were trained and then tested for avoidance responses. Percentage of avoidance responses and 

crossing latency were used as indicators of learning.

Two-way ANOVAs with one between factor (different groups) and one repeated measure 

(training vs. testing) on the results were carried out first to determine possible significant 

differences, followed by one-way ANOVAs to determine any significant differences among 

groups and correlated t-tests to determine any significant differences between training and 

testing.

3. Results

3.1. Results of 2-year-old zebrafish in Experiment 1

All 2-year-old zebrafish that were exposed to 0.3 μM died before the behavioral experiment 

started. Fig. 1 shows avoidance responses of five groups of 2-year-old zebrafish. A two-way 

ANOVA with one between factor (5 groups) and one repeated measure (2 sessions) on the 

avoidance responses indicated a significant group difference [F(4, 80) = 13.727, p < 0.01], 

and a significant session difference [F(1, 80) = 14.731, p < 0.01]. A one-way ANOVA with 

multiple comparisons on the avoidance responses of the groups during the training session 

showed that only the 0.1 μM MeHg group was significantly different from the vehicle 

control group [F(4, 80) = 7.922, p < 0.01], while another one-way ANOVA with multiple 

comparisons on the avoidance responses of the groups during the testing session showed 

significant differences between the vehicle control and MeHg groups in a dose-dependent 

manner [F(4, 80) = 14.612, p < 0.01]. There were no significant differences between the 

control group and the vehicle control group. However, compared with the vehicle control 

EtOH group, the 0.01 μM MeHg group showed lower avoidance responses, the 0.03 μM 

MeHg group showed significantly lower avoidance responses (p < 0.05), and the 0.1 μM 

MeHg group showed the lowest avoidance responses (p < 0.01) [Fig. 1: upper panel].

When comparisons between training and testing were made for each group, correlated 

t-tests on the avoidance responses of each group showed that the control fish learned 

avoidance responses during training and showed significant increases in avoidance responses 

during testing (p < 0.01), the EtOH group also learned avoidance responses during training 

and showed significant increases in avoidance responses during testing (p < 0.05), while 

zebrafish exposed to MeHg showed no significant increases in avoidance responses from 

training to testing [Fig. 1: lower panel].

The crossing latency results showed the similar pattern [Fig. 2]. A two-way ANOVA with 

one between factor (5 groups) and one repeated measure (2 sessions) on the crossing 

latency indicated a significant group difference [F(4, 80) = 25.363, p < 0.01], and a 
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significant session difference [F(1, 80) = 20.387, p < 0.01]. A one-way ANOVA with 

multiple comparisons on the crossing latency of groups during the training session showed 

that only the 0.1 μM MeHg group was significantly different from the vehicle control group 

[F(4, 80) = 19.579, p < 0.01], while another one-way ANOVA with multiple comparisons 

on the crossing latency of groups during the testing session showed significant differences 

between the vehicle control and MeHg groups in a dose-dependent manner [F(4, 80) = 

22.448, p < 0.01]. There were no significant differences between the control group and 

the vehicle group. However, compared with the vehicle control EtOH group, the 0.01 μM 

MeHg group showed longer crossing latency, the 0.03 μM MeHg group showed significantly 

longer crossing latency (p < 0.05), and the 0.1 μM MeHg group showed the longest crossing 

latency (p < 0.01) [Fig. 2: upper panel].

When comparisons between training and testing were made for each group, correlated t-tests 

on the crossing latency of each group showed that the control and EtOH groups learned 

avoidance responses during training and showed significantly shortened crossing latency 

during testing (p < 0.05), while zebrafish exposed to MeHg showed no significant changes in 

the crossing latency from training to testing [Fig. 2: lower panel].

There were no significant differences in escape responses during training among the five 

groups of 2-year-old zebrafish, although the 0.03 and 0.1 μM MeHg groups showed slightly 

more escape responses than other groups during training. Thus, 2-year-old zebrafish exposed 

to the levels of MeHg used in the study were able to perceive the shock and swim cross the 

divider to the dark side to escape the shock.

3.2. Results of 1-year-old zebrafish in Experiment 2

Fig. 3 shows avoidance responses of the six groups of 1-year-old zebrafish. A two-way 

ANOVA with one between factor (6 groups) and one repeated measure (2 sessions) on the 

avoidance responses indicated only the group × session interaction close to a significant 

level [F(5, 68) = 2.009, p = 0.09]. A one-way ANOVA with multiple comparisons on 

the avoidance responses of the groups during the training session showed no significant 

differences among groups, while another one-way ANOVA with multiple comparisons 

on the avoidance responses of the groups during the testing session showed significant 

differences between the vehicle control and MeHg groups in a dose-dependent manner [F(5, 

68) = 2.534, p < 0.05]. There were no significant differences between the control group and 

the vehicle control group. However, compared with the vehicle control EtOH group, the 0.1 

μM MeHg group showed significantly lower avoidance responses (p < 0.05), and the 0.3 μM 

MeHg group showed the lowest avoidance responses (p < 0.01) [Fig. 3: upper panel].

When comparisons between training and testing were made for each group, correlated t-tests 

on the avoidance responses of each group showed that the control group learned avoidance 

responses during training and showed significant increases in avoidance responses during 

testing (p < 0.01); the EtOH and the 0.01 μM groups also learned avoidance responses 

during training and showed significant increases in avoidance responses during testing (p < 

0.05); while the 0.03 μM, 0.1 μM, and 0.3 μM MeHg groups showed no significant increases 

in avoidance responses from training to testing [Fig. 3: lower panel].
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The crossing latency appeared to be a more sensitive indicator of learning [Fig. 4]. A 

two-way ANOVA with one between factor (6 groups) and one repeated measure (2 sessions) 

on the crossing latency indicated a significant group difference [F(5, 68) = 2.488, p < 0.05]. 

A one-way ANOVA with multiple comparisons on the crossing latency of the groups during 

the training session showed no significant differences among groups, while another one-way 

ANOVA with multiple comparisons on the crossing latency of the groups during the testing 

session showed significant differences between the vehicle control and MeHg groups in a 

dose-dependent manner [F (5, 68) = 3.634, p < 0.01]. There were no significant differences 

between the control group and the vehicle control group. However, compared with the 

vehicle control EtOH group, the 0.1 μM MeHg group showed significantly longer crossing 

latency (p < 0.05), and the 0.3 μM MeHg group showed the longest crossing latency (p < 

0.01) [Fig. 4: upper panel].

When comparisons between training and testing were made for each group, correlated t-tests 

on the crossing latency of each group showed that the control and 0.01 μM MeHg groups 

learned avoidance responses during training and showed significantly shortened crossing 

latency during testing (p < 0.01); the EtOH and the 0.03 μM MeHg groups also showed 

significantly shortened crossing latency during testing (p < 0.05); while the 0.1 μM and 0.3 

μM MeHg groups showed no significant changes in the crossing latency from training to 

testing [Fig. 4: lower panel].

There were no significant differences in escape responses during training among the six 

groups of 1-year-old zebrafish. Thus, 1-year-old zebrafish exposed to the levels of MeHg 

used in the current study were able to perceive the shock and swim cross the divider to the 

dark side to escape the shock.

4. Discussion

The results of Experiment 1 showed that older adult zebrafish exposed to no MeHg or EtOH 

learned and retained avoidance responses, while 0.01 μM or higher concentrations of MeHg 

exposure impaired avoidance learning in a dose-dependent manner with 0.3 μM of MeHg 

exposure producing death before the avoidance training started. The results of Experiment 

2 showed that younger adult zebrafish exposed to no MeHg, EtOH, or 0.01 μM of MeHg 

learned and retained avoidance responses, while 0.1 or 0.3 μM of MeHg exposure impaired 

avoidance learning in a dose-dependent manner. Thus, the present study showed that MeHg 

exposure produced learning impairments at a much lower concentration of MeHg exposure 

and more severely in older adult compared against younger adult zebrafish.

The levels of MeHg exposures from 0.01, 0.03, 0.1 to 0.3 μM used in older zebrafish 

all produced impaired learning with 0.03 and 0.1 μM produced significant impairments 

and 0.3 μM produced death either during the MeHg exposure period or shortly after the 

MeHg exposure but before the avoidance training started. The two control groups learned 

to associate the CS of the light with the US of body shock during training and displayed 

their learning through increased avoidance responses and shortened crossing latency during 

testing. The 0.01 and 0.03 μM MeHg groups displayed slightly, but not significantly, 

increased avoidance responses from training to testing. The two groups also display slightly, 
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but not significantly, shortened crossing latency from training and testing. The 0.1 μM 

MeHg group displayed significantly lower avoidance responses and longer crossing latency 

during training, and showed no significant changes in either avoidance responses or crossing 

latency from training to testing. This group of zebrafish displayed a slightly higher level of 

escape responses during training compared with the control and EtOH groups, indicating 

that this group of zebrafish were able to perceive the body shock and the opening under the 

divider, and were able to swim cross the divider to the dark side to escape the body shock. 

However, this group of zebrafish was sometimes lethargic and observed to swim upside 

down and backwards or floated on their sides in their home tanks and during the avoidance 

conditioning. Those behavioral deficits were not seen in younger zebrafish in the study. 

Thus, the 0.1 μM MeHg exposure also produced more generally and profoundly behavioral 

deficits in older zebrafish.

Among the levels of MeHg exposures from 0.01, 0.03, 0.1 to 0.3 μM used in younger 

zebrafish, only 0.1 and 0.3 μM MeHg produced impaired learning with three of the twelve 

0.3 μM MeHg fish found died before the avoidance training started. The control groups and 

0.01 μM MeHg group learned avoidance responses as showed by their increased avoidance 

responses and shortened crossing latency during testing. While the 0.03 μM MeHg group in 

Experiment 2 showed no significant changes in avoidance responses from training to testing, 

the group showed significantly shortened crossing latency from training to testing. The 0.03 

μM MeHg group displayed much higher avoidance responses during training. It may not be 

possible for them to display further increases in avoidance responses during testing due to 

the ceiling effect. Thus, the group may have learned to associate the light with body shock 

and displayed learning through significantly shortened crossing latency during testing.

Learning and memory are sometimes inseparable, and both are reflected in improved 

performances. One cannot say that learning occurred unless the learner remembers what was 

learned. Nothing can be remembered unless it was learned in the first place. Therefore, any 

improved performance during testing over the prior training session reflects both learning 

and memory. Thus, zebrafish that showed significant increases in avoidance responses 

during testing learned and retained avoidance responses. However, a lack of improved 

performances during testing over the prior training session may be due to impaired learning 

or impaired memory (Xu, 2002; Xu et al., 2003, 2009). To determine whether a lack 

of improved performances is due to impaired learning or impaired memory, the same 

experimental treatment (such as, MeHg exposure) is often given to one group of animals 

before training and another group of animals immediately following training (Xu, 2002). 

If the experimental treatment produces a lack of improved performances when given only 

before but not after training, then the experimental treatment impairs learning but not 

memory. If the experimental treatment produces the same lack of improved performances 

when given either before or after training, then the experimental treatment impairs memory 

but not learning (Xu, 2002; Xu et al., 2003, 2009). However, the 2-week MeHg exposures 

used in the current study is not useful in investigating its post-training effects, because the 

slow exposure process may parallel with memory decay over time and thus confounds the 

testing results. The training session is when learning occurs, but whether the results of the 

training session show the learning may be debatable (Xu, 1997). Nevertheless, when the 

results of the 30 trials during the training session were grouped into six blocks of five trials, 
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both older and younger adult zebrafish exposed to MeHg did not show any increases in 

avoidance responses from the block of the first five trials to the block of the last five trials, 

providing no evidence of learning. Therefore, the lack of increased avoidance responses or 

shortened crossing latency during testing over the prior training session produced by MeHg 

exposure was most likely due to impaired learning.

Studies have showed that short-term exposure to high doses of MeHg or chronic mercury 

exposure produces sensory and motor deficits, including impaired color vision and general 

visual acuity (Barboni et al., 2009; Feitosa-Santana et al., 2010; Heath et al., 2010; Neghab 

et al., 2012). Thus, MeHg exposure in the present study might impair learning process 

specifically or by impairing sensory or motor processes that are necessary for learning to 

occur. That is, MeHg exposure might impair the perception of the CS of the light or the US 

of the body shock or might impair the motor coordination of swimming cross the divider as 

opposed to the impairment of learning process specifically. Both older and younger zebrafish 

exposed to MeHg showed the levels of escape responses during training similar to those of 

their control groups during training, indicating that zebrafish exposed to MeHg were able to 

perceive the body shock and the opening under the divider, and were able to swim cross the 

divider to the dark side to escape the shock. Even the 0.1 μM MeHg group of older zebrafish 

that showed more general and profound behavioral deficits was able to perceive the body 

shock and the opening under the divider, and was able to swim through the opening under 

the divider to escape the body shock as indicated by their higher level of escape responses 

during training. Furthermore, visual deficits produced by MeHg exposure tend to occur 

following chronic mercury exposure, and include color vision impairments and diminished 

visual acuity (Barboni et al., 2009; Feitosa-Santana et al., 2010; Neghab et al., 2012). In 

the present study, the 2-week MeHg exposure was short-term and a bright light was used as 

the CS. It is unlikely that the MeHg exposure in the present study produced visual deficits 

that caused zebrafish unable to see the CS of the bright light as MeHg zebrafish were 

able to perceive the opening under the divider to swim through to escape the body shock. 

Thus, MeHg exposures in the current study did not impair the sensory or motor processes 

necessary for learning to occur. Therefore, MeHg exposure in the present study was most 

likely to impair learning process specifically.

While numerous papers have been published identifying adult effects on learning after 

developmental exposures to MeHg, others have focused on adult-only exposures either 

through diet or occupation (e.g., Bourdineaud et al., 2008; Carvalho et al., 2007; Yokoo et 

al., 2003; Dolbec et al., 2000; Satoh, 2000; Lebel et al., 1998). Most of these studies have, 

however, differentiated between learning outcomes due to adult-only exposures and adult 

effects of gestational, lactational, or lifetime exposures. The majority of those studies that 

did make such a distinction involved occupational exposures to elemental mercury and not 

MeHg, e.g., dental workers, chemical production workers or gold miners (Li et al., 2011; 

Hilt et al., 2009; Powell, 2000; Ritchie et al., 1995; Smith et al., 1983). None, however, of 

those reports compared learning outcomes due to MeHg exposures at either early-mid or 

late adult stages. The importance of such comparisons revolves around findings that as one 

ages, neurodegeneration increases and the ability to protect against neural damage decreases, 

which results in greater potential sensitivity to environmental contaminants (Spencer et 

al., 2000). The present experiments, therefore, were designed to provide insights into the 
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interaction between the adult aging process and the intensity of age-specific learning effects 

of short-term, adult-only MeHg exposure; it is to the best of our knowledge, the first such 

study. While these data did not directly compare age-specific differences in brain structure 

as a result of short-term, adult exposures to MeHg, they do suggest that further research 

into the interaction between the cellular and organismal changes that occur during the 

aging process and the increased susceptibility to environmental contaminants in human and 

wildlife populations needs to be investigated.

The present study used zebrafish because of its short generation times, high number of 

eggs per female, and ease of breeding. Our previous studies utilized zebrafish in studying 

the neurobehavioral effects of embryonic MeHg exposure (Smith et al., 2010; Xu et al., 

2012). The present study used zebrafish to investigate the age-dependent neurobehavioral 

effects of adult MeHg exposure. Our ongoing studies have utilized zebrafish to explore the 

transgenerational heritability of the neurobehavioral effects of embryonic MeHg exposure. 

Zebrafish are also useful in examining whether short-term MeHg exposure during juvenile 

stage or early-adult stage or middle age produces a life-long effect. Thus, due to its 

short generation times, high number of eggs per female, and ease of breeding, zebrafish 

has become a useful organism for studying the neurobehavioral effects of environmental 

contaminants.

5. Conclusion

MeHg exposure produced learning impairments at a much lower concentration of MeHg 

exposure and more severely in old adult compared to young adult zebrafish.
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Fig. 1. 
Avoidance responses of older adult zebrafish exposed to no MeHg or various levels of 

MeHg. Each bar represents the mean percentage of avoidance responses ±SE for 13–21 fish. 

Upper panel shows avoidance responses during testing. *p < 0.05, **p < 0.01, compared 

with the vehicle control group. Lower panel shows avoidance responses during both training 

and testing. *p < 0.05, **p < 0.01, compared with the training session of the same group.
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Fig. 2. 
Crossing latency of older adult zebrafish exposed to no MeHg or various levels of MeHg. 

Each bar represents the mean percentage of crossing latency ±SE for 13–21 fish. Upper 

panel shows crossing latency during testing. *p < 0.05, **p < 0.01, compared with the 

vehicle control group. Lower panel shows crossing latency during both training and testing. 

*p < 0.05, **p < 0.01, compared with the training session of the same group.
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Fig. 3. 
Avoidance responses of younger adult zebrafish exposed to no MeHg or various levels of 

MeHg. Each bar represents the mean percentage of avoidance responses ±SE for 9–15 fish. 

Upper panel shows avoidance responses during testing. *p < 0.05, **p < 0.01, compared 

with the vehicle control group. Lower panel shows avoidance responses during both training 

and testing. *p < 0.05, **p < 0.01, compared with the training session of the same group.

Xu et al. Page 16

Neurotoxicology. Author manuscript; available in PMC 2022 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Crossing latency of younger adult zebrafish exposed to no MeHg or various levels of MeHg. 

Each bar represents the mean percentage of crossing latency ±SE during testing for 9–15 

fish. Upper panel shows crossing latency during testing. *p < 0.05, **p < 0.01, compared 

with the vehicle control group. Lower panel shows crossing latency during both training and 

testing. *p < 0.05, **p < 0.01, compared with the training session of the same group.
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