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%e classification technology of hyperspectral images (HSI) consists of many contiguous spectral bands that are often utilized for a
various Earth observation activities, such as surveillance, detection, and identification. %e incorporation of both spectral and
spatial characteristics is necessary for improved classification accuracy. In the classification of hyperspectral images, deep learning
has gained significant traction.%is research analyzes how to accurately classify newHSI from limited samples with labels. A novel
deep-learning-based categorization based on feature extraction and classification is designed for this purpose. Initial extraction of
spectral and spatial information is followed by spectral and spatial information integration to generate fused features. %e
classification challenge is completed using a compressed synergic deep convolution neural network with Aquila optimization
(CSDCNN-AO)model constructed by utilising a novel optimization technique known as the Aquila Optimizer (AO).%eHSI, the
Kennedy Space Center (KSC), the Indian Pines (IP) dataset, the Houston U (HU) dataset, and the Salinas Scene (SS) dataset are
used for experiment assessment. %e sequence testing on these four HSI-classified datasets demonstrate that our innovative
framework outperforms the conventional technique on common evaluation measures such as average accuracy (AA), overall
accuracy (OA), and Kappa coefficient (k). In addition, it significantly reduces training time and computational cost, resulting in
enhanced training stability, maximum performance, and remarkable training accuracy.

1. Introduction

Due to the fast growth of photonics with optics, sensors in
hyperspectral (HS) are needed to install in several satellites.
HSI classification is an essential and challenging task that is
targeted towards labelling each pixel contained in a
hyperspectral image. HSI images contained spatial-spectral
information which is useful for detecting scene objects [1].

%is had been used in many fields like environmental
surveillance, astronomy, and precise agriculture [2].

In the earlier days, HSI classification was done by the
machine learning methods such as support vector machines
(SVM) [3, 4], k-nearest neighbor (KNN) [5, 6], multinomial
logistic regression (MLR) [7, 8], and decision tree [9, 10].
Within the similar data which exists, spectral changes in
various materials and various spaces might have the same

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 6781740, 14 pages
https://doi.org/10.1155/2022/6781740

mailto:habib@iu.ac.bd
https://orcid.org/0000-0002-5068-2690
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6781740


features, so the attained details were still corrupt because of
inadequate spatial structure feature extraction. To solve
these issues, it is hard to perfect the classification of HSI. So,
numerous spectral and spatial feature extraction methods
are proposed.

%ese techniques have validated major classification
performance, which is not in effect for classifying HSI in
difficult situations. In recent times, deep learning tech-
niques had achieved maximum success for this kind of task
[11–13]. So, this method had reached admirable perfor-
mance for different analysis-oriented tasks, e.g., object
recognition and image classification. To classify HSI, entire
spatial and spectral perspectives must be considered for
the processing. Intuitively, HSI consists of a higher
number of images and every image signifies electromag-
netic spectrum classification. Temporarily, the spatial
perspective denotes 2D spatial data of objects consistent in
the HSI. %us, HSI is typically denoted as the 3D spectral-
spatial data. %erefore, many methods had been proposed
in the literature [14, 15].

Towards concurrently modelling spectral-spatial data,
certain developer attempts were made. %is method per-
formed operations in a stacked manner along with convo-
lution over spectral and spatial feature space in a stacked
manner, named CNN model [16]. Apparently, the benefit of
this CNN model may create rich feature maps. Moreover,
the major drawback of this method is threefold. Initially, It is
hard to generate a deeper CNN structure. An intention in
the resultant area increasingly improves through cumulative
amount in the convoluted function that confines the in-
terpretation ability and depth of the model. Next to that, the
cost of the memory is too expensive while maximum
convolution operations were performed [17–20]. To reduce
the abovementioned challenges, we introduced the new
CNN model namely compressed synergic deep convolution
neural network with Aquila optimization (CSDCNN-AO).

%e significant goals to achieve the above-said objectives
are listed below:

(i) to determine the suitable deep learning method
which provides huge support for HSI image
classification.

(ii) To reduce the complexity and loss function in
classification.

(iii) To develop the future outcome based on both
present and traditional output.

%e major contribution of this technique is given below.
%is combination will reduce the learning complexity of

the wavelet concept and reduce the loss function with the
Aquila optimization. %is Aquila optimization method
could reduce the enormous amount of data features by
maintaining its unique possessions and using less time for
computation and less memory space. Furthermore, a syn-
ergic deep convolutional neural network (CNN) is useful
and intended for getting an initial result, similarly, the CNN
weights are optimized by Aquila optimization for reducing
an error rate. Here, the key role is the compression of data
with the Aquila optimization technique with CNN for

increasing accuracy with maximum steadiness among both
exploitation and exploration of optimization.

%e organization of the work is given below:
the literature survey is given in Section 2. In Section 3,

the proposed methodology is given. In Section 4, the ex-
perimental results and discussions are explained. At last, in
Section 5, the conclusion is given.

2. Literature Review

Yang et al. [21] present a novel synergistic CNN for an
accurate HSI classification. %e SyCNN contains the hybrid
structure of 2D and 3D CNNs with a data interaction
module with feature learning that fuses both spatial and
spectral HSI data. Moreover, it presents a three-dimensional
process earlier to a fully connected layer that supports and
extracts features effectively. But still, they could not handle
high-dimensional data.

Li et al. [22] suggested an HSI model called local and
hybrid dilated convolution fusion network (LDFN) that
combines both the local and rich spatial features through
expanding the perception field. Initially, several functions
were considered, such as dropout, standard convolution,
batch normalization, and average pooling. After that, both
local and dilated convolution operations were involved in
efficient spatial-spectral feature extraction. On the other
hand, parameters were manually selected in the suggested
paper.

Patel et al. [23] suggested HSI categorization by an
autoencoder through CNN (AECNN). Pre-processed by
autoencoder-enhanced HSI features that helped towards
obtaining optimized weights in CNN initial layers. %us,
here, CNN with a shallow model could be applied towards
extracted features from the HSI data. But still, they need to
cover more contextual information and advanced strategies
for robustification of the spatial information.

Wang et al. [24] suggested a semi-supervised HSI
classification model which improved deep learning. Here,
the suggested model namely the arbitrary multiple graphs
method, and then replaced skilled learning with the anchor
graph method that could be labelled a significant unlabelled
data automatically and precisely. In this, the number of
training samples is limited.

Shi et al. [25] presented a model namely the 3D coor-
dination attention mechanism (3DCAM). %is attention
process could not attain the HIS’s spatial position in both
vertical and horizontal ways. Also, HSIs spatial and spectral
data were extracted, using CNN. %e drawback is that the
implementation complexity is not considered.

Zhao et al. [26] suggested combining stacked autoen-
coder (SAE) with 3D deep residual network (3DDRN) to
classify HSI. An SAE neural network was designed to re-
duce HSI size. 3DCNN and residual network module were
used to develop 3DDRN. %e 3DDRN extracted spectral-
spatial features from dimension-reduced 3D HSI cubes.
3DDRN continuously identified deep features, which were
passed into SoftMax to complete classification. Batch
normalization (BN) and dropout were used to avoid
overfitting training data.
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Yin et al [27] developed a spatial-spectral mixed network
for HSI categorization. %e network collects spatial-spectral
information from HSI using three layers of 3-D convolution
and one layer of 2-D convolution. %is network employs Bi-
LSTM to boost spectral band interactions and extract
spectral features as a series of images. Combining two FC
layers and utilising SoftMax for classification creates a
unified neural network. However, the model misclassified
samples in the dataset.

Paul et al. [28] developed SSNET, which blends 3D and
2D convolutions of HSI spectral-spatial information with
SPP for creating spatial features at various scales. SPP is
employed in two-dimensional local convolutional filters for
HSI classification because it resists object distortions. SPP
layer’s fixed feature vector output reduces trainable pa-
rameters and improves classification performance. %ey do,
however, have a complicated structure.

Zhang et al. [29] introduced an SSAF-DCR for hyper-
spectral image classification. %ree components were linked
to extract features in the recommended network. First, a
dense spectral block reuses spectral characteristics as much
as possible. %en, a spectral attention block refines and
optimises the spectral features. In the second segment, a
dense spatial block and an attention block pick spatial
features. But in this, the selection of the number of features is
not considered.

Yan et al. [30] offer a 3D cascaded spectral-spatial ele-
ment attention network (3D-CSSEAN) for picture classifi-
cation. Using the spectral element attention module and the
spatial element attention module, the network may con-
centrate on key spectral and spatial aspects. Two-element
attention modules were built using activation functions and
element-wise multiplication. %e model can extract classi-
fication-helping properties and is computationally efficient.
%e network structure is also suitable for small sample
learning since the attention module has few training pa-
rameters. On the other hand, obtaining labelled samples are
expensive and difficult.

To overcome existing challenges, our proposed work
introduces novel techniques which are discussed in the
following section.

3. Proposed Synergic Deep Learning Model

Let us assign the hyperspectral image x � [X1, X2, X3, . . . ,

Xs]
t ∈ rs×(c×d), where s represented entire bands with c × d

band samples. Additionally, t is the sample in which x �

(Xi, Yi) ∈ (rs×(c×d), ry) with Yi labels. Usually, HSI classi-
fication is affected due to inter-class similarity and high
intra-class variability. To compensate for these issues, we
introduce the proposed technique namely, the synergic deep
learning model with the feature reduction principle. %is
method minimizes complexities for computation by re-
ducing spectral and spatial feature dimensions. Here, we
evaluate the efficiency of the subsequent feature suppression
methods using a hybrid synergic deep CNN model. %e
proposed synergic deep learning model consists of synergic
deep learning (SDL)-based feature extraction, feature

reduction, classification, and loss function optimization.
%e schematic representation of the proposed method is
represented in Figure 1, which is given in the following
sections.

3.1. Synergic Deep Convolutional Neural Network Feature
Extraction. In this proposed model as shown in Figure 2, we
extract the HSI useful features which are normally repre-
sented by the input layer, nDCNN components and synergic
network (c2n). Recently, DCNN yields more attention for the
classification which is proposed to reduce the number of
input variables and develop the neural network architecture.
DCNN is a combination of layers where each layer performs
different functions. Pre-processing, convolution, pooling,
and final classification operations are sequentially performed
in synergic DCNN [31]. %e forward process is a convo-
lution operation on the inputs. %e multiplication between
weights and inputs is combined across layers. %e filter has
the same number of layers as input volume channels, and
output volume has the same depth as the number of filters.
In the convolution process, several computations are carried
out. Every layer is composed of neurons that take input
values, perform calculations, and produces output values,
which are forwarded to the next layer. Under CNN, there are
four important operations performed in feature learning: the
convolution, the activation, the pooling, and the normali-
zation. Before convolution operation, pre-processing is
worked out.

3.1.1. Pair Input Layer. Synergic pair input layers are trained
randomly, and here, each 200-data group with corre-
sponding class labels is given to the DCNN units. Here, the
image is in the size of 224× 224× 3. Before applying the data
to the next layer, we have to apply the feature reduction
principle.

3.1.2. Feature Reduction by Wavelet Transform. In this
feature reduction concept, we used wavelet transform with
the Haar basis model so that they can handle the high-di-
mensional data efficiently. Here, two filters h and g are
applied for effective feature reduction. %ese filters are in-
corporated with the transforms to yield deducted input
coefficients. %e following equation is for the feature re-
duction which is given in equation (1).
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(1)

As a result of this transformation into the DCNN,
learning complexity and learning time can be reduced. In
this process, it reduces CNN architecture with the number of
features.
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3.1.3. DCNN Component. In every DCNN component, we
initiate with ResNet-101 architecture which is denoted as
DCNN-n (n� 1, 2, . . ., N). %is type of architecture is
suitable for synergic deep learning (SDL) method. Here, we

consider the data sequence with compressed features x′ �

X′(1)
, X′(2)

, . . . , X′(n)
  and output class label series

y′ � Y′(1)
, Y′(2)

, . . . Y′(n)
 .%is has to be intended with the

θ variable which undertakes cross-entropy loss expressed in
equation (2).

log(θ) � −
1
n



n

i�1


k

j�1
1 Y

(1)
� j log

e
z

(i)

j


k
L�1 z

(i)
L

⎡⎢⎢⎣ ⎤⎥⎥⎦. (2)

%e above equation (2), z(i) � f(X(A), θ) means the
forward computing process. In the same way, the variable
used in DCNN-n is mentioned as θi, and these components
will not share enormous DCNN components.

In this SDN model, synergic labels in DCNN are applied
to input layers, embedding, and learning layers. In SDN, the
consequence data pair is denoted as (zI, zJ), and this pair of
input is given to (DCNNi, DCNNj). Output from the FC
layer is given in the following equations (3) and (4).

fI � ψ zI, θ
(i)

 , (3)

fJ � ψ zJ, θ(j)
 . (4)

In the next stage, all the deep features are embedded fI∘J
and the resultant outcome is expressed in the following
equation (5).

YSDL zI, zJ  �
1, if YI � YJ,

, if YI ≠YJ.

⎧⎨

⎩ (5)

Loss in binary cross-entropy is given as below:

L
SDL θSDL  � YSDLlog Y

⌢

SDL + 1 − YSDL( log 1 − Y
⌢

SDL . (6)

%e above expression θSDL represents the synergic at-
tributes, and YSDL represents the synergic forward

computation. %is process validates data pair classes and
yields a recovery response belonging to the synergic (SN)
errors.

3.1.4. Training and Testing. In this stage, we do the SN
maximization process

θ(i)
(z + 1) � θ(a)

(z) − c(z).Δ(i)
,

θSDL(i)
(z + 1) � θSDL(a)

(z) − c(z).ΔSDL(i,j)
,

⎧⎨

⎩ (7)

where, SDL(i, j) and c(z) represents the learning rate
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where, ϑ refers to the trade-off among synergic error and
classification sub-model. Additionally, test data classifica-
tion belonging to the SN DCNN component is processed
under some of the prediction vectors which are represented
as p(i) � (P

(i)
1 , P

(i)
2 , . . . , P

(i)
k ). Further, the test data class label

is deliberated as below:

y′(z) � arg maxυ 

K
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P

(U)
1 , . . . , 

K
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P

(U)
υ , . . . , 

K
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P
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k

⎧⎨
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3.2. Image Classification. %is is the final stage to classify the
HSI images concerning the different class labels. %is
classification is performed under the SoftMax layer which
has more attention for the multi-label classification. It leads
to a mapping function on behalf of the C input vector as of
space n to class k labels, which is given in equation (10).

υQ �
e θzQC 


k
k�1 e θz

KC( 
, (10)

where, Q � 1, 2, . . . , k and θk � [θK1, θK2 . . . θKn]z refers the
weights, and this has to be tuned using the optimization

Feature
extraction Feature reduction Classification

Classified output

Input HSI image

Aquila
optimization for

loss function
optimization

Synergic deep Convolutional Neural Network

Figure 1: Schematic representation of the proposed methodology.
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process. As a result, we can reduce the loss function in this
architecture.

3.3. Loss Reduction by Aquila Optimization Algorithm.
Losses in this SDL are reduced by the Aquila optimization
algorithm with the weight tuning process. %is Aquila op-
timization algorithm yields the best solution despite the
definite limitations.

%e mathematical model of Aquila optimization (AO)
[32] consists following stages: expanded exploration, nar-
rowed exploration, expanded exploitation, and narrowed
exploitation.

3.3.1. Expanded Exploration. In this work, Aquila recog-
nizes the best weight θk based on the best hunting area. Here,
the best hunting area refers to the minimum losses. In this
process, the AO (weight optimization) extensively explores
extraordinary soar to conclude the search space area.

θ1(T + 1) � θBEST(T) × 1 −
T

t
  + θm(T) − θBEST(T)∗RAND( ,

(11)

where, θ1(T + 1) refers to the next iteration solution, and
this is estimated by the initial search method θ1. θBEST(T) is
considered as the best until iteration T. Expanded search
(exploration) is controlled by the (1 − T/t) iteration. In
addition to that, θm(T) represented the current location
mean value which is calculated in the following equation. t
and T are the maxima and current iterations.

θm(T) �
1
n



n

a�1
θa(T), (12)

where, n is the population size.

3.3.2. Narrowed Exploration. In this stage, AO barely dis-
covers (explores) the certain space of the targeted prey for
the solution.

θ2(T + 1) � θBEST(T) × LEVY(d)

+ θr(T) +(v − u)∗RAND,
(13)

where, θ2(T + 1) is the next iteration solution. LEVY(d) and
d is the levy flight distribution function and dimension
space, respectively. Additionally, θr(T) is the random so-
lution which is taken from the range of (1, . . ., n).

LEVY(d) � S ×
U × ρ
|V|

1/β, (14)

where, S refers to the constant which has the value of 0.01.
Moreover, U and V are constant numbers.

ρ �
Γ(1 + β) × sin e(πβ/2)

Γ(1 + β/2) × β × 2(β − 1/2)
. (15)

In the above equation (15), β is the constant value.
Moreover, the value of u and v are calculated as follows,
which is used for spiral search in this optimization.

v � R cos(ϕ),

u � R sin(ϕ),

R � R1 + ε × d1,

ϕ � −ϖ × d1 + ϕ1,

(16)

R1 has the values from 20 to toward fixed search cycles,
and ε has the value of 0.00565. d1 differs based on dimension,
then ϖ is a minimum value which is a constant 0.005.

Inputs

Inputs

Conv

Conv

Outputs

Cross domain
transfer

Cross domain
transfer

Figure 2: Synergic deep learning model.
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3.3.3. Expanded Exploitation (X3). In this stage, weight
optimization exploits the accurate value of the solution for
getting nearer to prey and attack.

θ3(t + 1) � θBEST(T) − θm(T) × δ − RAND

+ Bupper − Blower  × RAND + Blower  × α,
(17)

where θ3(t + 1) refers to the next iteration solution, and
θBEST(T) represents the estimated prey location. In addition
to that, θm(T) represents the current mean value at the Tth
iteration, and RAND means the random value which is
between 0 and 1. α and δ are the small values (0, 1) which are
adjustment parameters for the exploitation process. Bupper
and Blower represents the upper and lower bound of the
problem, respectively.

3.3.4. Narrowed Exploitation. In this phase, attacking is
processed in the last location.

θ4(T + 1) � qf × θBEST(T) − g1 × θ(T) × RAND( 

− g2 × LEVY(d) + RAND × g1,
(18)

where θ4(T + 1) demonstrates the next iteration solution. qf

mentions the quality function which is applied for balancing
the search strategies. g1 specifies several optimization mo-
tions that are applied for tracking the prey. g2 specifies the
values that are reduced from two to zero. θ(T) represents t
iteration with the current solution.

qf(T) � T
2×RAND− 1/(1−t)2

,

g1 � 2 × RAND − 1,

g2 � 2 × 1 −
T

t
 .

(19)

qf(T) refers to the tth iteration’s quality function, and
RAND means random value between 0 and 1. T and t
presents the maximum and current iteration, respectively.
Levy(D) is the levy flight distribution function calculated
using equation (6). As a result, we can get optimum weights
which reduces losses in the architecture.

4. Experimental Results and Discussion

In our work, we have used four HSI datasets which are used
for analyzing our proposed CSDCNN-AO technique. Here,
we use Houston U (HU) dataset [33], Indiana Pines (IP)
[34], Kennedy Space Center (KSC) [35], and Salinas Scene
(SS) dataset [17]. In the case of the IP dataset, the size of the
dataset is 145×145. For the KSC dataset, the size is
equivalent to 512× 614 with 13 classes of ground truths.

4.1. Dataset and Its Description

4.1.1. Houston U (HU) Dataset. %e first dataset is GRSS
DFC 2013, which measures 349 1905 bytes, and has 144
bands spanning the wavelength range 380–1050 nm. It was
obtained by the National Center for Airborne Laser

Mapping (NCALM) and has a spatial resolution of 2.5
metres over the University of Houston. %e picture is
separated into two halves: the bright and dark sections. %e
bright section has 4143 samples, whereas the dark section
contains 824 samples.

4.1.2. Indiana Pines (IP). %is agricultural dataset was
collected in 1992 from Northwest Indiana utilising the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensor. It has 145×145 pixels and 16 vegetation classifica-
tions with 20m per pixel spatial resolution. After removing 4
zero bands and 20 bands affected by water absorption effects,
200 spectral bands ranging from 400 to 2500 nm with 10-nm
intervals were used for analysis.

4.1.3. Kennedy Space Center (KSC). %e AVIRIS instrument
in Florida collected the Kennedy Space Center dataset in
1996. It has a resolution of 512 by 614 pixels, 176 bands, and
13 categories.

4.1.4. Salinas Scene (SS) Dataset. Experiments on the Salinas
Scene collected by the AVIRIS sensor over Salinas Valley,
California, USA, with a spatial resolution of 3.7m per pixel
in the wavelength range of 0.4–2.5m and a spectral reso-
lution of 10 nm, used a second set of AVIRIS data. It
measures 512× 217× 224 pixels (water absorption bands
included).

%e model for comparison enactment depending on the
IP dataset through different classes are evaluated.

In this Table 1, we evaluated the classification perfor-
mance for the Indian Pines Scene dataset. Here, overall
accuracy, average accuracy, and Kappa coefficients are
evaluated. From the results, we can show that our proposed
CSDCNN-AO yields maximum performance than other
techniques. In Table 1, CSDCNN-AO achieves a better result
for the 13th class. In the case of CSDCNN, the 8th class
achieves a better performance. For SDCNN, the 16th class
has the maximum performance. DCNN also attains maxi-
mum performance for the 16th class only. For RNN, it has
the maximum performance under the 6th class.

In the above Figure 3, (a) represents the original image
and here we evaluated the results of the proposed algorithm
with other algorithms like CSDCNN-ALO [36], CSDCNN-
PSO [37], CSDCNN-WOA [38], and CSDCNN-GWO [39].
Different application [40–45] were used in different fields for
optimization. Among these methods, our proposed work
yields the maximum performance since the performance of
our proposed work is nearly equivalent to the original
ground truth image compared to others.

In this Table 2, we evaluated the classification perfor-
mance for the KSC dataset. Here, abovementioned perfor-
mances are evaluated. From the results, we can show that our
proposed CSDCNN-AO yields the maximum performance
than other techniques. In Table 2, CSDCNN-AO achieves a
better result for the 10th class. In the case of CSDCNN, the
11th class achieves a better performance. For SDCNN, the
13th class has themaximum performance. DCNN attains the
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maximum performance for the 8th class. For RNN, it has the
maximum performance under the 6th class.

In the above Figure 4, (a) represents the original image
and here we evaluated the results of the proposed algorithm
with other algorithms like CSDCNN-ALO, CSDCNN-PSO,
CSDCNN-WOA, and CSDCNN-GWO. From these

methods, our proposed work yields the maximum perfor-
mance since the obtained proposed image is nearly equiv-
alent to the original ground truth image.

In this Table 3, we evaluated the classification perfor-
mance for the Salinas Scene (SS) dataset. From the results,
we can show that our proposed CSDCNN-AO yields the

Table 1: HSI categorization for Indiana Pines (IP) dataset.

Methods RNN DCNN SDCNN CSDCNN CSDCNN-AO
OA 46.33± 0.45 48.73± 0.89 89.36± 1.13 89.57± 0.86 93.44± 1.08
AA 36.20± 1.06 49.60± 3.29 88.46± 1.17 83.14± 1.11 94.44± 1.82
K 53.97± 0.58 51.04± 1.03 89.62± 2.54 89.12± 0.26 98.33± 1.25
1 22.89± 1.09 1.33± 7.33 90.00± 1.03 30.21± 30.0 93.77± 11.6
2 45.46± 5.00 41.53± 3.04 87.35± 3.80 81.79± 0.26 90.38± 4.87
3 26.69± 2.61 30.91± 8.28 87.18± 7.24 75.93± 1.26 90.06± 4.53
4 22.79± 9.7 21.17± 3.25 83.17± 5.52 89.11± 1.12 96.84± 4.89
5 37.71± 6.67 69.79± 2.13 86.75± 2.55 79.28± 1.34 95.65± 1.95
6 89.57± 1.71 91.78± 0.78 89.08± 3.06 92.82± 0.32 96.95± 0.96
7 39.54± 11.4 19.85± 7.59 69.89± 29.7 39.69± 2.13 91.48± 24.0
8 87.46± 2.15 87.84± 3.15 85.25± 2.40 99.22± 0.31 89.11± 3.09
9 47.78± 19.04 0.00± 0.00 49.0± 49.0 19.00± 2.05 92.72± 8.38
10 49.46± 1.91 52.53± 1.24 86.47± 7.69 74.28± 0.89 92.40± 2.86
11 70.89± 2.49 61.88± 4.33 91.88± 5.03 91.12± 0.25 93.97± 3.29
12 37.14± 5.56 37.46± 3.85 77.82± 5.16 85.88± 2.37 87.56± 3.44
13 32.68± 7.17 85.02± 1.22 96.26± 5.29 50.86± 3.56 98.89± 0.87
14 81.32± 8.95 89.94± 2.59 89.16± 2.22 93.89± 1.37 96.89± 2.57
15 45.75± 5.12 44.64± 4.56 94.00± 7.49 93.76± 1.98 89.74± 2.65
16 29.60± 34.12 95.38± 1.94 99.89± 3.86 98.11± 2.67 96.89± 4.98

(a) (b) (c)

(d) (e) (f )

Figure 3: HSI classified image for IP dataset (a) original ground truth image (b) CSDCNN-ALO, (c) CSDCNN-PSO, (d) CSDCNN-WOA,
and (e) CSDCNN-GWO (f) CSDCNN-AO.
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maximum performance than the other techniques. In Ta-
ble 3, CSDCNN-AO achieves a better result for the 13th
class. In the case of CSDCNN, the 16th class achieves a better
performance. For SDCNN, the 14th class has the maximum
performance. DCNN also attains the maximum perfor-
mance for the 16th class only. For RNN, it has the maximum
performance under 11th class.

In the above Figure 5, (a) represents the original image
and here we evaluated the results of the proposed algorithm
with other algorithms like CSDCNN-ALO, CSDCNN-PSO,
CSDCNN-WOA, and CSDCNN-GWO. From these
methods, our proposed work yields the maximum

performance since the obtained proposed image is nearly
equivalent to the original ground truth image.

In Table 4, we evaluate the classification performance for
the Houston U dataset. From the results, we can show that
our proposed CSDCNN-AO yields the maximum perfor-
mance than the other techniques. In Table 4, CSDCNN-AO
achieves a better result for the 11th class. In the case of
CSDCNN, the 8th class achieves a better performance. For
SDCNN, the 15th class has the maximum performance.
DCNN also attains the maximum performance for the 14th
class only. For RNN, it has the maximum performance
under 8th class.

Table 2: HSI categorization for KSC dataset.

methods RNN DCNN SDCNN CSDCNN CSDCNN-AO
OA 45.22± 0.45 47.89± 0.89 88.36± 1.13 87.48± 0.86 92.33± 1.08
AA 37.31± 1.06 56.60± 3.29 85.39± 1.17 82.43± 1.11 93.44± 1.82
K 52.97± 0.58 53.12± 1.03 91.62± 2.54 93.12± 0.26 97.22± 1.25
1 22.89± 1.09 30.33± 7.33 89.00± 1.03 29.21± 30.0 84.77± 11.6
2 44.46± 5.00 42.53± 3.04 86.35± 3.80 84.79± 0.26 92.38± 4.87
3 46.69± 2.61 53.91± 8.28 86.18± 7.24 85.93± 1.26 93.06± 4.53
4 29.79± 9.7 21.17± 3.25 84.17± 5.52 88.11± 1.12 95.84± 4.89
5 36.71± 6.67 68.79± 2.13 85.75± 2.55 87.28± 1.34 94.65± 1.95
6 88.57± 1.71 92.78± 0.78 88.08± 3.06 93.82± 0.32 95.95± 0.96
7 38.34± 11.4 20.85± 7.79 71.89± 29.45 42.69± 2.13 92.48± 24.0
8 91.46± 2.15 94.84± 3.15 91.25± 2.40 95.22± 0.31 97.11± 3.09
9 64.78± 19.04 0.00± 0.00 54.0± 49.0 32.00± 2.05 89.72± 8.38
10 61.46± 1.91 61.53± 1.24 89.47± 7.69 81.28± 0.89 98.40± 2.86
11 79.89± 2.49 66.88± 4.33 93.77± 5.03 95.85± 0.67 93.97± 3.29
12 47.14± 5.56 47.57± 3.85 77.97± 5.16 83.77± 4.37 95.89± 4.55
13 49.68± 7.17 87.02± 1.22 97.45± 5.29 79.86± 4.56 97.89± 0.87

(a) (b) (c)

(d) (e) (f )

Figure 4: HSI classified image for KSC dataset: (a) original ground truth image, (b) CSDCNN-ALO, (c) CSDCNN-PSO, (d) CSDCNN-
WOA, (e) CSDCNN-GWO, and (f) CSDCNN-AO.

8 Computational Intelligence and Neuroscience



Table 3: HSI categorization for Salinas Scene (SS) dataset.

Methods RNN DCNN SDCNN CSDCNN CSDCNN-AO
OA 46.78± 1.45 57.49± 1.39 89.65± 1.13 91.89± 0.86 95.77± 1.08
AA 78.20± 1.06 49.60± 3.29 88.46± 1.17 83.14± 1.11 94.44± 1.82
K 53.97± 0.58 51.04± 1.03 89.62± 2.54 89.12± 0.26 98.33± 1.25
1 22.89± 1.09 1.33± 7.33 90.00± 1.03 30.21± 30.0 93.77± 11.6
2 45.46± 5.00 41.87± 3.04 88.79± 2.80 82.69± 0.26 92.56± 4.87
3 26.69± 2.61 30.91± 8.28 87.18± 7.24 75.93± 1.26 90.06± 4.53
4 22.79± 9.7 21.17± 3.25 83.17± 5.52 89.11± 1.12 96.84± 4.89
5 37.71± 6.67 69.79± 2.13 86.75± 2.55 79.28± 1.34 95.65± 1.95
6 89.57± 1.71 91.78± 0.78 89.08± 3.06 92.82± 0.32 96.95± 0.96
7 39.54± 11.4 19.85± 7.59 69.89± 29.7 39.69± 2.13 91.48± 24.0
8 87.46± 2.15 87.84± 3.15 85.25± 2.40 96.22± 0.31 88.11± 3.09
9 51.81± 19.04 0.00± 0.00 48.0± 49.0 22.00± 2.05 95.72± 8.38
10 67.46± 1.91 63.53± 1.24 90.47± 6.87 87.28± 0.89 95.30± 2.86
11 90.56± 3.49 73.88± 4.33 94.57± 5.03 95.21± 0.23 97.94± 3.29
12 54.14± 5.56 38.46± 3.85 76.47± 5.16 92.77± 3.37 92.56± 3.44
13 34.47± 7.17 83.02± 1.22 97.26± 5.29 49.93± 3.56 99.89± 0.87
14 84.32± 8.95 87.94± 2.59 99.16± 2.22 92.89± 1.37 95.89± 2.57
15 48.75± 5.12 47.64± 4.56 91.00± 7.49 96.76± 2.98 93.74± 2.65
16 34.60± 34.12 97.38± 1.94 97.89± 3.86 99.11± 2.67 95.89± 4.98

(a) (b) (c) (d) (e) (f )

Figure 5: HSI classified image for SS dataset (a) original ground truth image (b) CSDCNN-ALO, (c) CSDCNN-PSO, (d) CSDCNN-WOA,
and (e) CSDCNN-GWO (f) CSDCNN-AO.

Table 4: HSI categorization for the Houston U dataset.

Methods RNN DCNN SDCNN CSDCNN CSDCNN-AO
OA 49.23± 1.45 57.49± 1.39 88.73± 1.13 93.78± 0.86 94.67± 1.08
AA 78.20± 1.06 49.60± 3.29 88.46± 1.17 83.14± 1.11 94.44± 1.82
K 53.97± 0.58 51.04± 1.03 89.62± 2.54 89.13± 0.26 97.33± 1.25
1 27.89± 1.09 1.66± 7.33 92.00± 1.03 37.21± 30.0 94.77± 11.6
2 49.46± 5.00 42.87± 3.04 89.79± 2.80 82.69± 0.26 92.56± 4.87
3 26.69± 2.61 30.91± 8.28 87.18± 7.24 75.93± 1.26 90.06± 4.53
4 22.79± 9.7 21.17± 3.25 83.17± 5.52 89.11± 1.12 96.84± 4.89
5 37.71± 6.67 69.79± 2.13 86.75± 2.55 79.28± 1.34 95.65± 1.95
6 88.79± 1.71 92.78± 0.78 88.08± 3.06 93.82± 0.32 98.95± 0.96
7 38.54± 11.4 20.85± 7.59 72.89± 29.7 40.69± 2.13 92.48± 24.0
8 89.96± 2.15 88.84± 3.15 84.25± 2.40 99.33± 0.31 86.11± 3.09
9 57.81± 19.04 0.00± 0.00 76.0± 49.0 28.00± 2.05 99.72± 8.38
10 67.46± 1.91 67.53± 1.24 90.47± 6.87 87.28± 0.89 95.30± 2.86
11 82.56± 3.49 73.88± 4.33 94.57± 5.03 95.21± 0.23 99.84± 3.29
12 54.14± 5.56 48.46± 3.85 77.47± 5.16 92.77± 3.37 92.56± 3.44
13 34.47± 7.17 83.02± 1.22 97.26± 5.29 49.93± 3.56 97.89± 0.87
14 84.32± 8.95 93.94± 2.59 89.16± 2.22 95.89± 1.37 95.89± 2.57
15 48.75± 5.12 47.64± 4.56 98.00± 7.49 96.77± 2.98 93.74± 2.65
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(a)

(b)

(c)

(d)

(e)

(f )

Figure 6: HSI classified image for Houston U dataset: (a) original ground truth image, (b) CSDCNN-ALO, (c) CSDCNN-PSO,
(d) CSDCNN-WOA, (e) CSDCNN-GWO, and (f) CSDCNN-AO.
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In the above Figure 6, (a) represents the original image
then we evaluated the outcome of the proposed algorithm
with other algorithms like CSDCNN-ALO, CSDCNN-PSO,
CSDCNN-WOA, and CSDCNN-GWO. From these
methods, our proposed work yields the maximum perfor-
mance since the obtained proposed image is nearly equiv-
alent to the original ground truth image.

%e input images were obtained from the four datasets.
Results are obtained after feature extraction, feature reduction,
classification, and loss function optimization. %e four dif-
ferent datasets taken for testing purposes are the HU dataset,
IP, KSC, and SS dataset. %ese four datasets have shown
promising results in this classification. %e results (i.e., com-
putational complexity, overall accuracy and loss functions) that
are obtained by these datasets are given in the following figure.

%e computational complexity attained for various it-
erations are shown in Figure 7. %e usage of various opti-
mizations along with the synergic deep CNN has improved
the performance of the proposed algorithm. %e compu-
tational complexity attained by Aquila optimization is much
better as it has identified the optimal solution in lesser
number of iterations, due to this the computational com-
plexity has to be increased while increasing the iterations.
Not like other meta-heuristic algorithms, this optimization
algorithm has provided satisfactory results on weight pa-
rameter selection compared to ALO,WOA, PSO, and GWO.
%erefore, in this proposed process, the Aquila optimization
is encouraged.

%e overall accuracy comparison for the above-
mentioned data sets is shown in Figure 8. Among all the
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datasets, the dataset named KSC has shown a higher ac-
curacy value than other algorithms. %ese four efficient
datasets are taken for comparison. However, the overall
accuracy is evaluated with the coefficient loss. %e com-
parison analysis in terms of overall accuracy is affected while
coefficient loss is increased. Our proposed work yields
maximum accuracy of 99.02%, and this is lagged for the
increasing coefficient losses.

%e loss comparison for proposed and existing algo-
rithms for the four datasets are shown in Figure 9. Among all
the techniques, our proposed CSDCNN-AO has shown a
lower loss value than other algorithms. %e four efficient
existing algorithms that are taken for comparison are
CSDCNN, SDCNN, DCNN, and RNN. However, the loss
shown in all these datasets are found to be much less than
that in other existing algorithms. Especially for the KSC
dataset, obtained losses are very low compared to another

one. %is is because the proposed technique has enhanced
the effectiveness of the classification process.

5. Conclusion

Compressed spatial and spectral characteristics are
employed as the key perception to develop a compressed
synergic deep convolution neural network with Aquila
optimization (CSDCNN-AO) for efficient HSI classification
in this study. %is combination will reduce the wavelet
concept’s learning difficulty and the Aquila optimization’s
loss function. %is Aquila optimization approach may
minimize the maximum number of data features without
losing their characteristic state, while using less computing
time and memory. Our proposed approach is superior to
existing deep learning models due to higher learning ability
of our synergic deep learning model based on compressed
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Figure 9: Loss comparison for (a) HU dataset, (b) SS dataset, (c) IP dataset, and (d) KSC dataset.
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features. While comparing with the other techniques, our
proposed approach can reach the maximum level of clas-
sification. In addition, the experimental results showed that
the loss function does not significantly impact classification
accuracy. In addition, the outcome demonstrates that the
CSDCNN-AO approach has the highest accuracy among all
the four datasets. Furthermore, the performance of average
accuracy, total accuracy, and Kappa coefficients is optimal
when implemented on all datasets. However, the proposed
technique lacks optimal performance with certain samples.
In future research, this issue will be resolved using a new
model.
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