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Hypertrophic cardiomyopathy (HCM) is a common heart disease in humans and cats, nonetheless, the disease patho-
genesis is still poorly understood. MicroRNAs are suspected to be involved in the disease process but the myocardial
microRNA expression pattern in cats has not been identified. We hypothesized that microRNA profiles differ between
healthy cats and cats with HCM. Small RNA sequencing on left ventricle (LV) and left atria (LA) samples from healthy
cats (8 LV, 8 LA) and cats with HCM (7 LV, 5 LA) was performed. We identified 1039 differentially expressed
microRNAs (False Discovery Rate <0.01, fold change >2). Cats with HCM were found to have a distinct microRNA
expression profile with apparent regional heterogeneity. Comparing the HCM and control hearts, we detected 80 dif-
ferentially expressedmicroRNAs for the HCM LV, and 37 for the LA. These included LV and LA enrichedmiR-21, miR-
146b, and reducedmiR-122-5p, whichwere recently suggested as keymicroRNAs for theHCMpathogenesis, andmiR-
132, which might be of therapeutic interest. Several top enriched microRNAs: miR-3958, miR-382-5p, miR-487a-5p
(HCM LV); miR-chrD4_30107-3p (HCM LA); miR-3548 (HCM LV and LA) have either not been reported in the heart
or only little is known. We identified potentially relevant microRNAs and further investigations into their role are re-
quired. Genes known to be targeted by the differentially expressedmicroRNAswere associatedwith inflammation and
growth pathways in the HCM LV and LA, cardioprotective pathways in the LV, and fibrosis and structural changes in
the LA when compared to healthy hearts.
1. Introduction

Hypertrophic cardiomyopathy (HCM) has a prevalence of 15 % in the
general pet cat population [1]. The disease is characterized by thickening
of the heart muscle, particularly the left ventricle, and impaired diastolic
function [2]. HCM in cats is considered to be analogous to HCM in humans
[3], with a similar phenotype and clinical presentation [4]. In humans,
HCM has a genetic cause with >1500 mutations [5]. In cats, the disease is
largely considered idiopathic [6] although 4 mutations have been identi-
fied to date, all of which affect genes that are also found in humans with
HCM [7–10]. These genetic mutations were shown to have incomplete
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penetrance and cats that carry these genotypes do not necessarily show
an HCM phenotype [11–15]. These observations suggest that other factors,
such asmicroRNAs, are involved that influence the phenotype and progres-
sion of HCM.

MicroRNAs are short non-coding RNAs that negatively regulate gene ex-
pression post transcription [16]. They silence or degrade target messenger
RNA sequences based on imperfect or perfect base-pairing of the compli-
mentary seed sequence to the 3′ untranslated region [17]. MicroRNAs are
important for maintaining health and the aberrant expression of
microRNAs are involved in the pathogenesis of many diseases including
HCM in humans and rodent models [18–23]. Cardiac-enriched microRNAs
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contributing to cardiac hypertrophy, fibrosis and/or associated with spe-
cific disease presentations have been reported for humans [21,24–26]. In
human patients with HCM, myocardial microRNA profiles differed signifi-
cantly from those of healthy individuals [20,27].

There are over 38,000 microRNAs annotated in miRbase v22.1 for 271
species, with around 2600 mature sequences experimentally validated in
humans [28]. While much research on microRNAs has been done in
human HCM, the role of microRNAs in feline HCM is largely unknown.
So far, microRNA expressions have been profiled from various normal fe-
line tissues, but not from the heart [29]. One study that looked atmicroRNA
expression in serum samples from cats with HCM using microarrays identi-
fied significant differences in the expression of 11 microRNAs in cats with
HCM compared to healthy cats [30]. Based on microRNA studies in
human HCM and rodent models of HCM [20,31,32], we hypothesized
that microRNA profiles would also be altered in feline HCM. Furthermore,
regional differences in microRNA and long-noncoding RNA expression
were observed in the human heart [33–35]. Previously, we found regional
differences in gene activation, cytokine and remodeling enzyme gene ex-
pression in the healthy and HCM cat heart [36–39]. Therefore, we
suspected regional differences in microRNAs between the left ventricle
(LV) and the left atrium (LA). The objective of the studywas to characterize
the LV and the LA microRNA profiles in healthy cats and cats with HCM.
Small RNA sequencing was used to determine the global microRNA expres-
sion profiles of the left heart, and bioinformatic analysis was performed to
identify the regulated genes, signaling pathways and networks associated
with HCM processes.

2. Material and methods

This prospective observational postmortem study was reviewed and ap-
proved by the Animal Care Committee of the University of Guelph. Clinical
assessment, handling of cats, restrain, echocardiography, and euthanasia
were performed in all cats as determined by the Animal Welfare Act of
the Federal Food Safety and Veterinary Office (Switzerland), Veterinarians
Act of Ontario (Canada), and the Professional Practice Standard for Veteri-
nary Euthanasia from the College of Veterinarians of Ontario (Canada) and
the Canadian Council on Animal Care as part of recognized veterinary
Table 1
Demographic information and statistics summary of sRNA-seq data. Left ventricle (LV) a
phic cardiomyopathy (HCM). Breeds in the study include Domestic Shorthair (DSH), Do

Sample Group Age (years) Breed Sex Reads post trimming, #

LV1 Healthy LV 1.5 DSH Male 7,949,223
LV2 Healthy LV 1.5 DSH Male 8,585,895
LV3 Healthy LV 1.5 DSH Male 8,084,147
LV4 Healthy LV 1.5 DSH Male 7,334,672
LV5 Healthy LV 1.5 DSH Male 8,204,467
LV6 Healthy LV 1.5 DSH Male 7,328,982
LV7 Healthy LV 1.5 DSH Male 7,804,861
LV8 Healthy LV 1.5 DSH Male 8,141,622
LV9 HCM LV 3 DSH Male 7,635,908
LV10 HCM LV 9 DSH Male 7,288,369
LV11 HCM LV 8 DLH Male 8,463,889
LV12 HCM LV 11.9 DLH Male 6,578,612
LV13 HCM LV 14 Chartreux Male 8,205,172
LV14 HCM LV 8 ESH Male 8,214,560
LV15 HCM LV 11 ESH Female 9,349,153
LA1 Healthy LA 1.5 DSH Male 7,292,626
LA2 Healthy LA 1.5 DSH Male 8,266,977
LA3 Healthy LA 1.5 DSH Male 8,163,264
LA4 Healthy LA 1.5 DSH Male 7,290,056
LA5 Healthy LA 1.5 DSH Male 7,675,167
LA6 Healthy LA 1.5 DSH Male 7,753,055
LA7 Healthy LA 1.5 DSH Male 9,509,335
LA8 Healthy LA 1.5 DSH Male 7,017,891
LA9 HCM LA 9 DSH Male 7,918,819
LA10 HCM LA 3 Ragdoll Male 7,739,632
LA11 HCM LA 10 DSH Male 5,848,821
LA12 HCM LA 8 ESH Male 8,625,530
LA13 HCM LA 11 ESH Female 9,109,097

2

practice. The cats with HCM were clinical patients of a cardiology referral
service and were assessed under the Animal Welfare Act of the Federal
Food Safety and Veterinary Office (Switzerland) and the Veterinarians
Act of Ontario (Canada). HCMwas diagnosed by board-certified specialists
in veterinary cardiology. A diastolic LV wall thickness >6 mm in the ab-
sence of other diseases that could cause LV wall thickening was considered
diagnostic for HCM [2]. Most cats had been long-term patients of the cardi-
ology service and progression of their disease was observed over time. All
HCM samples were obtained from pet cats that had been euthanized for
medical reasons. The owners of these cats provided informed consent that
the hearts could be collected postmortem and used for research purposes.
Hearts from control cats were donated to the study by a commercial com-
pany that carries out animal safety studies for Food and Drug Administra-
tion as well as European Medicines Agency regulatory submissions in
support of veterinary drug development, and is certified by the Canadian
Council on Animal Care (https://kingfisherint.com; https://ccac.ca/en/
about-the-ccac/). These cats were from a research cat population and
were healthy controls in a study. All cats underwent gross and histopathol-
ogic examinations conducted and/or supervised by a board-certified veter-
inary pathologist as the gold standard to confirm the presence of HCM in
the cats with HCM, the absence of cardiac diseases in the healthy cats and
the absence of systemic diseases in all cats. Inclusion criteria were the pres-
ence of HCM in the cats with HCM and the absence of cardiac and systemic
diseases in the control cats. Cats with cardiac diseases other than HCM or
systemic diseases were excluded from the study.

Myocardial samples from healthy male cats (8 left ventricle (LV) and 8
left atria (LA), age: 1.5 years old) and male cats with HCM (7 LV and 5 LA,
age: 3–15 years old) (Table 1) were collected immediately after euthanasia
and stored in RNAlater at −80 °C until RNA isolation.

2.1. RNA isolation

For extraction of total RNA, 700 μL of QIAzol Lysis Reagent (Qiagen)
and a 2 mm stainless steel bead were added to myocardial tissue samples
and lysed using a Tissue Lyser II (Qiagen) for 8 min at 30/s frequency for
high throughput sample disruption and homogenization. Total RNA was
isolated from the samples using the miRNeasy Mini Kit (Qiagen) according
nd left atrium (LA) samples were collected from healthy cats and cats with hypertro-
mestic Longhair (DLH), Chartreux, European Shorthair (ESH) and Ragdoll.

Reads for analysis, % Mature reads, % Ribosomal reads, % Unassigned, %

94 68 2 7
95 69 2 7
96 71 2 8
94 73 2 6
96 78 2 5
91 50 17 10
90 56 11 11
77 53 13 10
95 75 2 7
97 78 2 6
94 58 17 9
93 54 15 13
97 70 1 9
94 48 2 29
96 60 2 18
97 80 1 5
94 65 2 11
95 69 2 10
95 67 3 13
95 74 2 6
93 57 14 10
91 61 12 9
91 55 1 11
96 67 2 8
96 68 2 8
94 44 19 15
96 69 1 10
94 56 1 20
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tomanufacturer's instructions and suspended in RNase freewater. RNAwas
quantified (Nanodrop 2000; ThermoFisher Scientific) and its integrity and
purity measured by Agilent Bioanalyzer (RNA6000 Nano assay). Samples
with a 260/280 ratio of >1.9 and RNA integrity number > 5 were used
for sequencing. Extracted RNA samples were stored at −80 °C until used
for sequencing.

2.2. Small RNA sequencing

Sequencing libraries were generated for all samples using the NEBNext
small RNA Library Prep Kit for Illumina (New England Biolabs) as per
manufacturer's instructions. Briefly, 1 μg of total RNA from each
sample was ligated to 3′ and 5′ adaptors, and poly(A) tails were added
using poly(A) polymerase. RNA was reverse transcribed and amplified by
PCR with primers specific to the adaptor sequences. MicroRNA enrichment
was completed by extracting the 15–30 nucleotide fraction of the polyacryl-
amide gel. Library quality was assessed using the Bioanalyzer 2100 system
(Agilent Technologies). Sequencing was performed on the Hiseq 2500
SR50 bp (Illumina) platform, with 150 M reads total.

2.3. Bioinformatic analysis

Processing: Quality of sequencing data was assessed using FastQC
v.0.11.2 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/).
For each sample, raw reads were processed for adapter and quality trim-
ming using trim_galore v.0.4.1 (http://www.bioinformatics.babraham.ac.
uk/projects/trim_galore/).

The following parameters for low-quality reads were applied: strin-
gency = 5 for adaptor trimming, minimum phred score = 20. Quality
was reassessed using FastQC and any remaining index adaptors were re-
moved during sRNA bench analysis (https://arn.ugr.es/srnatoolbox/
srnabench/), with parameter minReadLength = 15.

Quantification: No feline microRNAs are included in miRbase 22.1.
MicroRNAs detected by Lagana et al. (2017) were considered as known
microRNA [29]. RNACentral (http://rnacentral.org/) was the reference
for other RNA types such as rRNAs and tRNAs. Using genome mapping
mode (https://arn.ugr.es/srnatoolbox/static/sRNAtoolbox_manual.pdf),
reads weremapped to the Felis_catus genome (ensemble_rel96) andmature
microRNA expression was quantified.

Differential microRNA expression: Once the mature microRNA read
counts were compiled, principal component analysis (PCA) was performed
to visualize the similarity of expression between samples. DESeq2 (http://
bioconductor.org/packages/release/bioc/html/DESeq2.html) was used to
detect differentially expressedmicroRNAs between various groups. The fol-
lowing comparisons were examined: Healthy LV vs. Healthy LA, HCM LV
vs. HCM LA, HCM LV vs. Healthy LV, and HCM LA vs. Healthy LA.

2.4. Pathway and network analysis

Ingenuity Pathway Analysis software (IPA, Qiagen) was used for in
silico target prediction and to determine which canonical pathways and
networks are associated with differentially expressed microRNAs. Only
mRNA targets with high confidence or those that were experimentally val-
idatedwere used for analysis. TheBenjamini-Hochberg correctionwas used
for adjusted P-value, with significance threshold set to 1.3 (equivalent to
P < 0.05).

2.5. Validation by reverse transcription quantitative polymerase chain reaction
(RT-qPCR)

In order to validate the microRNA sequencing data, we selected 4
microRNAs based on their high differential expression in HCM hearts com-
pared to controls. 5 LV and 5 LA samples were collected frommale healthy
cats (1.5 years of age) and catswithHCM (3–15 years of age) (n=20 total).
Total RNA was extracted from the samples as per the RNA isolation proto-
col above and converted to cDNA by reverse transcription using 1st strand
3

cDNA synthesis kit (Agilent Technologies), according to manufacturer's in-
structions. RT-qPCR was performed using miRNA QPCR Master Mix, uni-
versal reverse primer (Agilent Technologies) according to manufacturer's
instructions and the Lightcycler 480 (Roche Diagnostics). PCR primer se-
quences were selected based on published literature for housekeeping
genes (RNA U6) and from our data for target microRNAs (miR-185-5p,
miR-208-3p, miR-21-5p, miR-132-3p). Forward primer sequences (5′-3′)
were as follows: miR-185-5p: GCTGGAGAGAAAGGCAGTTCCTGA, miR-
208-3p: GCTATAAGACGAACAAAAGGTTTG, miR-21-5p: GCTAGCTTATC
AGACTGATGTTGAC, miR-132-3p: GCAACGTAACAGTCTACAGCC.

Conditions for polyadenylation and RT respectively were 37 °C for
30 min, 95 °C for 5 min for the first program and 55 °C for 5 min, 25 °C
for 15 min, 42 °C for 30 min, 95 °C for 5 min for the second program. The
cycling conditions for qPCR were 95 °C for 10 min, 45 cycles of 95 °C for
10 s, 60 °C for 15 s and 72 °C for 20 s, followed by dissociation curve anal-
ysis. Relative quantification was calculated by 2-ΔΔCt method. All RT-qPCR
statistical analysis was performed using GraphPad Prism 9.0. P-values
<0.05 were considered as statistically significant.

3. Results

To characterize and define the feline miRNome (all expressed mature
microRNAs) in the myocardium of healthy cats and those with HCM, 29
small-RNA libraries were generated from 8 male healthy cats (paired LV
and LA samples from all cats) and 9 male cats with HCM (paired LV and
LA samples from 3 cats, individual LV samples from 4 cats and LA samples
from 2 cats). Our analysis revealed 1039microRNAs after removal of repet-
itive sequences and those with poor expression. The total number of reads
per sample averaged 7.3 million reads, which was 91 % of the total reads
acquired from sequencing. The remaining were discarded due to adaptor
trimming and repetitive sequences. The genome reads were 7.1 million
reads per sample on average, indicating excellent alignment to the refer-
ence. Of these reads, 54 % were mature microRNAs. Only 1 % of the
reads were hairpins and the remaining consisted of other reads, such as
tRNA or rRNA. Unassigned reads were 15 % of the overall reads, which
could include novel microRNAs.

PCA was conducted to assess the similarities and differences in
microRNA expression levels of HCM and healthy samples both in the LV
and the LA (Fig. 1). The low intra-group variability indicates that within
each group: Healthy LV, Healthy LA, HCM LV and HCM LA, the samples
have similar microRNA profiles. The high inter-group differences with sep-
aration between HCM and healthy samples as well as between LV and LA
samples indicate that the gene expression is driven by disease associated
factors, along principal component 1 and by regional differences, along
principal component 2. The higher dispersion of HCM samples shows a
more heterogenous expression relative to the tightly clustered healthy sam-
ples, revealing an inherent variability in HCMhearts than in healthy hearts.

3.1. MicroRNA expression pattern are region-specific in the healthy and the
HCM heart

To investigate regional differences in the healthy and HCM hearts,
microRNAs of the healthy LV were compared to the healthy LA, followed
by the comparison of the LV and the LA of the HCM heart. Heat maps and
volcano plots were generated to visualize microRNA expression differences
between groups aswell as to show statistical significance in the case of large
fold changes in microRNAs. In the healthy heart, 9 microRNAs were signif-
icantly more abundant and 28 were significantly less abundant in the LV
compared to the LA (Fig. 2A, B; Table 2A). In the HCM heart, the differen-
tial expression was more marked, with 52 microRNAs significantly more
abundant and 25 significantly less abundant in the LV compared to the
LA (Fig. 2C, D; Table 2B). Several overlapping microRNAs were observed
in healthy and HCM hearts: there was a significantly higher abundance
of 6 microRNAs (microRNA(miR)-499-5p, miR-652-3p, miR-652-5p, miR-
140-5p, miR-190a-5p and miR-365-3p) and a significantly lower
abundance of 11 microRNAs (miR-148a-5p, miR-153-3p, miR-885-3p,
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Fig. 1. Principal component analysis of all reads shows clustering of samples based on region and condition (healthy vs. HCM).
Left ventricle (LV) and left atrial (LA) samples have distinct microRNA profiles in healthy cats and cats with HCM. The clustering of expression profiles within the feline heart
distinguishes HCM from healthy samples along principal component 1 (PC1), as well as LV from LA samples along principal component 2 (PC2). Colors indicate the
observational groups: HCM LA (n = 5), HCM LV (n = 7), Healthy LA (n = 8) and Healthy LV (n = 8). Sequencing library construction was conducted in 3 batches with
no batch effects observed.
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miR-885-5p, miR-200a-3p, miR-200a-5p, miR-200b-3p, miR-200b-5p,
miR-218-5p, miR-429-3p, and mir-2387-5p) in the LV when compared to
the LA (Table 2).

3.2. Predicted pathways and networks are region specific in the healthy and the
HCM heart

To explore the biological functions of the differentially expressed
microRNAs that were observed in the regional comparison, IPA was used
to identify activated or inhibited canonical pathways, and their interac-
tions. With IPA, we identified a lower expression of most major pathways,
regulators and processes in the healthy LV compared to the healthy LA
(Fig. 3A, 4A). Among the top pathways, the cardiac hypertrophy, RhoGDI
(Rho GDP-dissociation inhibitor) signaling, Dopamine-DARPP32 feedback
in cAMP signaling and dilated cardiomyopathy pathways were found to
be more abundantly expressed in the healthy LV than the healthy LA
(Fig. 3A). The network analysis identified STK3 (serine/threonine-protein
kinase 3) and SAV1 (salvador homolog 1), which are part of the HIPPO
pathway, EFNA4 (ephrin A4) and EFNA5 (ephrin A5), which are members
of the family of tyrosine kinase receptors, and NCSTN (nicastrin), involved
in NOTCH1 signaling, as more active in the healthy LV than the healthy LA
(Fig. 4A).

In the HCM heart, the regional comparison identified a higher number
of activated pathways in the LV than in the healthy heart, which included
growth, proliferative and calcium signaling pathways (Fig. 3B). For the net-
work analysis most major pathways, regulators and processes were less
4

activated in the LV than the HCM LA. However, the PPARA (peroxisome
proliferator activated receptor alpha), PPARGC1A (PPAR gamma coactiva-
tor 1 alpha), DGAT1 (diacylglycerol O-acyltransferase 1), ghrelin, KLF15
(Krüppel-like factor 15) and contraction of the heart were more active in
the HCM LV than in the HCM LA (Fig. 4B). This indicates a higher baseline
activity within the LA in health and an activation of pathwayswithin the LV
in HCM.

3.3. The microRNA signature of the feline HCM heart differs from the
healthy heart

To identify microRNA profiles that are associated with HCM, we com-
pared the microRNAs of the HCM LV and LA with the microRNAs from
the healthy LV and LA, respectively. Heatmaps and volcano plots were con-
structed to visualize the differences.

Clear differences were found in the microRNA expression patterns of
healthy cats and cats with HCM (Fig. 5). In the HCM LV, 66 microRNAs
were enriched and 14 microRNAs were reduced when compared to the
healthy LV (Table 3A). In the HCM LA, 22 microRNAs were enriched
and 15 microRNAs were reduced when compared to the healthy LA
(Table 3B). In the HCM LV and LA, 11 microRNAs were similarily upreg-
ulated (miR-21-3p, miR-21-5p, miR-132-3p, miR-132-5p, miR-146b-5p,
miR-96-5p, miR-182, miR-183-5p, miR-185-5p, miR-409-5p, miR-
3548-5p) and 4 were similarly downregulated (miR-122-5p, miR-885-
5p, miR-378-5p, miR-139-5p) when compared with the healthy
counterparts.



Fig. 2. Differentially expressed microRNA transcripts distinguish feline left ventricle (LV) and left atrium (LA) in healthy cats and cats with HCM.
Heatmaps of differentially expressed microRNAs and volcano plots distinguish the left ventricle (LV) from the left atrium (LA) samples in the healthy heart (A and B
respectively; healthy LV: n = 8; healthy LA: n = 8) and the HCM heart (C and D respectively; HCM LV: n = 7; HCM LA: n = 5). Normalized read counts were filtered
with the parameters Log2 Fold Change (Log2 FC) ±1 and False Discovery Rate (FDR) <0.01.
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3.4. Pathways and networks are region-specific in the feline HCM heart

Next, we investigated the biological function of the differentially
expressed microRNAs in the HCM LV and LA. IPA and network analysis
were conducted to identify positively or negatively affected pathways and
regulators, along with their interactions.

Overall, more pathway activation was observed in the HCM LV than in
the HCM LA when each region was compared to their healthy equivalent
(Fig. 6A, B). Within the HCM LV, key pathways included granulocyte adhe-
sion and diapedesis, agranulocyte adhesion and diapedesis, VDR/RXR (vi-
tamin D receptor/retinoid x receptor) activation, role of macrophages,
fibroblasts and endothelial cells, cardiac hypertrophy, growth, fibrosis
and immune-modulatory pathways (Fig. 6A). Only LXR/RXR (liver x recep-
tor/RXR) activationwas found to have decreased expression in the HCMLV
compared to the healthy LV.

In the HCM LA, the top pathway was AMPK (5′adenosine
monophosphate activated protein kinase) signaling, followed by several
5

structural, growth and fibrosis pathways, including the activated BEX2
(brain expressed x-lined 2), HIPPO, ERK/MAPK (extracellular signal
regulated kinase/ mitogen activated protein kinase 1), ILK (integrin
linked kinase), and PI3K/AKT (phosphoinositide 3-kinase/protein ki-
nase B) pathways (Fig. 6B). Production of nitric oxide and reactive oxy-
gen species in macrophages, hepatic fibrosis and STAT3 (signal
transducer and activator of transcription 3) pathways were activated
in both the HCM LV and LA. Further analysis of the biological networks
identified IL1A (interleukin-1A) and TFNA (tumor necrosis factor-
alpha) as key molecules in the HCM LV and LA (Fig. 7A, B). The HCM
LV showed COX2 (cyclooxygenase 2): PTGS2 (prostaglandin-endoper-
oxide synthase) in a central position, in addition to activation of lipid
metabolism, cell movement, growth of blood vessels, and mononuclear
leukocytes (Fig. 7A). Within the HCM LA, IL1B, IL6, and endothelin-1
were centrally placed. Activated pathways included fibrogenesis and
structural pathways, activation and adhesion of inflammatory cells,
growth and cell movement (Fig. 7B).



Table 2
Differentially expressed microRNAs upregulated (UP) and downregulated (DOWN)
in the left ventricle (LV) compared to the left atrium (LA) in the healthy heart
(A) and the HCM heart (B). Similar regulated microRNAs in the regional compari-
son of the healthy and HCM are indicated in bold. Number of predicted mRNA
targets for each microRNA from TargetScan based on human or mice (specified
by mmu) homologs. Parameters p-adj < 0.05 and log2FC ±1 were applied. Fca:
Felis catus; Mmu:Mus musculus.

2A

Known
microRNAs

Healthy LV (n = 8). Healthy LA
(n = 8)

UP log2FoldChange Predicted target genes,
#

fca-miR-208b-3p 7.8 211
fca-miR-499-5p 3.01 270 (mmu)
fca-miR-652-3p 2.86 17
fca-miR-652-5p 2.18 2413
fca-miR-1-1-5p 1.83 0
fca-miR-34a-5p 1.7 754
fca-miR-140-5p 1.22 434
fca-miR-190a-5p 1.09 223
fca-miR-365-3p 1.04 269 (mmu)

DOWN
fca-miR-885-3p −5.36 3522
fca-miR-885-5p −3.89 3082
fca-miR-200a-5p −3.79 3225
fca-miR-429-3p −3.23 966 (mmu)
fca-miR-200b-3p −3.17 1196
fca-miR-200b-5p −3.05 3225
fca-miR-200a-3p −2.8 905
fca-miR-181c-3p −2.7 1675
fca-miR-96-5p −2.42 1193
fca-miR-181c-5p −2.28 1371
fca-miR-335-5p −2.19 289
fca-miR-181d-5p −2.17 1371
fca-miR-2387-5p −2.17 0
fca-miR-708-3p −1.89 2978
fca-miR-376a-2-5p −1.68 2485
fca-miR-708-5p −1.66 240
fca-miR-148a-5p −1.6 3866
fca-miR-218-5p −1.56 1102
fca-miR-148a-3p −1.55 802
fca-miR-153-3p −1.53 886
fca-miR-335-3p −1.53 7318
fca-miR-551b-3p −1.38 8
fca-miR-375-3p −1.36 222 (mmu)
fca-miR-432-5p −1.22 3902
fca-miR-424-3p −1.18 1772
fca-miR-155-5p −1.18 556
fca-miR-493-5p −1.08 796
fca-miR-379-5p −1 124

2B

Known
microRNAs

HCM LV (n = 7). HCM LA
(n = 5)

UP log2FoldChange Predicted target genes, #

fca-miR-1185-5p 3.62 2994
fca-miR-3958-3p 3.61 0
fca-miR-370-5p 3.56 319 (seed sequence with

miR-1193)
fca-miR-3958-5p 3.43 0
fca-miR-376c-5p 3.36 2618
fca-miR-487a-5p 3.15 3083
fca-miR-381-5p 3.14 826
fca-miR-381-3p 3 833
fca-miR-656-3p 2.98 5020
fca-miR-409-5p 2.72 136
fca-miR-487b-3p 2.69 16
fca-miR-299a-5p 2.67 186 (mmu)
fca-miR-323b-3p 2.66 2873
fca-miR-655-3p 2.62 850
fca-miR-3959-5p 2.54 0
fca-miR-758-3p 2.49 271
fca-miR-487b-5p 2.47 3083

Table 2 (continued)

2B

Known
microRNAs

HCM LV (n = 7). HCM LA
(n = 5)

UP log2FoldChange Predicted target genes, #

fca-miR-410-3p 2.41 604
fca-miR-411-3p 2.41 310
fca-miR-382-5p 2.38 218
fca-miR-323a-3p 2.35 488
fca-miR-411-5p 2.31 90 (mmu)
fca-miR-654-3p 2.14 3673
fca-miR-889-3p 2.13 4716
fca-miR-382-3p 2.1 271
fca-miR-432-5p 2.07 3902
fca-miR-299a-3p 2.06 90 (mmu)
fca-miR-134-5p 1.97 197
fca-miR-493-5p 1.96 796
fca-miR-127-3p 1.92 25
fca-miR-493-3p 1.86 170
fca-miR-543-3p 1.85 532 (mmu)
fca-miR-329-5p 1.73 4532
fca-miR-380-3p 1.59 4268
fca-miR-379-5p 1.58 124
fca-miR-127a-5p 1.58 0
fca-miR-499-5p 1.57 270 (mmu)
fca-miR-140-3p 1.53 0
fca-miR-140-5p 1.51 434
fca-miR-1-3p 1.47 896
fca-miR-206-3p 1.46 665 (mmu)
fca-miR-329-3p 1.41 359
fca-miR-193b-5p 1.39 4365
fca-miR-495-3p 1.36 870
fca-miR-370-3p 1.33 5022
fca-miR-652-5p 1.32 2413
fca-miR-365-3p 1.32 269 (mmu)
fca-miR-379-3p 1.3 310
fca-miR-376c-3p 1.25 270
fca-miR-652-3p 1.18 17
fca-miR-190a-5p 1.17 223
fca-miR-133a-5p 1.11 3353

DOWN
fca-miR-200a-3p −4.48 905
fca-miR-105-5p −4.47 5146
fca-miR-200a-5p −4.44 3225
fca-miR-885-3p −4.22 3522
fca-miR-200b-3p −4.07 1196
fca-miR-429-3p −4.06 966 (mmu)
fca-miR-31-3p −3.39 2387
fca-miR-615-3p −3.38 15
fca-miR-885-5p −3.14 3082
fca-miR-200b-5p −3.05 3225
fca-miR-31-5p −2.39 477
fca-miR-153-3p −2.32 886
fca-miR-204-5p −2.16 791
fca-miR-204-3p −2.16 5753
fca-miR-218-5p −2.07 1102
fca-miR-375-3p −1.81 222 (mmu)
fca-miR-184-3p −1.65 19 (mmu)
fca-miR-21-3p −1.49 3664
fca-miR-326-3p −1.46 335 (mmu)
fca-miR-2387-5p −1.37 0
fca-miR-152-5p −1.29 3817
fca-miR-129-5p −1.26 735
fca-miR-148a-5p −1.12 3866
fca-miR-98-3p −1.01 5244
fca-miR-21-5p −1 384
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3.5. RT-qPCR validation of microRNA sequencing data

To validate the microRNA sequencing data, RT-qPCR of selected
microRNA was carried out. Consistent with the sequencing results, the
microRNA concentrations were higher in the HCM LV and LA compared
the healthy LV and LA, respectively (Fig. 8A, B). The difference was signif-
icant for miR-185-5p and miR-208-3p in the HCM LV and for miR-132-3p
in the HCM LA (Fig. 8A, B).



Fig. 3. Top canonical pathways expressed by microRNA targets in the LV and the LA of the healthy (A) and HCM (B) heart.
Healthy LV: n=8; healthy LA: n=8; HCM LV: n=7; HCM LA: n=5. All targets in the analysis were filtered P-value <0.05 and their positive or negative expression was
identified based on their Z-score. Line colors indicate significantly increased expression (orange), significantly decreased expression (blue) and no direction (gray).
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4. Discussion

This study is the first to identify the constitutive miRNome of the feline
healthy LV and LA and the changes associated with HCM. Region-specific
microRNA expression patterns were found for the LV and the LA, which
were shown to be altered in HCM, revealing a distinct microRNA signature.
Low intra-variability in the HCM LV and LA groups indicated that these
microRNAs formed a consistent pattern.
Fig. 4. Network analysis shows major pathways, regulators and processes within the LV
Healthy LV: n = 8; healthy LA: n = 8; HCM LV: n = 7; HCM LA: n = 5. Node and line
expression (blue) and no direction (gray). For each function, z-scores were used to p
interactions (solid) and indirect interactions (dashed) between molecules. Node sh
transcriptional regulators or modulators (oval), cytokines (rectangle), as well as functio
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The overlapping microRNAs we detected in the regional comparison of
the healthy and HCM myocardium suggest an involvement of these
microRNAs in the maintenance of myocardial structure and function.
The determination of LV and LA specific microRNAs in HCM and
healthy cat hearts indicates that several microRNAs have chamber spe-
cific expression under physiological conditions and in HCM, similar to
what has been observed for humans [33–35]. Furthermore, overlapping
microRNAs were found in the HCM LV and the LA suggesting an
compared to the LA of the healthy (A) and the HCM heart (B).
colors indicate significantly increased expression (orange), significantly decreased
redict activation or inhibition. Lines and arrows between nodes represent direct
apes symbolize genes: enzymes (diamond), kinases (down pointing triangle),
ns (octagon) and complexes or groups (circle and hourglass).



Fig. 5. Differentially expressed microRNAs distinguish between healthy and HCM in the cat left ventricle (LV) and left atrium (LA).
Heatmaps of differentially expressed microRNAs and volcano plots distinguish the healthy and HCM samples in the LV (A and B respectively) and the LA (C and D
respectively) of the feline heart. Healthy LV: n = 8; healthy LA: n = 8; HCM LV: n = 7; HCM LA: n = 5. Normalized read counts were filtered with the parameters Log2
FC ±1 and FDR < 0.01.
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association with the disease process independent of the cardiac region.
There is a high similarity when comparing the feline LV and LA
miRNome from our study with microRNA profiles obtained from
human LV and LA [20,21]. However, for differentially expressed
microRNA, variations were detected between our results and human
HCM hearts. For the HCM LV, we identified 80 differentially expressed
microRNAs, which is more than the 13 differentially expressed
microRNAs observed for human LV HCM samples [20]. Of these, miR-
96, miR-383 showed the same expression pattern in the cat and
human LV, miR-204 and miR-708 were reduced in the cat and increased
in the human HCM LV, and miR-34 was enriched in the human HCM LV
and the cat HCM LA [20]. Recent bioinformatic studies looking into the
pathogenesis of human HCM and selecting hypertrophy or HCM associ-
ated microRNAs identified key microRNAs including the top downregu-
lated in the feline HCM heart, miR-122-5p. Additionally, miR-146-5p
and miR-21-5p were found to be enriched in the cat HCM LV and LA,
and the hub gene miR-144 was reduced in the HCM LV [21–23].
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Little overlap in differentially expressedmicroRNAswas observedwhen
we compared results from LA samples with human studies. This is consis-
tent with studies looking at human samples only and indicates the differ-
ences in diseases and presence of disease specific microRNA profiles
[33,35,40,41]. An overlap of our results with human atrial samples was
observed for miR-21-5p, miR-155, miR-378, miR-486, and miR-708
[33,35,40–42].

Interestingly, several of the top differentially regulated microRNAs in
the HCM heart, such as miR-3958 (top enriched in the HCM LV), miR-
chrD4_30107-3p (in the HCM LA), miR-3548 (enriched in the HCM LV
and LA) have not been reported for the heart so far. Little is known about
the top enriched microRNAs in the HCM LV, miR-382-5p and miR-487a-
5p, and we identified novel microRNAs (15 % of reads) that are not yet an-
notated for the feline heart. The dissimilarity to human microRNA profiles
might either indicate species or disease stage differences, or the detection of
relevant microRNAs that have not been considered previously and further
investigations into their role are required.



Table 3
Differentially expressed microRNAs upregulated (UP) and downregulated (DOWN)
in HCM compared to healthy in the left ventricle (LV; A) and the left atrium (LA; B).
In the LV and LA similar regulated microRNA are indicated in bold. Number of pre-
dicted mRNA targets for each microRNA from TargetScan based on human or mice
(specified by mmu) homologs. Parameters p-adj < 0.05 and log2FC ±1 were ap-
plied. Fca: Felis catus; Mmu:Mus musculus.

3A

Known
microRNAs

HCM LV (n = 7).
Healthy LV (n = 8)

UP log2FoldChange Predicted target genes, #

fca-miR-3958-5p 5.78 0
fca-miR-3958-3p 5.3 0
fca-miR-409-5p 4.68 136
fca-miR-382-5p 4.54 218
fca-miR-487a-5p 4.53 3083
fca-miR-377-5p 4.38 4588
fca-miR-758-3p 4.08 271
fca-miR-487b-5p 4.02 3083
fca-miR-656-3p 4.01 5020
fca-miR-410-3p 3.93 604
fca-miR-380-5p 3.85 1996
fca-miR-432-5p 3.8 3902
fca-miR-493-5p 3.77 796
fca-miR-3548-5p 3.67 0
fca-miR-3959-5p 3.67 0
fca-miR-381-3p 3.57 833
fca-miR-493-3p 3.54 170
fca-miR-382-3p 3.54 271
fca-miR-323b-3p 3.53 2873
fca-miR-323a-3p 3.48 488
fca-miR-487b-3p 3.48 16
fca-miR-381-5p 3.4 826
fca-miR-134-5p 3.38 197
fca-miR-543-3p 3.32 532 (mmu)
fca-miR-376c-5p 3.28 2618
fca-miR-655-3p 3.25 850
fca-miR-127a-5p 3.2 0
fca-miR-96-5p 3.15 1193
fca-miR-411-3p 3.1 310
fca-miR-654-3p 3.1 3673
fca-miR-370-5p 3.09 319 (seed sequence with miR-1193)
fca-miR-329-5p 3.04 4532
fca-miR-380-3p 3.03 4268
fca-miR-127-3p 2.98 25
fca-miR-299a-5p 2.97 186 (mmu)
fca-miR-889-3p 2.95 4716
fca-miR-889-5p 2.95 3782
fca-miR-379-5p 2.72 124
fca-miR-411-5p 2.63 90 (mmu)
fca-miR-433-3p 2.6 346
fca-miR-376a-5p 2.58 3220
fca-miR-370-3p 2.48 5022
fca-miR-337-3p 2.46 3310
fca-miR-329-3p 2.42 359
fca-miR-409-3p 2.42 316
fca-miR-299a-3p 2.41 90 (mmu)
fca-miR-485-5p 2.4 448
fca-miR-379-3p 2.34 310
fca-miR-182 2.24 1329 (5p-broadly conserved)
fca-miR-132-3p 2.15 474
fca-miR-132-5p 2.13 1246
fca-miR-383-5p 2.1 0
fca-miR-376c-3p 2.03 270
fca-miR-146b-5p 2.02 283
fca-miR-495-3p 2.02 870
fca-miR-21-3p 1.88 3664
fca-miR-183-5p 1.86 407 (mmu)
fca-miR-3959-3p 1.8 0
fca-miR-376a-2-5p 1.72 2485
fca-miR-21-5p 1.65 384
fca-miR-335-5p 1.65 289
fca-miR-487a-3p 1.58 174
fca-miR-185-5p 1.42 385
fca-miR-376a-3p 1.33 258
fca-miR-485-3p 1.26 446

Table 3 (continued)

3A

Known
microRNAs

HCM LV (n = 7).
Healthy LV (n = 8)

UP log2FoldChange Predicted target genes, #

fca-miR-140-3p 1.02 0

DOWN
fca-miR-122-5p −4.78 226
fca-miR-31-3p −2.28 2387
fca-miR-885-5p −2.18 3082
fca-miR-200a-3p −1.84 905
fca-miR-105-5p −1.82 5146
fca-miR-378-5p −1.46 0
fca-miR-139-5p −1.4 432
fca-miR-144-3p −1.34 1048
fca-miR-200b-3p −1.29 1196
fca-miR-1-1-5p −1.25 0
fca-miR-499-5p −1.23 270 (mmu)
fca-miR-218-5p −1.15 1102
fca-let-7f-3p −1.04 0
fca-miR-204-5p −1.03 791

3B

Known microRNAs HCM LA (n = 5).
Healthy LA (n = 8)

UP log2FoldChange Predicted target genes, #

fca-miR-208b-3p 6.62 211
fca-miR-506-3p 3.73 1325
fca-miR-chrD4_30107-3p 3.33 0
fca-miR-3548-5p 3.21 0
fca-miR-132-5p 2.79 1246
fca-miR-21-3p 2.7 3664
fca-miR-132-3p 2.56 474
fca-miR-21-5p 2.41 384
fca-miR-105-5p 2.22 5146
fca-miR-146b-5p 2.21 283
fca-miR-182 2.1 1329 (5p-broadly conserved)
fca-miR-34a-5p 2.08 754
fca-miR-96-5p 1.83 1193
fca-miR-184-3p 1.61 19 (mmu)
fca-miR-183-5p 1.58 407 (mmu)
fca-miR-153-3p 1.57 886
fca-miR-342-5p 1.41 4139
fca-miR-204-3p 1.39 5753
fca-miR-185-3p 1.38 5145
fca-miR-409-5p 1.33 136
fca-miR-185-5p 1.23 385
fca-miR-24-2-5p 1.2 1923

DOWN
fca-miR-122-5p −4.42 226
fca-miR-885-3p −3.41 3522
fca-miR-205-5p −3.39 593
fca-miR-885-5p −2.9 3082
fca-miR-708-3p −2.25 2978
fca-miR-708-5p −2.03 240
fca-miR-139-5p −1.86 432
fca-miR-378-5p −1.71 0
fca-miR-139-3p −1.7 3145
fca-miR-181c-3p −1.66 1675
fca-miR-206-3p −1.25 665 (mmu)
fca-miR-181d-5p −1.17 1371
fca-miR-486-3p −1.08 5264
fca-miR-486-5p −1.05 174
fca-miR-378-3p −1.04 0
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4.1. Constitutive microRNA expression and associated pathways and networks in
the feline LV and LA

To determine microRNAs that might be involved in myocardial homeo-
stasis, we identified microRNAs that showed a similar pattern in regional
comparison of the healthy and HCM heart. The top enriched microRNAs
in the healthy LV included miR-208b (top enriched in the healthy LV),



Fig. 6. Top canonical pathways expressed by microRNA targets in the HCM LV (A) and LA (B) compared to healthy heart.
Healthy LV: n=8; healthy LA: n=8; HCM LV: n=7; HCM LA: n=5. All targets in the analysis were filtered P-value <0.05 and their positive or negative expression was
identified based on their Z-score. Line colors indicate significantly increased expression (orange), significantly decreased expression (blue) and no direction (gray).
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miR-499-5p, miR-1-1-5p, andmiR-34a.MiR-208b,miR-499, andmiR-1 are
considered cardiac enriched microRNAs with miR-208b being preferen-
tially expressed in the LV [25,33,42–46]. Similarly, miR-34 is highly
expressed in mouse hearts [47,48]. These microRNAs are involved in
cardiomyocyte proliferation, differentiation and maintenance of the differ-
entiated stage ([25,26,33,42–48], Table 4A).

Enriched microRNAs in the healthy LV that overlapped with the HCM
LV were miR-140-5p, miR-190a-5p, miR-365-3p, miR-652-3p and miR-
652-5p. These microRNAs are activated in hypoxia induced injured cardio-
myocyte cell culture and suppress inflammatory markers; they are also
Fig. 7. Network analysis shows major pathways, regulators and processes differentially
Healthy LV: n = 8; healthy LA: n = 8; HCM LV: n = 7; HCM LA: n = 5. Node and line
expression (blue) and no direction (gray). For each function, z-scores were used to p
interactions (solid) and indirect interactions (dashed) between molecules. Node shapes s
(triangle), transcriptional regulators or modulators (oval), cytokines (rectangle), as well as
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foundwith cardiac hypertrophy, increased collagenmRNA and protein pro-
duction in mouse hearts ([49–53], Table 4A).

The top enriched microRNAs in the healthy LA were miR-885-3p and
-5p, miR-200a-5p, miR-200b-3p and -5p, miR-429-3p (all overlapping
with the HCMLA) [Table 4A].MiR-885was reported to improve cell viabil-
ity and reduced apoptotic rates [54]. Higher miR-885 concentrations re-
duced inflammatory cytokine production in a rat model [55]. MiR-429
belongs to themiR-200 family ([56], Table 4A). This miR family is involved
in tissue fibrosis [56], cardiomyocyte proliferation and survival ([57,58],
Table 4A). Considering the same expression pattern in the healthy and
affected in the HCM heart LV (A) and LA (B) compared to the healthy heart.
colors indicate significantly increased expression (orange), significantly decreased
redict activation or inhibition. Lines and arrows between nodes represent direct
ymbolize genes: enzymes (diamond), kinases (down pointing triangle), phosphatases
diseases (cross), functions (octagon) and complexes or groups (circle and hourglass).



Fig. 8.Verification ofmicroRNAs by RT-qPCR. (A) Expression of microRNAs in the healthy LV: n=5 and HCM LV: n=5. (B) Expression of microRNAs in healthy LA: n=5
and HCM LA: n=5. An unpaired t-test was used to compare groups. Mean± SEM values are indicated and the single expression values against reference gene RNAU6 have
been plotted.
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HCM hearts, these microRNAs with similar transcription activity in the
healthy and HCM cat heart might be involved in the maintenance of myo-
cardial structure and function.

To explore the biological functions of the microRNAs in the healthy
heart, predicted pathway targets and networks were identified using IPA
network analysis. Activated pathways in the healthy feline LV were cardiac
hypertrophy, RhoGDI signaling and dilated cardiomyopathy, which is con-
sistent with predicted pathways we had obtained from mRNA sequencing
[39] and is similar to what has been reported for human hearts. The acti-
vated SAV1 and STK3 are part of the HIPPO pathway, which is known to
be involved in cardiomyocyte proliferation and cardiac repair [59,60].
EFNA4 and EFNA5 belong to the family of tyrosine kinase receptors and
allow cell to cell communication, which activates signaling pathways that
affect the cellular cytoskeleton. Ephrin-Eph signaling has further been
shown to regulate inflammation, reorganizing the actin cytoskeleton
[61]. Interestingly, MyD88 (myeloid differentiation primary response 88)
is centrally placed in our network analyses and was more abundant in the
healthy LA in comparison to the healthy LV. Little is known about the
role of MyD88 in the heart; however, it is an intracellular adapter protein
that coordinates proinflammatory signaling [62]. MyD88 promotes inflam-
mation and repair following myocardial infarction, and IL1 and interferon-
gamma (IFNG), both activated in the LA compared to the LV, and in the
HCM heart, signal through MyD88 [62]. The activation of STK3, SAV1,
EFNA4 and EFNA5 signaling in the healthy LV and the central role and
11
activation of MyD88 in the healthy LA indicate chamber-specific processes
in myocardial homeostasis.

4.2. Region specific microRNA profiles and associated pathways and networks in
the HCM heart

To determine the microRNA profiles specific for the LV and the LA in
HCM hearts, we identified the microRNAs that are present only in the
HCMLV and theHCMLA,when comparedwith the LV and LA fromhealthy
cat hearts respectively. Most abundantly expressed LV microRNAs were
miR-3958-3p and -5p, miR-382-5p and miR-487a-5p. MiR-3958-3p and
miR-3958-5p have not been reported in the heart so far and little is
known about miR-382-5p and miR-487a-5p ([63–65], Table 4B). Being
the top upregulated in the HCM LV indicates their relevance and further in-
vestigations into the role of these microRNAs is required. MiR-31-3p and
miR-200a-3p were found to be the top downregulated LV specific
microRNAs, and both have been reported to be cardioprotective when re-
duced in expression [66,67].

Top enriched microRNAs in the HCM LA were miR-208b-3p, miR-506-
3p and miR-chrD4_30107-3p. MiR-205-5p, miR-708-3p and miR-708-5p
were reduced compared to the healthy LA [Table 4B]. Interestingly, miR-
208b is a microRNA that is preferentially expressed in the healthy LV in
both cats and humans [33]. The upregulation in the HCM LA is most likely
a response to cardiac stresses such as pressure overload [25]. A recent study



Table 4
Source, roles, function and according references of selected microRNAs.

4A. Regional differentially expressed microRNAs comparing the left ventricle (LV) with the corresponding left atrium (LA)

Healthy LV specific enriched microRNA compared to the healthy LA
MicroRNA Samples Roles/function References

MiR-208b-3p
(Also top enriched in HCM LA)

Cardiac enriched microRNAs, LV preferential

Cardiogenesis
Cardiac repair and regeneration
Increase in response to cardiac stress Association with cardiac metabolism
Enriched in hypoxia exposed cardiomyocyte cell line
Inhibition was associated with reduced apoptosis, increased cell viability
Circulating marker for myocardial hypertrophy

25,26,33

miR-1-1-5p Cardiac enriched microRNAs
Cardiogenesis
Cardiac repair and regeneration

42–45

miR-34 Highly expressed in mouse hearts Key regulator of the heart’s repair and regeneration capacity 47,48

Overlapping enriched microRNA in the LV (healthy and hypertrophic cardiomyopathy [HCM]) compared to the corresponding LA
MicroRNA Samples Roles/function References

fca-miR-140-5p
Hypoxia injured cardiomyocyte cell culture
mouse hearts

Associated with cell injury and apoptosis Cardiac hypertrophy, increased
collagen mRNA and protein production

52

fca-miR-190a-5p Cardiomyocyte injury
Inhibit profibrotic genes, hypoxia induced cardiomyocyte injury
Suppresses inflammatory markers

53

fca-miR-365-3p Cardiomyocytes (in vitro, in vivo) – rodent models
Upregulated in hypertrophic cardiomyocytes
Pro-hypertrophic

50,51

fca-miR-499-5p Cardiomyocytes (in vitro, in vivo – mouse hearts)
Reduces apoptosis, inhibits profibrotic genes
Cardiomyocyte hypertrophy
Suppresses inflammatory marker

25,42–44,46

fca-miR-652 Myocardium (mouse model)
Increased in diseased heart
Silencing reduces cardiac fibrosis, apoptosis, improves cardiac function

49

Overlapping enriched microRNA in the LA (HCM and healthy) compared to the corresponding LV
MicroRNA Samples Roles/function References

fca-miR-148a-5p
Mouse model of cardiac pressure overload
MI rodent model

Increased in concentric hypertrophy, reduced in eccentric cardiac remodeling
Increase reduces myocardial apoptosis

111

fca-miR-153-3p Ischemia/reperfusion mouse model Inhibition reduced myocardial inflammation and oxidative stress 112

miR-200
family

fca-miR-200a-3p Mouse model cardiomyocytes Increased in MI, increases cardiomyocyte apoptosis 67,110
fca-miR-200a-5p Cell culture, Endothelial cells Tissue fibrosis, cardiomyocyte proliferation and fibrosis 56
fca-miR-200b-3p

Cell culture, Endothelial cells
Increase caused endothelial damage, suppressed angiogenic response
Reduction of miR-200b results in upregulation of GATA-4: supports cell growth
differentiation, survival

56,107-109
fca-miR-200b-5p

fca-miR-429-3p
MI Mouse model cardiomyocytes
Hypoxia cardiomyocyte cell culture (rodent, human)

Reduced in MI
Reduction provided cytoprotective effects against injury, reduces apoptosis

57,58

fca-miR-218-5p Myocardial fibroblast (MI mouse model)
Decreased in myocardial fibroblasts in MI
Increase inhibits myocardial fibrosis

106

fca-miR-885
Hypoxia cardiomyocyte cell culture
Rodent hearts

Reduced in injured cardiomyocytes
Increase improved cell viability, reduced apoptotic rates
Reduced inflammatory cytokine production

54,55

fca-miR-2387-5p Unknown

4B. Differentially expressed microRNA in HCM compared to healthy

HCM LV specific microRNA compared to the healthy LV
Enriched microRNA Samples Roles/function References

fca-miR-382-5p
MI mouse model
Hypoxia cardiomyocyte cell culture

Increased in MI hearts
Inhibition reduces apoptosis

63

fca-miR-487a-5p
Human HCM hearts
Endothelial cell culture

Downregulated in human HCM
Regulates fibroblast growth
Induced by disturbed flow
Promotes endothelial proliferation

64,65

fca-miR-3958-5p Unknown
fca-miR-3958-3p Unknown

Reduced microRNA Samples Roles/function References

fca-miR-31-3p MI rodent models
Upregulated in hypoxia, oxidative stress – promotes
remodeling and cardiac dysfunction
Reduction protects cardiac injury

67,105

fca-miR-105-5p MI rodent models

Downregulated in rodent models of myocardial infarction
and in cultured cardiomyocyte
Increase was associated with improved cell viability and
suppression of cell death pathways

104

HCM LA specific microRNA compared to the healthy LA
Enriched microRNA Samples Roles/function References
fca-miR-105-5p See above
fca-miR-208b-3p See above
fca-miR-506-3p Cardiac ischemia/reperfusion mouse model Reduced in ischemia

Increase has positive effect on myocardial injury
103

fca-miR-chrD4_30107-3p Unknown

Reduced microRNA Samples Roles/function References
fca-miR-205-5p Cardiac ischemia/reperfusion mouse model Increased in ischemia: reduced oxidative stress and apoptosis 102
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Table 4 (continued)

4B. Differentially expressed microRNA in HCM compared to healthy

fca-miR-708
Healthy and HCM LA and LV
Hypoxia exposed cardiomyocyte cell line
(H9c2)

Increased in HCM LV
overexpression associated with reduced apoptosis and increased cell viability

20,35,101

Overlapping LV and LA HCM microRNA compared to healthy LV and LA
Enriched microRNA Samples Roles/function References
fca-miR-21 Heart (human)

Cardiac fibroblasts
Key microRNA hypertrophy pathogenesis
Human HCM with fibrosis and end stage heart failure
Enriched in cardiac fibroblasts
Contributes to cardiac hypertrophy in mouse models human HCM with fibrosis and
end stage heart failure

21,24,26,43,87,88

fca-miR-132 Cardiomyocytes
Human hypertrophic heart disease

Potential therapeutic option
Drives pathological cardiomyocyte growth, disrupt autophagy, impairs calcium
handling and contractility

75–77

fca-miR-146b-5p Heart (canine, rodent)
Fibroblasts

Promotes fibrosis
Pro-proliferative effects on vascular smooth muscle cells
Associated with increased concentrations of proinflammatory cytokines

45,89-91

Mir 183
cluster

fca-miR-96-5p Human LV
Endothelial cells (human, murine)

Enriched in human HCM LV
Enriched in endothelial cells
Angiogenic potential of endothelial cells

20,78

fca-miR-183-5p Endothelial cells (human, murine) Aortic banding mouse model down-regulated, overexpression: anti-hypertrophic effect
Enriched in endothelial cells

78,100

fca-miR-182 Endothelial cells (human, murine)
Angiogenesis-induced cardiac hypertrophy
mouse model

Enriched in human and murine endothelial cells Upregulated during the
development of hypertrophy
Facilitate polarization of macrophages from M1 to M2 in an inflammatory

79,98

fca-miR-185-5p LV samples (human, mouse)
Cardiac fibroblasts (mouse model)
Cardiomyocyte cell culture

Enriched with myocardial fibrosis (LV)
Increased expression stimulated collagen deposition
Aortic banding mouse model, miR-185 down-regulated, overexpression:
anti-hypertrophic effects

80,99,100

fca-miR-409-5p Hypoxia cardiomyocyte cell line Reduced in hypoxia
Mimics inhibited inflammatory response, increased cell viability, reduced apoptosis

96

fca-miR-3548-5p Pancreatic tumor cells
liver rats
not reported in the heart

Influence on lipid metabolism in liver. 97

Reduced microRNA Samples Roles/function References
fca-miR-122-5p Cardiac disease rat models

human HCM
Involvement in myocardial hypertrophy, fibrosis and inflammation.
Overexpression: pro-hypertrophy
Inhibition: anti-inflammatory and anti-fibrotic effects
Potential hub-miRNA

23,92,93

fca-miR-139-5p Myocardium of HCM patients
Cultured neonatal rat cardiomyocytes

Downregulated HCM hearts. Increase causes increase in cell surface area
(cardiomyocytes culture)
Overexpression reduced inflammatory cytokines

84

fca-miR-378-3p Human cardiomyocytes Cardiac enriched
Increased in CHF
Reduced in pressure overload mouse models and in human cardiomyocyte cell cultures
Mimics reduce myocardial hypertrophy and inhibited cardiac fibroblast proliferation
and collagen production.
Regulates cardiac miRNA and mRNA, involved in metabolic remodeling

35,40,44,83

fca-miR-885-5p See above
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identified miR-208b in blood samples from patients with HCM, indicating
its potential use as circulating marker for myocardial hypertrophy [68].
Similar to our results, miR-708 was found in the healthy and HCM human
LV and LA, however not as a differentially expressed microRNA [20,35].
Of note, the third highest microRNA in the HCM LA, miR-chrD4_30107-
3p, has not been reported in the heart and its role is entirely unknown.

To investigate the biological function of the microRNAs in the HCM
heart, IPA analysis was performed. The predicted network analysis identi-
fied the inflammatory genes TNFA and IL1A at central positions in the
HCM LV and LA. For the HCM LV, the COX2 pathway was centrally placed.
For the HCM LA, inflammatory and fibrotic pathways were together with
IL1B, IL6, and endothelin-1 in central positions. COX2 is induced in response
to stress and has cardioprotective effects in late phases of ischemia and en-
ables chronic healing [69–71]. Interestingly, myocardin-related transcription
factor (MRTF)-A and -B (a transcription factor involved in cardiac structure
and fibrosis) were shown to be activated in the HCM LA.MRTFs are essential
for development as well as the maintenance of cardiac structure and function
[72–74]. In cardiac disease, MRTF-A is involved in promoting fibrosis by
transducing biomechanical and humoral signals, stimulating the transforma-
tion of cardiac fibroblasts to myofibroblasts, and activating a fibrotic gene
program [72,73]. These results further support the involvement of
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inflammation in the LV and LA remodeling process in feline HCM, an activa-
tion of cardioprotective pathways in the HCM LV, and the role of fibrosis and
structural adjustments in the HCM LA of cats [36,38,39].

4.3. Region independent HCM associated microRNA with similar enrichment
pattern in the HCM LV and LA

To detect which microRNAs were associated with HCM independent of
cardiac region, we looked for microRNAs that were simultaneously
enriched in the HCM LV and LA. We found 11 microRNAs upregulated in
both the HCM LV and LA: miR-21-3p, miR-21-5p, miR-132-3p, miR-132-
5p, miR-146b-5p, miR-96-5p, miR-182, miR-183-5p, miR-185-5p, miR-
409-5p, miR-3548-5p; 4 microRNAs were downregulated in the HCM LV
and LA:miR-122-5p,miR-885-5p,miR-378-5p andmiR-139-5p [Table 4B].

Of these, miR-21-5p, miR-122-5p, miR-146b-5p have been reported as
potentially relevant key microRNAs for the HCM pathogenesis [21,23].
As observed for other species, our results suggest that these microRNAs
could play role in myocardial fibrosis and inflammation in feline HCM
[Table 4B]. MiR-96 and miR-409-5p, the third highest microRNA in the
HCM LV, were also found in the human HCM LV [20]. MiR-3548, has not
been reported in the heart so far.
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The enrichment of miR-132 is of particular interest for its potential as a
future therapeutic option. Studies investigatingmiR-132 inhibition as treat-
ment for heart failure and prevention of heart failure progression in human
hypertrophic heart disease are ongoing [75–77]. Further enriched in the
HCM LV and LA were the members of the miR-183 cluster: miR-96, miR-
182, miR-183-5p, and miR-185-5p [Table 4B]. The common candidate
pathways for miR-96 and miR-183 are the HIPPO pathway, the PI3K/
AKT/FOXO signaling pathway, and the regulation of the actin cytoskeleton
[78]. The HIPPO, PI3K/AKT and MRTF-A signaling pathways were acti-
vated in the HCM LA, similar to what has been observed in human LA sam-
ples with atrial fibrillation [39]. MiR-182 was reported to facilitate
polarization of macrophages from M1 to M2 in an inflammatory environ-
ment [79], and miR-185 was found to be enriched in LV samples from
humans withmyocardial fibrosis [80]. The enrichment of these microRNAs
in the feline HCMmyocardium indicates their potential role in cardiac hy-
pertrophy, fibrosis, angiogenesis and macrophage polarization, which was
further supported by the results obtained from the network analysis. These
findings are further consistent with the increase of macrophages and fibro-
sis, attempts of angiogenesis and endothelial nitric oxide synthase tran-
scription in the feline HCM LV we observed in previous studies [39,81,82].

The top downregulated microRNAs for the HCM LV and LA were miR-
122-5p and miR-885-5p; miR-378-5p and miR-139-5p were also downreg-
ulated in both the HCM LV and LA [Table 4B]. The reduction of the LA
enriched miR-885 in both the HCM LV and LA, might be consistent with
disease associated hypoxia [54,55].MiR-378, a cardiac enrichedmicroRNA
[83], and miR-139-5p were found to be downregulated in the myocardium
of HCM patients ([84], Table 4B). The reduction of these microRNAs was
consistent with the pro-fibrotic, pro-hypertrophic and inflammatory envi-
ronment indicated by the pathway analysis, network analysis and our pre-
vious findings in the feline HCM heart [36,38,39,81,82].

Limitations of this study include the age difference between control cats
and cats with HCM. The influence of age on cardiomyocyte maturation and
cardiac remodeling is well known, and differences between neonatal and
adult mouse cardiac microRNA signatures have been reported
[47,78,85,86]. Therefore, some results might be caused by age and not
HCM. However, including a young homogenous control group allowed
the identification of the constitutive microRNA profile in the healthy cat
heart. To obtain directly applicable information, we study pet cats rather
than animal models. For ethical reasons, healthy adult cats are not eutha-
nized. Euthanasia of adult cats is carried out for medical reasons such as
progressed systemic diseases that might influence myocardial microRNA
profiles and would preclude the differentiation frommicroRNA profiles as-
sociated withHCM [36]. Echocardiography of cats with HCMwas obtained
at different time points prior to euthanasia. These data do not reflect the
stage of heart disease at the time point of death and were therefore not in-
cluded into the study. Hearts from the young control cats were donated and
echocardiography was not part of their assessment, although no cardiac ab-
normalitieswere observed on gross and histopathological examination. The
sample size was small; however, it was sufficient for the sequencing analy-
sis and the statistical power was increased by the inclusion of paired
(matched) tissue samples from the 8 healthy control cats and 3 individual
HCM hearts. Furthermore, the cats with HCM had advanced disease, and
some of the microRNAs identified might be associated with heart failure
and not primarily HCM [44,94]. However, as only cats with HCMwere in-
cluded in the study, the results obtained will still be specific for HCM.

5. Conclusions

Our study identifiedmicroRNAs likely involved in cardiac homeostasis,
which included well known cardiac enriched microRNAs. Additionally, we
distinguished region-specific microRNAs and microRNAs associated with
the disease. Interestingly, several of the top enriched microRNAs: miR-
3958, miR-382-5p, miR-487a-5p (top enriched in the HCM LV), miR-
chrD4_30107-3p (in the HCM LA), miR-3548 (enriched in the HCM LV
and LA) have either not been reported in the heart or only little is known.
Similarly, the enriched miR-21, miR-146b, and reduced miR-122-5p have
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recently been suggested as key microRNAs for the HCM pathogenesis. Fur-
ther investigations into the relevance of the unknown and potential hub
microRNAs might be of interest. MiR-132, enriched in the HCM LV and
LA, could provide future therapeutic approaches. MiR-208b, top enriched
in the HCM LA, might be of interest as potential circulating marker for
HCM associated changes in the LA.

The microRNA profiles observed in the present study support our previ-
ous findings that indicate a central role for ischemia and microvascular al-
terations in the feline HCM disease process [81,82]. We also observed the
involvement of inflammation and growth pathways in the LV and LA,fibro-
sis and structural adjustments in the LA, and the activation of cardioprotec-
tive pathways in the LV [39]. Our study that addresses naturally occurring
HCM is of particular interest, as most information about microRNAs in car-
diac disease is obtained frommousemodels and cell culture, which are both
limited in applicability for the naturally occurring disease [95]. The results
we obtained are directly applicable to cats. Additionally, the similarity of
the feline and human form of HCM indicates the translational relevance
of our research to human HCM.
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