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Supplementary Note: Deep Learning-based Multiple
Phenotype Imputation on Biobank-scale Data Increases

Genetic Discoveries

S1 Related Work

When a subset of features are missing consistently, the missing values can be predicted
using the remaining observed features using standard supervised learning. In practice,
patterns of missingness can be complex. Multivariate imputation by chained equations
(MICE) [1], which aims to repeatedly fit a conditional distribution for each feature given the
other and using this distribution to impute missing values, has emerged as a principled
framework to dealing with missing data. Several variants of this approach, based on how
the conditional distributions are modeled, have been developed and methods which
leverage random forests within MICE such as MissForest [2] and MICE-Forest [3] are widely
used. These approaches have the advantage of being able to handle mixed data types.
K-Nearest Neighbors [4] is also a prevalent approach for imputation of continuous data
(originally introduced to impute gene expression data). This approach attempts to impute a
missing phenotype based on K “nearest” phenotypes (determined by computing a distance
on the observed phenotypes). The accuracy of this approach depends on the choice of K
and appropriate choice of a measure of distance across phenotypes [5].

Approaches such as the Multivariate Normal Model [6], MissGLasso [7], MissPALasso [8],
and TRCMA [9] aim to estimate the parameters of the distribution of the data, in some cases
with additional regularization. MissGLImp and MissPALasso aim to learn a sparse
inverse-covariance matrix underlying the partially observed phenotypes using a EM-style
algorithm while TRCMA aims to fit a matrix-normal model to the matrix of phenotypes over
individuals (with some entries missing) where the covariance matrices underlying the
matrix normal model are regularized. SoftImpute [10] has become one of the most
prevalent imputation methods due to its scalability and flexibility [11,12]. The method
builds upon work in matrix completion, including SVD-based imputation [13] and
HardImpute [14]. It assumes that the latent phenotype matrix has low-rank that it attempts
to estimate by searching for a matrix that is close to the observed entries of the phenotype
matrix while also having an approximately low rank (as quantified by its nuclear norm).

In the context of genetic studies, PHENIX [15] models the matrix of phenotypes observed
across individuals (with some entries missing) as arising from a matrix-normal
distribution. This elegant approach accounts for the genetic relatedness (that can induce
correlations for a given phenotype measured across individuals) and pleiotropy (that can
induce correlations across phenotypes measured in the same individual). The parameters
of the model are estimated using a variational Bayes algorithm which also provides an
approximate posterior distribution over the missing phenotypes. While an elegant model, it
is challenging to scale PHENIX to large numbers of individuals and phenotypes (for



example, this would require eigendecomposition of the kinship or genetic relatedness
matrix). Further, the model underlying PHENIX is designed for normally-distributed
phenotypes (the method was shown to be less accurate on non-normally distributed
phenotypes though it remained the most accurate compared to other methods) [15].

PhenIMP [16] considers the setting where phenotypes that are closely related to a
phenotype of interest have been collected in large samples. PhenIMP models the joint
distribution of the phenotype of interest and related phenotypes in each individual as
arising independently from a zero-mean multivariate normal distribution. The covariance
matrix of the distribution over the phenotypes is estimated from a dataset where all
phenotypes are measured which can then be used to impute the phenotype of interest in
datasets where only the related phenotypes are measured. PhenIMP requires access to a
complete dataset on which the phenotype of interest and related phenotypes are measured
and is also designed for normally distributed phenotypes.

Recent advancements in deep-learning [17] have given rise to deep generative models
which are capable of learning high-dimensional, multi-modal distributions. Notably,
Variational Auto-Encoders (VAE) offer one framework of using Deep Neural Nets (DNN) to
build a probabilistic model [18]. Variants of VAE have been proposed for the imputation
problem [19] though the proposed approach assumes the presence of samples with
complete observations to learn the model parameters. HI-VAE [20] defines a
comprehensive deep probabilistic model which accounts for missingness in observations,
as generated from a mixture distribution, and natively supports various heterogeneous data
formats (continuous, binary, categorical, ordinal). The flexibility of the model makes it one
of the most suitable deep-learning methods in the context of medical data which may
consist of all the noted attributes. In addition to VAEs, Generative Adversarial Networks
(GAN) [21] offer an alternative approach to generative modeling using a deep
generator-discriminator paired architecture. GAIN [22] extends GANs to the imputation
problem and has been shown to obtain improved accuracy over MICE and MissForest
[1,2,23]. However HI-VAE has been shown to be favorable in comparison to GAIN under
varying datasets [20] and the lack of consistency in the convergence of GANs has been one
barrier to their broader use [24].

Among deep-learning methods, Auto Encoders (AE) have remained a competitive approach
for imputation. The method is based on discriminative training of deep encoder-decoder
neural nets with a focus on reconstructing perturbed or missing values. Several works have
used AEs for imputing medical records. The earlier works, however, relied on mostly
complete datasets with high proportion of observed values, such that underlying
missingness was not a consideration for the methods, and their utility was mostly
demonstrated for synthetically created levels of missing data. Beaulieu-Jones et al. [25]
demonstrated that medical records relating to ALS [26] could be imputed with higher
accuracy using AE than several non deep-learning methods. However, the work was defined
specifically for one data format (binary labels), and evaluated on a synthetic dataset of
missing values generated from individuals. DeepImpute [27] similarly demonstrated2000
the applicability of AEs in on single-cell RNA-seq data where completely observed samples
were available, evaluating on incomplete datasets which were simulated.



Phung et al. [12] proposed a denoising auto-encoder [28,29] where Gaussian noise was
dynamically added to the data, successfully improving imputation for infant mortality
records. DeepPatient [30] leveraged stacked DAEs under uniform masking noise to fit
medical records. While not explicitly defined for imputation, this work demonstrated that
the latent representations learned by DAEs were predictive of various diseases.

Novel deep neural-net architectures are continually developed such as attention-based
[31], graph-based [32], or causally regularized [33] methods, but several aspects of
AutoEncoders, the effectiveness of denoising, and their extension to highly missing, massive
datasets for real-world impact have yet to be explored. Our work emphasizes the strong
performance and reliability of DAEs, and we arrive at an imputing DAE which is favorable to
many conventional and deep-learning approaches which generalizes to the types of
missingness found in biobank-scale data.

S2 Hyperparameter Tuning and Fitting

A single Quadro RTX 8000 was used to accelerate learning for HI-VAE, GAIN, and
AutoComplete which were implemented in PyTorch or Tensorflow enabling GPU usage.
SoftImpute and K-Nearest Neighbors were fitted on a workstation equipped with the AMD
EPYC 7501 32-Core 3GHz Processor and up to 1024 GB of RAM.

Hyperparameter tuning was performed for all methods using the same predetermined
training split of each dataset for all methods. In Supplementary Table 3, the results of the
hyperparameter search for each method and the final choices are outlined. For the deep
learning methods (AutoComplete, HI-VAE, and GAIN), 80% of the samples were used to
learn the parameters for fixed choices of hyperparameters and the remaining 20% was
used to evaluate the given hyperparameter choice. For each method, we focused our tuning
efforts on hyperparameters that lead to the biggest change in validation accuracy while
leaving all other hyperparameters fixed. The final hyperparameter choice based on the
tuning results were determined by imputation accuracy (r2) within the validation set.

AutoComplete: We tuned the percentage of samples which received copy-masking during
training. Tuning the learning rate or the batch size did not lead to notable differences in the
validation accuracy. The final set of hyperparameters chosen were { learning_rate=0.1,
copy_mask=80%, batch_size=2048, max_epochs=500 }.

HI-VAE: We tuned the latent dimension size (z) from 2, 8, 16 and the dimension of the MLP
assigned to each phenotype (y) from 1, 5, 10. The number of mixtures was fixed to 1 for all
experiments.The largest possible batch size was chosen such that it could be handled by the
GPU. Other than the number of epochs, no other hyperparameters were modifiable using
the HI-VAE package. The final set of hyperparameters chosen were { y=5, z=16,
batch_size=4096, max_epochs=100 }.

GAIN: We tuned the Hint fraction in the range of 0.1, 0.5, 0.9 which weights the amount the
discriminator penalizes missing values imputed by the generator and the Alpha multiplier
which weights the reconstruction loss in the objective relative to the discriminative loss in



the range of 0.001, 0.1, 1, 10, 20. Other than the number of epochs and batch size, no other
hyperparameters were modifiable using the GAIN package. We did not observe notable
changes to the model fit when adjusting batch size. The final set of hyperparameters chosen
were { hint=0.9 , alpha=10, batch_size=4096, max_epochs=2000 }.

To tune SoftImpute, we followed a cross validation procedure as used in [34] where the
nuclear norm penalty Lambda was tuned in a range starting with its largest possible value
given the data (approximately 1289, as returned by the `lambda0` function in the
SoftImpute package) and decreasing it over 20 intervals down to 1e-2 in log scale. The
mean-squared error was used to assess the accuracy of the reconstructed training matrix. A
Lambda value of 108 was chosen based on the reconstruction metric.

Due to the difficulty in K-Nearest Neighbors and MissForest scaling to the size of the
Cardiometabolic and Psychiatric Disorders Dataset, we did not perform hyperparameter
tuning for these methods (which would require repeated fits and evaluations). Reasonable
values for hyperparameters were chosen instead. For K-Nearest Neighbors, the number of
neighbors K was set to 10. For MissForest, the number of trees per forest was set to 10 and
up to 10 epochs were run.

When fitting AutoComplete for tuning, simulations, and the final imputation, the network
weights were checkpointed based on a validation split (20%), where the criterion was an
improvement in the objective at every epoch. After training, the checkpointed weights for
the best validation loss attained were loaded for imputation and used for all downstream
tasks. We allowed training to continue for 500 epochs, while the best weights were saved
before the maximum number of epochs were reached. In Supplementary Figure 2, we
visualize the loss history recorded for the training regime which produced the final
imputation networks for the Cardiometabolic and the Psychiatric Disorders dataset.

We did not observe significant amounts of overfitting when training AutoComplete that
would alter our findings. For the Psychiatric Disorders dataset, the training, validation, and
test losses at the last checkpoint were 0.326, 0.329, and 0.327. For the Cardiometabolic
dataset, the training, validation, and test losses at the last checkpoint were 0.0573, 0.0575,
and 0.0580.

S3 Evaluation of runtime

In Supplementary Figure 1, we illustrate the effect of training time to imputation accuracy
for the main methods in our comparison. All methods were run to provide only one
imputed matrix, as opposed to performing multiple imputation. We note that multiple
imputations can generally be performed independently of one another, allowing
parallelization which would roughly result in similar running times as a single run given
sufficient compute resources. Specifically for AutoComplete, we note that our software
package can generate a list of commands which may be run independently and in parallel to
obtain multiple imputations.



We visualized the average r2 accuracy obtained according to the same amount of time (in
minutes) elapsed during the model training procedure across comparable methods with a
maximum allocation of 30 minutes for each method. For all methods which iteratively
optimize their parameters, we imputed the data matrix using the partially optimized
parameters at the end of each epoch and measured the phenotype-wise average r2. We
visualized the r2 accuracies as a measure of imputation progress over the same amount of
time budgeted for the compared methods. The accuracies were measured on the test split
of the Psychiatric Disorders dataset (337,126 individuals and 372 phenotypes), where each
method imputed a set of observed values set to be missing (1% simulated missingness).
The choice of hyperparameters for all methods were fixed to the values carried over from
the tuning performed in the 1% simulation setting. While each of KNN (using K=10),
MissForest (1 tree per forest), and MICE required more than the maximum allotted time, we
nevertheless reported the accuracy of each of these methods. KNN algorithm required 12
hours to impute this dataset. Similarly, we also reported the imputation accuracy of
MissForest after 1 iteration (3 ½ hours) and MICE after 3 iterations (6 hours) to provide
further context on their scalability.

Although hyperparameters and alternative initializations can lead to variation in total
runtime of any method including AutoComplete, we observed that AutoComplete remains
well-suited for practical use. SoftImpute, HI-VAE, and GAIN terminated before the 30
minutes allotted while attaining r2 accuracies which were lower than AutoComplete at the
corresponding point in time. While the termination criterion may be adjusted, it appeared
unlikely that the compared methods would continue to improve r2 accuracy. AutoComplete
attained the highest r2 accuracy after 30 minutes and continued to improve r2 accuracy up
to approximately ~1 hour where the weights were last checkpointed.

A single Quadro RTX 8000 was used to accelerate the training for HI-VAE, GAIN, and
AutoComplete which were implemented in PyTorch or Tensorflow enabling GPU usage.
SoftImpute and K-Nearest Neighbors were fitted on a workstation equipped with the AMD
EPYC 7501 32-Core 3GHz Processor and up to 1024 GB of RAM.

S4 Change in genomic analysis after accounting for uncertainty

We implemented a bootstrapping procedure to produce 10 multiple imputations in order to
account for imputation uncertainty in downstream genomic analysis. This bootstrapping
procedure accounts for the variation in the imputation model due to variation in the
training samples (reflected in differences in the bootstrap samples), missingness patterns
encountered (since copy-masking is applied independently in each bootstrapped sample),
and to dependence on random parameter initialization. To obtain GWAS SNP effect
estimates that account for imputation uncertainty for each of the three phenotypes (Direct
Bilirubin, LifetimeMDD, and Cannabis Ever Taken), the GWAS effect sizes across multiple
imputed datasets were combined following Rubin’s rule.



As expected, this process led to an increase in the standard errors (SEs) for the effect sizes
across the SNPs (relative to analyzing a single imputation). The SEs for the effect sizes
across all SNPs increased (mean and standard deviations of the standard errors): 0.00732
(0.00193) to 0.00733 (0.00193), 0.00364 (0.00096) to 0.00367 (0.00097), and 0.00170
(0.00045) to 0.00373 (0.00099) for the three phenotypes respectively. Among significantly
associated loci, SEs increased: 0.00802 (0.00216) to 0.00807 (0.00217), 0.00320 (0.00076)
to 0.00323 (0.00077), and 0.00152 (0.00026) to 0.00334 (0.00059) respectively.

S5 Tests in Smaller Scales

We organized a smaller subset of 86 phenotypes related to blood lab measurements within
the cardiometabolic dataset called the Blood Labs dataset to test a wider variety of
methods which could not scale to the size of the two main datasets to either perform
hyperparameter tuning effectively or run inference until convergence (K-Nearest
Neighbors, MissForest). This dataset contained 68 continuous and 18 binary phenotypes,
with the phenotype with highest missingness being 91% missing. We randomly selected
100,000 individuals (out of a total of 291,273) as a smaller subset of which 50,000
individuals were used to train or tune the imputation methods and testing was performed
on the remaining 50,000. In this setting, we could perform hyperparameter search and
fitting to the fullest extent for three widely applied methods, KNN [4], MissForest [2], and
MICE [1] in reasonable time. Based on a further validation split (20% of the training split),
the optimal hyperparameters chosen for KNN was k=60 nearest neighbors and up to 80
trees for MissForest. MissForest was configured to allow fitting up to 100 maximum
iterations. We use a random forest-based implementation of MICE [1] which performed
hyperparameter tuning internally, and was configured to fit for 10 iterations and use the
point estimate of 5 multiple imputations as the final imputed values.

On this small-scale dataset, the accuracy of each of the methods declined with increasing
missingness as seen on the main datasets (Supplementary Figure 4.a). Given reduced
sample sizes, the confidence intervals were observed to be larger than results from the two
main datasets. Nevertheless, AutoComplete and SoftImpute appeared as the top two most
accurate methods. While the methods were comparable for the 1% simulated setting
(AutoComplete improved 1 phenotype with significance and none decreased with
significance), AutoComplete was found to improve a notable number of phenotypes for
greater simulated missingness (13 improved and 4 decreased with significance for 20%,
Supplementary Figure 4.b).

On average across all simulations (1%~50%) AutoComplete was observed to be favorable
in comparison to MissForest, increasing r2 from 0.180 (0.003) to 0.202 (0.003) was
observed (+12%), and in comparison to KNN, increasing r2 from 0.159 (0.004) to to 0.202
(0.003) (+27%). We also evaluated the accuracy of AutoComplete which could be trained on
all training data (N=151,273) before imputing the smaller setting (“AutoComplete (full)”) .



This approach was observed to obtain the highest accuracy among the approaches
compared.

S6 Contribution of copy-masking

We performed ablation tests to determine that copy-masking is a key factor in improving

imputation accuracy for AutoComplete. We measured average across phenotypes from𝑟2

the psychiatric disorders dataset with increasing percentages of simulated missingness (
missing). We compared AutoComplete with training the denoising autoencoder1% ∼ 50%

with uniform random masking of observed values in increasing amounts of 10% ∼ 90%
(Supplementary Figure 5). For the simulated setting of 1% missingness, the highest average

obtained through uniform masking was 0.128 in comparison to 0.143 with𝑟2

AutoComplete ( improvement) with similar trends in tests with increasing missingness12%
( improvement average across simulations). We therefore conclude that AutoComplete19%
benefits substantially from being trained on realistic missingness patterns that aid the
denoising behavior of the deep learning model.

Additionally, we tested the effect of not using copy-masking in terms of the evaluation of the
imputation methods, allowing the imputation methods to leverage any trivial correlations
that exist between phenotypes but do not reflect the observed patterns of missingness. To
test this setting, we simulated missingness uniformly and independently across phenotypes
as a percentage of the total observed values from 1% to 50%, disregarding any underlying
masking patterns observed in the data. We observe that copy-masking led to a substantially
higher imputation accuracy for the psychiatric disorders phenotypes, where for the 1%

missing setting the of LifetimeMDD imputed using AutoComplete increased from 0.507𝑟2

in copy-masked evaluations to 0.968 (nearly 100%) in uniform masked evaluations
(Supplementary Figure 6).



Supplementary Tables and Figures

Supplementary Table 1: We collected two sets of phenotypes from two studies related to
the UK Biobank. Each dataset contains hundreds of thousands of individuals (N) and a
heterogeneous mix of continuous (Cont.) and binary valued phenotypes. Percent of all
values which are missing for select phenotypes are reported in parentheses after the
number (#) of such traits. We report the median percentage of measurements missing per
individual (ØN) (maximum missing in parentheses) in addition to the median percentage of
measurements missing per phenotype (ØP).

Supplementary Table 2: Number of phenotypes for which AutoComplete significantly
improved imputation accuracy relative to other methods. Significant decreases in accuracy
are indicated in parentheses. Imputation accuracy was determined through a simulation of
1%~50% missingness on the cardiometabolic and psychiatric disorders datasets, for the
metrics of squared Pearson correlation (r2), Area Under Precision Recall (AUPR), and Area
Under Receiver Operating Characteristic (AUROC).



Supplementary Table 3: Results of hyperparameter tuning of all methods. The results
of hyperparameter tuning of the main hyperparameters for each method. AutoComplete
was tuned primarily based on the copy-masking percentage. HI-VAE was tuned based on
the size of the latent dimension (z) and size of the MLP per phenotype (y). GAIN was tuned
based on the Hint fraction and Alpha multiplier. SoftImpute was tuned based on the nuclear
norm penalty Lambda in a range starting from a value preferring optimal reconstruction of
observed values (1289, as returned by the `lambda0` function in the SoftImpute package)
down to 1e-2 in 20 steps in the log scale (first 7 steps shown). Bold denotes the final
hyperparameter values were chosen to maximize r2 on the validation dataset (20% of the
training set that was not used for learning).



Supplementary Table 4: Increase in effective sample sizes from AutoComplete
imputations. The available sample size of each phenotype (N) was smaller than the number
of total individuals in each dataset due to missingness. All missing measurements were
imputed ( ) using AutoComplete. The accuracy of the imputation method for each𝑁

𝐼𝑚𝑝𝑢𝑡𝑒𝑑

phenotype could be measured in simulations ( ), allowing an approximation of the𝑟2

hypothetical effective sample size ( ) and an estimate of the𝑁
𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒

= 𝑁 + 𝑟2 × 𝑁
𝐼𝑚𝑝𝑢𝑡𝑒𝑑

increase in sample size (Increase).

Supplementary Table 5: The significantly detected loci for imputed phenotypes in the
UKBB (Imp) was compared with their observed counterpart in the UKBB (Obs) and
external studies (Ext). Counts were tallied in terms of how many loci match in effect
direction of the SNP (Effect), where effect size was distinct from zero (p< 0.05), and how
many were marginally significant overall denoted as Sig (p<0.05). Significances were
determined using a two-sided t-test. Also shown are the number of SNPs with matching
effect direction regardless of it being significantly distinct from zero (Effect*). Denominator
indicates the total number of SNPs present in the compared study and matching the criteria
for comparison.



Supplementary Figure 1: Imputation accuracy (r2) as a function of the time allocated to
train each method that uses iterative optimization (with a maximum of 30 minutes).
Running time was measured for a single run of each method so that the runtime of
AutoComplete does not include the time needed to run on multiple bootstraps. Each curve
connects the r2 accuracy of the imputed data matrix on the test split of the Psychiatric
Disorders dataset (337,126 individuals and 372 phenotypes; 1% simulated missing) given
the partially optimized parameters fit up to the given time. Dotted lines indicate the final r2
accuracy reached by each method after terminating. The imputation accuracy of KNN (with
K=10 neighbors), a non-parametric method that does not involve iterative optimization, is
also visualized (horizontal dashed line) (finished in 12 hours). We also visualized the
imputation accuracy of MissForest (with 1 tree per forest) after 1 iteration (3 1/2 hours)
and MICE after 3 iterations (6 hours).

Cardiometabolic Psychiatric Disorders

Supplementary Figure 2: The loss history while fitting AutoComplete on both
Cardiometabolic and Psychiatric Disorders datasets on the training set (blue) and
validation set (orange). Solid colored lines indicate mean loss with one epoch. 95th
percentile of the loss during the epoch shaded for each phase. The point where validation



loss no longer improved (the optimized weights were no longer checkpointed) is indicated
as “Last saved”.



Bilirubin LifetimeMDD Cannabis Ever Taken

Supplementary Figure 3: QQ-plots corresponding to GWAS of three validated phenotypes
after imputation with AutoComplete.
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Supplementary Figure 4: (a) Imputation accuracy ( r2 ) was evaluated for a smaller
setting of N=50,000 randomly drawn from a dataset of 86 phenotypes related to blood labs
for which KNN, MissForest (MF), and MICE could be effectively fit (black bars denote 95%
CIs, 100 bootstrap replicates). All methods were trained or tuned on an identically sized
training set of 50,000 individuals (distinct from the 50,000 individuals used for evaluating
accuracy). Accuracy obtained from fitting AutoComplete on the full training set of
N=151,273 then imputing the smaller setting is also shown (“AutoComplete (full)”). (b)
Imputation accuracy measured for each phenotype was compared between AutoComplete
and SoftImpute (next best) for settings of 1% and 20% missing data. Accuracies
significantly greater for AutoComplete are marked with filled bold dots and those which are
significantly greater for the alternate method are marked with empty bold dots (two-sided

t-test with , adjusted for the number of phenotypes).𝑝 < 5. 81 × 10−4



Supplementary Figure 5: Comparison of r2 in simulations of 1%~50% missing data on
the Psychiatric Disorders dataset for different masking strategies (black bars denote 95%
CIs, 100 bootstrap replicates). AutoEncoders were fitted under increasing probabilities of
uniformly random masking (RAND=10%~90%) and compared with the final AutoComplete
model which was fitted using copy masking (Psychiatric Disorders dataset: 372 phenotypes
and 337,126 individuals).

Supplementary Figure 6: Evaluation of imputation accuracy with and without
copy-masking for LifetimeMDD (black bars denote 95%, 100 bootstrap replicates).
Observations were chosen uniformly and independently across phenotypes to be scored
instead of reflecting any masking patterns (“uniform random evaluation”) and compared to
our standard evaluation which uses copy-masked values. The AutoComplete model which



was tuned for the main experiments was reused for this setting. Accuracies are reported
across increasing percentages of simulated missingness of 1%~50% (Psychiatric Disorders
dataset: 372 phenotypes and 337,126 individuals).
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