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Abstract: The chemokine CXCL12 plays a fundamental role in cardiovascular development, cell traf-
ficking, and myocardial repair. Human genome-wide association studies even have identified novel
loci downstream of the CXCL12 gene locus associated with coronary artery disease and myocardial
infarction. Nevertheless, cell and tissue specific effects of CXCL12 are barely understood. Since we
detected high expression of CXCL12 in smooth muscle (SM) cells, we generated a SM22-alpha-Cre
driven mouse model to ablate CXCL12 (SM-CXCL12−/−). SM-CXCL12−/− mice revealed high em-
bryonic lethality (50%) with developmental defects, including aberrant topology of coronary arteries.
Postnatally, SM-CXCL12−/− mice developed severe cardiac hypertrophy associated with fibrosis,
apoptotic cell death, impaired heart function, and severe coronary vascular defects characterized
by thinned and dilated arteries. Transcriptome analyses showed specific upregulation of pathways
associated with hypertrophic cardiomyopathy, collagen protein network, heart-related proteoglycans,
and downregulation of the M2 macrophage modulators. CXCL12 mutants showed endothelial
downregulation of the CXCL12 co-receptor CXCR7. Treatment of SM-CXCL12−/− mice with the
CXCR7 agonist TC14012 attenuated cardiac hypertrophy associated with increased pERK signaling.
Our data suggest a critical role of smooth muscle-specific CXCL12 in arterial development, vessel
maturation, and cardiac hypertrophy. Pharmacological stimulation of CXCR7 might be a promising
target to attenuate adverse hypertrophic remodeling.

Keywords: CXCL12; cardiac hypertrophy; fibrosis; remodeling; M2 macrophages; coronary artery;
smooth muscle cells

1. Introduction

Historically, CXCL12/SDF-1 is a CXC chemokine, which plays a crucial role in main-
taining the bone marrow (BM) niche of hematopoietic stem and progenitor cells [1].
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CXCL12 binding to its receptors CXCR4 and CXCR7 also plays an important role in
cardiovascular development and is critically involved in leukocyte and progenitor cell
trafficking to sites of myocardial ischemia [1–3]. The recently identified second CXCL12 re-
ceptor CXCR7 also plays a prominent role in cardiac valve morphogenesis and remodeling
after myocardial infarction (MI) [4–6]. CXCL12 and CXCR4 interactions are also involved
in tumor growth and metastasis by induction of angiogenesis and expression of CXCR4 on
metastatic cancer cells [7]. Global CXCL12 as well as CXCR4 and CXCR7 knock-out (KO)
mice reveal phenotypically ventricular septum defects and severe vascular abnormalities
and die early perinatally [4,8–11]. During embryonic development, loci of vasculogenesis
are characterized by high expression of CXCL12, CXCR4, and CXCR7 [4,12]. From a clinical
translational perspective, human genome-wide association studies (GWAS) in over 100,000
people have identified two novel loci downstream of the CXCL12 gene locus associated
with coronary artery disease (CAD) and MI, implicating an essential role in cardiovascular
disease (CVD) [13].

Intramyocardial delivery of CXCL12 in phase 1 and phase 2 clinical trials in ischemic
heart disease showed clinical improvement, suggesting therapeutic benefits of CXCL12 [14,15].
CXCL12 gene expression after ischemia is regulated by HIF-1α binding to the CXCL12 pro-
moter with consecutive upregulation after acute MI for several days followed by a subsequent
decline [16–18]. Invasive strategies to overexpress CXCL12 mRNA or deliver CXCL12 pro-
tein to the heart have been developed [16,19,20]. We have demonstrated previously that a
dual non-invasive strategy based on the mobilization of progenitor cells with G-CSF and
pharmacological inhibition of the CXCL12 inactivating protease DPP-IV/CD26 enhanced
migration of CXCR4+ blood-derived progenitors and increased the number of endogenous
lin-/c-kit+/Sca-1+ stem cells in the ischemic heart associated with decreased mortality and
improved cardiac function in mice [17]. A combined strategy of G-CSF treatment with DPP-IV
inhibition and cell cycle activation in cardiomyocytes by overexpression of cyclin D2 was
even capable of enhancing myocardial regeneration after MI [21].

Although there is a clear potential to exploit the CXCL12/CXCR4/CXCR7 axis for
therapeutic interventions, cell and tissue specific effects of CXCL12 in the cardiovascular
system are barely understood, hindering the implementation of targeted therapies. The
constitutive and inducible expression of this chemokine has been reported in several cell
types of the heart like vascular endothelial cells, smooth muscle cells (SMCs), cardiomy-
ocytes, fibroblasts, and pericytes [18,22–24]. So far, the underlying biology of these cell
types regarding direct involvement in CXCL12-dependent cardiovascular development,
cell recruitment, and myocardial repair mechanisms remains unclear. Additionally, a car-
diomyocyte specific conditional CXCL12 KO mouse model does not display cardiovascular
development defects, implicating divergent cellular functions [25]. Since our own prelimi-
nary data revealed high expression of CXCL12 in smooth muscle protein 22-alpha (SM22α)
positive SMCs, we aimed to investigate the cell-specific role in the cardiovascular system
by generating a SM22α-Cre driven conditional KO (cKO) mouse model (SM-CXCL12−/−).

2. Results
2.1. CXCL12 Is Predominantly Expressed in Vascular Smooth Muscle Cells

Since the expression pattern of CXCL12 in adult heart tissue is not well examined, we
first aimed to characterize cellular sources of CXCL12 using specific antibodies staining the
CXCL12 epitope. As shown in Figure 1A (first lane), CXCL12 expression predominantly
targeted to vascular SMCs confirmed by co-staining of CXCL12 with an antibody specific
to the SM22α epitope in SMCs. In contrast, only moderate or low expression was found in
endothelial (PECAM-1) and perivascular cells (NG2) (Figure 1A middle lane and lower
lane). Our results were confirmed on the expression level using CXCL12-EGFP reporter
mice showing a predominant expression of CXCL12 in SMCs (Figure 1B). Translationally,
CXCL12 was also highly expressed in human aortic smooth muscle cells (HAoSMC) dis-
playing a ≥20-fold higher expression compared to human microvascular endothelial cells
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(HMEC-1), suggesting that SMCs are also a major cellular source for CXCL12 in humans
(Figure 1C).
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Figure 1. Conditional knockout (cKO) mouse model due to high expression of CXCL12 in vascular smooth muscle cells.
(A) Immunofluorescence images of heart sections stained against CXCL12 (green) co-labeled with the smooth muscle cell
specific marker SM22-alpha (SM22) (red; upper row), the endothelial cell marker PECAM-1 (red, middle row), and the
pericyte marker NG2 (red, lower row). Scale bar, 200 and 25 µm. (B) Immunostaining of heart sections from CXCL12-EGFP
reporter mice co-stained with SM22. Scale bar, 25 µm. (C) Bar graph representing the quantification of SDF-1 mRNA
expression in human HAoSMC and HMEC-1 cells, n = 4. *** p < 0.001 from Student’s t-test (D) Schematic illustration of the
smooth muscle cell-specific conditional KO mouse model. (E) Real-time PCR quantification of mRNA derived from heart
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and aorta of control (flox/flox) and SM-SDF-1−/− mice, n = 4. * p < 0.05, ** p < 0.01 from two-way ANOVA followed by Sidak’s multiple
comparisons test. (F) Western blot of SDF-1 protein from aortic tissue of mice related to GAPDH as endogenous reference protein,
confirming reduced SDF-1 expression, n = 3. (G) ELISA of plasma SDF-1 levels quantified and related to total protein concentration
in both control (n = 8) and mutant mice (n = 6). *** p < 0.001 from Student’s t-test. (H) Axial HREM section through the heart from
cranial. A–D. Abnormal coronary arteries (ca) at E14.5. A. Dilated right coronary artery (arrowhead in inlay). C. Abnormal origin
and topology of left coronary artery. B, D. controls. E, F. Muscular ventricular septal defect (vsd) at E17.5. Inlay in E shows axially
sectioned volume model from cranial. F. control. aa, ascending aorta; ra, right atrial appendix; st, sternum; rv, right ventricle; lv, left
ventricle; vs, ventricular septum; pv, pulmonary valve; pt, pulmonary trunk. Scale bars 500 µm. All data represent mean ± SD.

2.2. Loss of CXCL12 in SMCs Conferred Substantial Perinatal Mortality and
Cardiovascular Abnormalities

Since CXCL12 expression was mainly targeted to SM22α positive SMCs, we generated
a conditional knockout (SM-CXCL12−/−) mouse model of CXCL12 in SMCs by crossing
CXCL12 flox with SM22α-Cre+ mice (Figure 1D). Deletion of the CXCL12 exon 1 was
confirmed by PCR genotyping, as shown in Supplementary Figure S1A. Loss of CXCL12 in
SMCs led to a significant downregulation of CXCL12 mRNA and protein in the heart and
aorta (Figure 1E,F). We also noticed a 30–40% decrease in plasma CXCL12 levels in SM-
CXCL12−/− mice (Figure 1G). We found no significant changes in mRNA expression levels
of the CXCL12 receptors CXCR4 and CXCR7 in mutant mice vs. controls (Supplementary
Figure S1B). SM-CXCL12−/− mice displayed embryonic growth retardation (Supplemen-
tary Figure S1C). Offsprings exhibited an abnormal mendelian ratio with ca. 50% perinatal
mortality (Supplementary Figure S1D). High-resolution episcopic microscopy analysis
(HREM) of CXCL12 deficient embryos revealed severe cardiovascular abnormalities. These
included abnormal origin, abnormal topology, and dilation of segments of coronary arteries
(A&C), abnormal dimensions of segments of the head arteries, bicuspid aortic valves (data
not shown), defective cusps of semilunar valves (C), ventricular septal defects (E), and
enlarged liver sinusoids (data not shown) (Figure 1H).

2.3. Smooth Muscle-Specific CXCL12 KO Mutants Developed Severe Cardiac Hypertrophy

Surviving SM-CXCL12−/− mice developed an age-dependent cardiac hypertrophy
after birth. While there was a trend to an increased heart weight to body weight ratio at
seven days after birth, the ratio significantly increased during adolescence at eight and
16 weeks of age (Figure 2A,B).

Histology of adult hearts stained with H&E and WGA confirmed hypertrophy of car-
diomyocytes in cKO mice (Figure 2C). Cardiomyocyte cross-sectional areas and diameters
were significantly increased in mutant hearts as compared to controls (Figure 2D,E). The
development of cardiac hypertrophy was further confirmed by quantification of typical
hypertrophy markers, such as atrial natriuretic peptide (ANP) and brain natriuretic peptide
(BNP) in cardiac tissues. Accordingly, ANP and BNP mRNA levels were significantly up-
regulated in mutant mice (Figure 2F). Echocardiography measurements of adult hearts at
20 weeks also revealed significant differences in left ventricular functional parameters such
as decreased ejection fraction, fractional shortening, and stroke volume and a significant
increase in the thickness of the interventricular septum and left ventricular posterior wall
diameters, confirming cardiac hypertrophy (Figure 2G–J, Supplementary Table S1.

2.4. SM-CXCL12−/− Hearts Revealed Increased Cardiac Fibrosis and Abnormal Coronary Arteries

Next, we examined adult hearts histologically. Sirius red and WGA staining revealed
an increased amount of interstitial and perivascular cardiac fibrosis in hypertrophic KO
hearts (Figure 3A,B). TUNEL+ staining displayed a significant increase in apoptotic cell
death (Figure 3C,D). It is noteworthy to mention that we also detected a slight increase
in pH3+ cardiomyocytes in KO hearts suggesting at least some degree of hyperplasia
preceding the hypertrophic response (Supplementary Figure S2A,B). Further immunoflu-
orescence staining of mutant hearts confirmed a lack of CXCL12 expression in vascular
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smooth muscle cells; however, we still observed low amounts of CXCL12 expression in
endothelial cells (Figure 4A). Since complete loss of CXCL12 plays a crucial role in arte-
rial development, maturation, and patterning of the aortic arch [26,27], we investigated
arterial and capillary density in KO hearts using anti-SM22α and anti-PECAM-1 specific
antibodies (Figure 4B). We observed an increase in dilated SM22α positive aberrant ar-
teries in cKO hearts, whereas capillary density was decreased, most likely due to cardiac
hypertrophy (Figure 4C,D). However, despite an increase in arteriole density, mutant mice
exhibited malformed, thinned, and dilated arteries with almost no distinguishable SMC
layer (Figure 4A,E).
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Figure 2. Cardiac hypertrophy and ventricular dysfunction in SM-CXCL12−/− mice. (A) H&E stained heart sections at
7 days (7 d), 8 weeks (8 w), and 16 weeks (16 w) after birth as well as stereo images of whole hearts from 16 weeks (16 w)
control and cKO mice. Scale bar, 2 mm. (B) Heart weight/body weight (HW/BW) ratios (mg/g) of control and cKO mice at
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various time points (7 d, 8 w, 16 w), n = 6–11. n.s. not significant, ** p < 0.01, *** p < 0.001 from two-way ANOVA followed by Sidak’s
multiple comparisons test. (C) Immunofluorescence staining of wheat germ agglutinin (WGA; red, first row) and H&E (second row)
of left ventricular heart sections in control and cKO mice. Scale bar, 20 µm. (D,E) Bar graphs representing the cross-sectional area
and minimum Feret’s diameter of adult cardiomyocytes, n = 5. *** p < 0.001 from Student’s t-test (F) qRT-PCR analysis of the cardiac
hypertrophy markers ANP and BNP mRNA relative to the expression of the housekeeping genes GAPDH and β-Actin, n = 4. * p < 0.05,
** p < 0.01 from two-way ANOVA followed by Sidak’s multiple comparisons test. (G–J) Measurements of ejection fraction (EF), stroke
volume (SV), interventricular septum thickness (IVS), left ventricular posterior wall diameter (LVPWD) of control and cKO mice,
n = 11. ** p < 0.01, *** p < 0.001 from Student’s t-test. All data are presented as mean ± SD.
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Figure 3. SM-CXCL12−/− mice revealed increased cardiac fibrosis, apoptosis. (A) Representative Sirius red and WGA
stainings of heart sections from WT and cKO mice (left panel), scale bar represents 100 and 200 µm. (B) Bar graph showing
quantification of the ratio of myocardial fibrosis area to total myocardial area in histological sections (right panel; n = 5–6),
** p < 0.01 from Student’s t-test (C) Representative co-staining of TUNEL+ (bright green nuclei marked by arrows) and
DAPI+ (blue nuclei) cells in WT and cKO mice (left panel), Scale bar represents 100 and 25 µm. (D) Bar graph showing
quantification of the percentage of TUNEL+ apoptotic nuclei to total nuclei (right panel; n = 4–5), ** p < 0.01 from Student’s
t-test. Data represent mean ± SD.
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Figure 4. SM22α-specific ablation of CXCL12 leads to defective coronary arteries. (A) Co-staining of CXCL12 (green) and
SM22 (red) in arteries of control and SM-CXCL12−/− mice. (B) First column: SM22/DAPI immunofluorescence staining
of heart sections from control and SM-CXCL12−/− mice showing an increased density of arteries and arterioles in cKO
mice. Second column: immunostaining of PECAM-1 positive (brown) capillaries and arterioles at lower magnification (10×)
showing an increased density of aberrant arteries and arterioles (depicted by black arrows) in cKO mice. Third column:
immunostaining showing a decreased density of PECAM-1 positive capillaries in cKO mice. Scale bar, 200 and 20 µm. (C,D)
Bar graphs showing the quantification of arterioles and capillary density in control and SM-CXCL12−/− hearts, n = 5 and
5 independent fields per each mouse. ** p < 0.01, from Student’s t-test (E) SM22/PECAM-1/DAPI immunofluorescence
staining of control and SM-SDF-1−/− heart sections at higher magnification (40×) showing a defective smooth muscle cell
layer (depicted by white arrows) characterized by dilated and thinned arteries in cKO mice. Scale bar, 20 µm. All data are
presented as mean ± SD.
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2.5. RNAseq Analysis Revealed Increased Signaling for Hypertrophic Cardiomyopathy and
Downregulation of M2 Macrophage Markers RETNLA and CXCL14

To gain more mechanistic insights into the cellular pathways, whole transcriptome
analyses were performed to compare differentially expressed genes between control and
conditional KO hearts. We identified 143 differentially expressed genes (DEGs) with
expression differences of more than 1.5-fold, and a p-value < 0.05. Ninety-three genes
were significantly upregulated, and 50 genes were significantly downregulated. The heat
map analysis of DEGs is depicted in Figure 5A and listed in Supplementary Table S2.
Amongst downregulated transcripts, we detected the M2 macrophage associated genes
RETNLA (FIZZ-1) and CXCL14. Next, we performed pathway analysis of DEGs using
the pathway enrichment analysis tool enrichR (https://maayanlab.cloud/Enrichr/enrich?
dataset=9ae3742d8fd7ee20209051133e10491c, access date 30 May 2021). KEGG pathway
enrichment analysis with DEGs highly clustered in several signaling pathways including
extracellular matrix receptor interaction, hypertrophic cardiomyopathy, focal adhesion, and
PI3K-Akt signaling. The top 10 enriched pathways are shown in Figure 5B,C and listed in
the Supplementary Table S3. Similarly, reactome pathway enrichment analysis showed that
clustered signaling pathways were related to an extracellular matrix organization, collagen
biosynthesis and degradation. Additionally, chondroitin sulfate (CS) and dermatan sulfate
(DS) proteoglycan pathways were significantly upregulated (Figure 5D,E, Supplementary
Table S4). We further predicted the protein–protein interaction network of DEGs using
STRING web software and observed two major protein clusters that closely interacted with
each other. The green-colored clustered protein network was specific to collagen regulation,
whereas the blue-colored clustered proteins were involved in proteoglycan synthesis and
degradation (VCAN & BGN) (Figure 5F). Finally, we validated transcriptome data of DEGs
with qPCR analysis, confirming upregulation of genes such as COL8A1, VCAN, and BGN
and downregulation of the M2 macrophage associated genes RETNLA and CXCL14 in KO
hearts (Figure 5G).

2.6. SM-CXCL12−/− Mouse Hearts Showed Decreased M2-Like Macrophages (CD206 + )

Since CXCL12 plays a major role in activating and recruiting of leukocytes, flow
cytometry analyses of BM, spleens and hearts of SM-CXCL12−/− mice, and littermate
controls were performed to assess the immune cell response. A panel of different leukocyte
markers such as CD19+ (B-lymphocytes), CD90+ (T-lymphocytes), Gr-1+ (granulocyte),
CD11b+ (monocyte/macrophage), CD206+ (M2-macrophage), and CD184+ (CXCR4+) was
used to screen for subsets of CD45+ expressing cells (Figure 6A).

We did not observe any significant differences in BM and spleen leukocyte cell pop-
ulations between mutants and controls (Supplementary Figure S3A–H). Cardiac CD45+
leukocyte subpopulations including CD45+/CD11b+ and CXCR4+/CD11b+ cells were also
not significantly different (Figure 6A,B). However, SM-CXCL12−/− mouse hearts showed
a significant depletion of M2 like Gr-1-/CD11b+/F480+/CD206+ cells (Figure 6C,D). Im-
munofluorescence analysis of SM-CXCL12−/− mice hearts further confirmed the finding
of a significant reduction of M2 like CD206+ cells (Figure 6E,F).

https://maayanlab.cloud/Enrichr/enrich?dataset=9ae3742d8fd7ee20209051133e10491c
https://maayanlab.cloud/Enrichr/enrich?dataset=9ae3742d8fd7ee20209051133e10491c
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Figure 5. Cardiac transcriptome analysis of SM-CXCL12−/− mice. (A) Hierarchically clustered heatmap showing
143 differentially expressed genes (DEGs) in the hearts of SM-CXCL12−/− mice relative to controls, n = 4 biological
replicates. Fold change > 1.5, p < 0.05. (B,D) Bar graph visualization of top 10 Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Reactome pathway enrichment analyses of DEGs using Enrichr. (C,E) Clustergram displaying the heatmap
of top 10 enriched terms (KEGG and Reactome pathways as columns) vs. input genes (as rows). (F) STRING protein–
protein interaction (PPI) networks of significantly regulated genes. Each node represents a distinct color with network
clustered (kmeans) and disconnected nodes hidden from the network display. Line color indicates the type of interaction
evidence. (G) Validation of the differentially expressed genes COL8A1, VCAN, BGN, RETNLA, and CXCL14 by qRT-PCR,
n = 4. * p < 0.05, ** p < 0.01, *** p < 0.001 from two-way ANOVA followed by Sidak’s multiple comparisons test. Data are
mean ± SD.
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2.7. Downregulation of the CXCL12 Co-Receptor CXCR7 in SM-CXCL12−/− Hearts

Since CXCL12 binds to its corresponding receptors CXCR4 and CXCR7 and activates
multiple signaling pathways, we analyzed receptor protein expression in cKO hearts. While
CXCR4 protein levels were unchanged, similar to mRNA expression data, we observed
a significant decrease of CXCR7 protein in mutant hearts (Figure 7A–C). Furthermore,
we histologically examined CXCR4 and CXCR7 expression in heart tissue. CXCR4 ex-
pression was strongly detected in both smooth muscle and endothelial cells of arteries
in control hearts, confirmed by co-expression of the endothelial cell marker PECAM-1
(Supplementary Figure S4). Likewise, Western blot and immunofluorescence analyses
confirmed that expression of CXCR4 was not altered in SM-CXCL12−/− mice. On the other
hand, CXCR7 expression was mainly localized in endothelial cells of coronary arteries in
control mice. SM-CXCL12−/− mutants revealed a highly decreased amount of endothelial
CXCR7 expression in coronary arteries (Figure 7D). We further examined key downstream
signaling pathways of CXCL12 such as Akt, ERK, and RhoA. As shown in Figure 7E–H,
we detected increased phosphorylation of Akt and ERK in KO hearts, whereas RhoA levels
remained unchanged.
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Figure 7. Decreased CXCR7 expression and activation of AKT and ERK1/2 signaling pathways in hypertrophic cKO hearts.
(A–C) Representative Western blot analysis and bar graphs showing the quantification of CXCR4 and CXCR7 protein levels
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2.8. CXCR7 Agonist Treatment Attenuated Hypertrophic Remodeling in SM-CXCL12−/− Mice
Associated with Activation of pERK

Given that both CXCL12 and CXCR7 were significantly reduced in SM-CXCL12−/−

mice, we sought to explore potential benefits by specifically activating the CXCL12/CXCR7
axis in SM-CXCL12−/− mice. Consequently, we administered the specific CXCR7 ago-
nist TC14012 intraperitoneally over 5 weeks as a gain of function experiment (Figure 8A,
Supplementary Table S5). As shown in Figure 8B,C, SM-CXCL12−/− mice treated with
TC14012 showed significantly reduced interventricular septum (IVSD) and left ventricular
posterior wall diameters (LVPWD) reflecting attenuated progression of cardiac hypertrophy.
Moreover, CXCR7 agonistic treatment showed an improved left ventricular ejection fraction
(Figure 8D,E, Supplementary Table S5). There was also a tendency towards decreased
left ventricular end-diastolic and systolic diameters after the treatment (Supplementary
Table S5). Finally, we investigated potential CXCR7 downstream signaling pathways like
Akt, ERK, and RhoA. As shown before in Figure 7E–H, we observed increased phospho-
rylation of Akt and ERK signaling in cKO mice hearts and further noticed a markedly
specific activation of pERK signaling after CXCR7 agonist treatment (Figure 8F–K). Our
data suggest that CXCR7 agonistic treatment acts through pERK signaling to attenuate
progression of cardiac hypertrophy.
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RhoA in heart lysates of controls, SM-CXCL12−/−, and cKO + TC14012 mice. (G–K) Bar graphs displaying the quantification
of CXCR4, CXCR7 expression, and phosphorylated protein levels of AKT, ERK1/2, and RhoA, n = 3, ** p < 0.01, *** p < 0.001,
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3. Discussion

The chemokine CXCL12 plays an important role in cell migration, differentiation,
tissue homeostasis of leukocytes and hematopoietic stem and progenitor cells, and is
critically involved in ischemic tissue repair [3,16,20,22]. However, cell- and tissue-specific
effects of CXCL12 are barely understood, limiting the implementation of targeted therapies.
Here, we show for the first time a prominent role of SMC derived CXCL12 for vessel
development and maturation, progression of cardiac hypertrophy, and tissue homeostasis
of CD206 macrophages. On the regulatory level, cKO of CXCL12 in SMCs led to decreased
expression of its corresponding receptor CXCR7 on endothelial cells, whereas expression
of the common CXCL12 receptor CXCR4 remained unchanged. Treatment with the CXCR7
agonist TC14012 attenuated progression of cardiac hypertrophy and restored cardiac
function associated with increased activation of pERK signaling.

CXCL12-EGFP reporter mice and immunofluorescence staining against SM22α demon-
strated high expression of CXCL12 on the transcriptional and protein level in SMCs of
arterial vessels, whereas pericytes and endothelial cells expressed CXCL12 to a much lower
extent. Translationally, we also found high expression of CXCL12 in human aortic smooth
muscle cells compared to human microvascular endothelial cells. Based on these findings,
we aimed to investigate the cell-specific role of CXCL12 in SMCs utilizing a SM22α-Cre
driven CXCL12 mutant mouse model. In this study, we have deliberately chosen the widely
used SM22α-Cre model (also known as Tagln-cre) to drive Cre expression in smooth muscle
cells, since we clearly detected CXCL12 in SM22α positive arterial SMCs [28–30]. Other
possible SMC-targeting Cre mouse models such as Myh11-Cre or Acta2-Cre might have
the caveat that Myh11-Cre is also expressed in pericytes [31], and Acta2-Cre was found to
be expressed in other cell types like fibroblasts and myofibroblasts [31]. The importance of
SMCs as a relevant source of circulating CXCL12 was confirmed by a 30–40% decrease in
CXCL12 plasma levels compared to control mice. SM-CXCL12−/− mice revealed a high
embryonic lethality (50%) and displayed developmental defects including abnormal origin
and topology of coronary arteries and ventricular septum defects in line with previous
findings from complete CXCL12 KO mice, complementing these data by specifying the
importance of SMC derived CXCL12 in cardiovascular development for the first time.

Our cKO model revealed enlarged defective coronary arteries with pronounced thin-
ning of the SMC media layer, suggesting a very important role of SMC-derived CXCL12 for
coronary artery integrity and maturation. In line with our findings are two recently pub-
lished studies showing defective coronary artery development and lack of SM22 specific
vessels in constitutive CXCL12 KO mice, also illustrating the importance of CXCL12 for the
formation and integrity of coronary arteries [26,27]. However, our data extends these re-
ports, revealing SMC-derived CXCL12 as a major cellular source for coronary artery defects.
Moreover, the clinical translationally importance of CXCL12 in the human coronary artery
system is substantiated by various genome-wide association studies, showing that single
nucleotide polymorphisms (SNPs) close to the human CXCL12 locus were linked to CAD
and MI. These risk alleles were associated with increased plasma levels of CXCL12 [32–36].
Additionally, global CXCL12 and CXCR4 KO mouse embryos also displayed defects in
vascularization of the gastrointestinal tract and organ-specific processes of arteriogene-
sis [10,37]. A previous study showed that prolonged delivery of protease-resistant CXCL12
increased blood flow and arteriolar density in a model of hindlimb ischemia, suggesting
that CXCL12 might be important for arteriogenesis [38].

Another important new finding of our study is that SM-CXCL12−/− mice developed
severe cardiac hypertrophy associated with fibrosis and apoptosis. It is known that thera-
peutic targeting of CXCL12 during ischemia leads to cardiac protection through decreased
fibrosis and apoptosis [17–19,39]. However, there is only limited evidence showing a
substantial role of CXCL12 in the progression of cardiac hypertrophy. In our model, lack
of SMC-derived CXCL12 led to severe cardiac hypertrophy associated with progressive
fibrosis and apoptosis. Supporting our data, a recently published study showed that
cardiomyocyte specific deletion of the CXCL12 corresponding receptor CXCR4 in mice
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leads to progressive cardiomyopathy with significant tissue fibrosis [40]. In this model,
isoproterenol-induced cardiac hypertrophy was related to worsening of cardiac function,
increased fibrosis, and apoptosis, implicating CXCL12/CXCR4 signaling in the regulation
of cardiac hypertrophy, tissue remodeling, and apoptosis [41]. The second correspond-
ing receptor for CXCL12, CXCR7, is also known to be involved in cardiac hypertrophy.
Specifically, endothelial specific deletion of CXCR7 revealed a marked cardiac hypertro-
phy and displayed a key role in cardiac remodeling after MI [4–6]. As a link to human
pathology, two studies in human subjects suffering from hypertrophic cardiomyopathy
(HCM) showed elevated plasma levels of CXCL12 related to increased diffuse fibrosis, also
suggesting an important role of CXCL12 in human pathology [42,43]. Therefore, our data
may provide a background for a more detailed evaluation of the impact of CXCL12 in
HCM in future studies.

CXCL12 displays a central role in hematopoiesis and BM myelopoiesis during embry-
onic development, as well as leukocyte and progenitor cell trafficking in organ repair [1,8].
Flowcytometry analyses of BM and spleens of our SM-CXCL12−/− mice revealed no signif-
icant differences in several leukocyte populations. Interestingly, we observed a prominent
decrease in tissue-resident M2-like CD11b+/F480+/CD206+ macrophages in mutant hearts.
In addition, immunostaining confirmed that cardiac CD206+ cells were markedly reduced
in SM-CXCL12−/− mice. These findings are in line with our transcriptome data show-
ing that Retnla, a hallmark of alternatively activated M2 macrophages, was significantly
downregulated in cKO mice [44]. Moreover, CXCL14, a chemokine that has been recently
described as inhibiting M1 macrophage polarization but increasing M2 polarization, was
markedly reduced in SM-CXCL12−/− mice, supporting a proinflammatory state [45].
Previous studies have shown that cardiac M2-like macrophages exhibit tremendous anti-
inflammatory and tissue repair capabilities, whereas M1-like macrophages rather reflect
a pro-inflammatory status after MI [44,46,47]. Additionally, macrophages also contribute
to tissue fibrosis and homeostasis [48]. M1 macrophages are involved in the initiation
of pro-fibrotic processes, whereas tissue resident M2 macrophages regulate fibrosis and
control tissue repair and homeostasis [49]. On the other hand, it has been shown that depo-
larizing M2 to M1 macrophages can induce apoptosis in tumor cells, implicating a crucial
role of M2 macrophages in regulation of apoptosis [50]. Our own previous data showed
that HIF-1α mediated upregulation of CXCL12 by prolyl-hydroxylase inhibition increased
reparative M2-like CD11b+/CD206+ subpopulations compared to M1-like CD11b+/CD86+
cells after MI associated with increased cardiac repair [51]. Collectively, our data suggest
a specific role of SMC-derived CXCL12 in maintaining and differentiation of reparative
M2-like cardiac macrophages in myocardial development and repair.

Since CXCL12 is the ligand for both the CXCR4 and CXCR7 receptor, we next exam-
ined their expression in cKO and control hearts. Mechanistically, we found expression
of the commonly known G-protein coupled receptor CXCR4 on the transcriptional and
protein level largely unchanged, whereas CXCR7 protein levels were consistently down-
regulated, arguing for an important role of CXCL12/CXCR7 for vessel maturation and
progression of hypertrophic remodeling. CXCR7 expression was mainly targeted to en-
dothelial cells of coronary arteries. Consistently, cKO of CXCR7 in ECs also showed a
severe cardiac hypertrophy [4,5]. Since CXCR7 is a known scavenger receptor for CXCL12,
leading to internalization and degradation, it could be hypothesized that CXCR7 regulates
CXCL12/CXCR4 interactions through sequestering CXCL12 during heart development and
therefore might be important for fine tuning of hematopoietic cell mobilization [52]. CXCR7
can also be internalized without ligand binding [53], suggesting that the observed down-
regulation of CXCR7 protein without changes in mRNA levels may reflect internalization
and degradation of CXCR7 without ligand binding to maintain the homeostatic CXCL12
function. On the other hand, CXCR7 signaling is known to be transduced G-protein inde-
pendent through β-arrestin mediated ERK phosphorylation [54,55]. Alternatively, CXCR7
can also form heterodimers with the CXCR4 receptor regulating G-protein-mediated signal
transduction [4,56]. A recent study has shown that CXCR7 expression is elevated in human
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heart failure and hypothesized that it might have cardioprotective effects [57]. Mechanisti-
cally the authors also demonstrated that CXCR7 acts through β-arrestin-mediated pERK
signaling. Several preclinical animal models have proven that CXCR7 activation has a pro-
tective role in acute MI and atherosclerotic vascular diseases [6,57,58]. To reactivate CXCR7
signaling, we treated our cKO mice with the CXCR7 agonist TC14012, which attenuated
the severe hypertrophic phenotype and improved heart function (see also Figure 7). As a
potential downstream target for CXCR7 signaling, we identified increased pERK signaling,
which has also been reported previously [54,57,59]. CXCL12 signaling directly via CXCR7
is Gαi-receptor-independent, and activation of pERK could lead to cell survival and chemo-
taxis [60]. A recent study also reported downregulation of CXCR7 and pERK signaling in
endothelial outgrowth cells derived from patients with coronary artery disease. Activation
of CXCR7/pERK signaling increased vasculogenesis, suggesting a direct signaling effect
of the CXCL12/CXCR7 axis [55]. Additionally, recent studies also demonstrated that
agonizing CXCR7 contributed to therapeutic benefits in pulmonary fibrosis and acute MI,
arguing for the importance of CXCL12/CXCR7 signaling [6,61]. Since the CXCR7 agonist
TC14012 can also act as a CXCR4 antagonist [59], one of the major limitations of our study
is that we cannot rule out the possibility that at least some beneficial effects after TC14012
treatment might be explained through CXCL12/CXCR4 inhibition. There is mounting
evidence suggesting that antagonism of CXCR4 attenuates cardiac fibrosis and improves
myocardial function in various heart failure models [59,62,63]. The opposite effects of
TC14012 on CXCR4 and CXCR7 at the mechanistic level are still not well understood
and need to be clarified in future studies. Additionally, even the structurally unrelated
CXCR4 inhibitor AMD3100 also displays weak agonistic CXCR7 function, suggesting
cross reactivity of these compounds on CXCR4 and CXCR7 receptors [59]. However, since
TC14012 is a much more potent agonist on CXCR7 and treatment of cKO mice revealed a
clear upregulation of pERK, which could not be explained through CXCR4 antagonism,
our data suggest that CXCL12-CXCR7 mediated β-arrestin signaling plays an important
role in attenuation of cardiac hypertrophy and remodeling. To date, this is the first study
demonstrating potential clinical benefits for a CXCR7 agonist to limit the progression of
cardiac hypertrophic remodeling. Although our study may be hypothesis building, further
studies investigating the exact role of CXCL12/CXCR7 signaling in hypertrophic and
vascular remodeling are warranted.

In summary, we provide completely novel data signifying the cell-specific role of
smooth muscle-derived CXCL12 in cardiovascular development, arterial maturation, and
progression to cardiac hypertrophy. Our data suggest that CXCL12 is critically involved in
maintaining vascular homeostasis by regulating CXCR7 signaling. Pharmacological activa-
tion of CXCR7 might be a future target to attenuate excessive hypertrophic remodeling.
Our findings could directly impact the development of treatments for patients with cardiac
hypertrophy and CAD.

4. Materials and Methods
4.1. Mouse Strains

Animal care and all experimental procedures were performed in strict accordance with
the Austrian animal legislation guidelines and conform to the guidelines from Directive
2010/63/EU of the European Parliament on the protection of animals used for scientific
purposes. CXCL12 EGFP BAC reporter mice were purchased from Mutant Mouse Resource
and Research Center (MMRRC). CXCL12flox/flox mice were kindly gifted by Prof Michael
Bader, MDC, Berlin, and Sm22acre mice (B6.Cg-Tg(Tagln-cre)1Her/J) were purchased from
Jackson Laboratory [25,64]. Animals were maintained on a C57Bl/6 background, kept
in ventilated cages with a 12 h day/night cycle, and fed standard mouse chow and wa-
ter. Genotyping of the animals was performed by PCR (primers used for genotyping
are depicted in Supplementary Table S6). Conditional mutant mice with the genotype
SM22acre/+ x CXCL12flox/flox displayed reduced survival with 50% of mice dying peri-
natally; the surviving mice reached adulthood. Age-matched CXCL12flox/flox littermate
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mice were used as controls. For rescue experiments, 3-week-old mutant mice and control
mice were treated with the CXCR7 agonist TC14012 (10 mg/kg) intraperitoneally once in
every 6 days for 5 weeks. This dosage regimen and time course was selected based on
previous studies in mice [6,61]. Animals were checked daily for signs of stress and pain
throughout the experiments. If such signs as shaggy fur or emaciation were observed, the
animals were additionally treated with dipidolor (10 mg/kg, s.c.). After conduction of the
experiments, mice were euthanized by cervical dislocation and organs were harvested for
qRT experiments and Western blot.

4.2. High-Resolution Episcopic Microscopy (HREM)

SM-CXCL12−/− mouse embryos were harvested at embryonic day E 14.5 and 17.5,
fixed in 4% PFA/PBS for at least 1–2 days, and processed for HREM data generation
according to standardized protocols [65–67]. In short, samples were washed in PBS for one
day, dehydrated in a series of ethanol with increasing concentrations (30%, 50%, and 70%
for 24 h; 80% for 16 h; 90% for 3–4 h; and 100% for 4–6 h, two changes), infiltrated with
Solution A containing 1.25 g benzoyl peroxide, plasticized (Catalyst) with a methacrylate
resin kit (JB-4 embedding kit, Polysciences Europe GmbH) and 0.4 g eosin per 100 mL
(3 days, two changes), and finally embedded in this solution after addition of Solution B as
previously described [65,68]. After polymerization for 2 days under anaerobic conditions
at room temperature, blocks were baked at 80 ◦C for one day and subjected to HREM data
generation using an OHREM apparatus (Indigo Scientific, Baldock, UK) following a stan-
dard protocol [66,67]. Resulting HREM data consisted of stacked series of 2000–4000 single
digital images with an isotropic voxel size of 3 µm. 3D volume models were produced
immediately from the HREM volume; 3D surface models were produced after manual
segmentation. Amira 6.7 (Thermo Fisher Scientific, Waltham, MA, USA) was used for data
processing, visualization, and analysis.

4.3. Echocardiography

Echocardiography was performed in 20-week-old age-matched mutants and controls
using a Vevo 2100 Imaging System (VisualSonics Inc., Toronto, Canada) with a 30-MHz
high-frequency ultrasound transducer. For the rescue experiments with the CXCR7 agonist
TC14012, echocardiography was performed in 8–10 weeks old controls (n = 10), cKO mice
with sham treatment (n = 10), and cKO mice treated with TC14012 (n = 10). Mice were
anaesthetized with continuous isoflurane flow (0.5% and 99.5% O2) over a face mask and
were fixed on a temperature-controlled (37.5 ◦C warm) pad. Ejection fraction (EF) was
calculated with the LV-tracing method measuring left ventricular intercavitary areas at
end-diastole and end-systole in the parasternal long-axis view (PLAX). M-Mode recordings
measuring end-systolic (LVESD), end-diastolic LV diameters (LVEDD), intraventricular
septum thickness (IVSD), and LV posterior wall thickness (LVPWD, LVPWS) were obtained
in PLAX at the papillary muscle level. The sonographers were blinded to the genotypes.
Mice received additional analgesia with dipidolor (piritramid, 10 mg/kg KG) if needed.
After conduction of the experiments, mice were euthanized by cervical dislocation.

4.4. Quantitative RT-PCR in Heart Tissue and Human Cells

Human microvascular endothelial cells (HMEC-1; ATCC® CRL-3243™) and human
aortic vascular smooth muscle cells T/G (T/G HA-VSMC (ATCC® CRL-1999™)) were
cultured according to the manufacturer protocol. Mouse heart tissue and HMEC-1 and
HAoSMC cells were harvested, washed in 1× PBS, and homogenized in TRIzol reagent
(Invitrogen, USA), and total RNA was isolated according to the manufacturer’s instructions.
Total RNA was reverse-transcribed to cDNA using the QuantiTect RT kit (Qiagen). Exon
spanning primers for murine CXCL12, CXCR4, CXCR7, ANP, BNP, COL8A1, CXCL14,
RETNLA, VCAN, BGN, BACT, and GAPDH were designed as listed in Supplementary
Table S7. Using 2× SYBR green master mix (Applied Biosystems, Foster City, CA, USA),



Int. J. Mol. Sci. 2021, 22, 5908 17 of 22

quantitative gene expression was calculated using the comparative ∆∆Ct− method with
β-actin and GAPDH as a reference gene.

4.5. Western Blot

For total protein extraction, heart tissue was homogenized in RIPA lysis buffer, and
protein concentration of samples was measured using the BCA protein assay kit (Pierce).
In total, 50 µg of protein samples was denatured in SDS loading buffer (Roth, Karlsruhe,
Germany) by incubation at 95 ◦C for 5 min. Protein lysates were separated on SDS-PAGE
and blotted to PVDF membranes (Amersham). The membranes were incubated in blocking
solution (5% BSA in Tris-buffered saline with 0.1% Tween-20) for 1 h prior to overnight incu-
bation of the membranes with the following primary antibodies at 4 ◦C: CXCL12 antibody
(CST—3740S), CXCR4 (Abcam—ab124824), CXCR7 (Sigma—SAB4502446), AKT (CST—
4691S), Phospo-AKT (CST—4060S), ERK (CST—4695S), Phospho-ERK (CST—4370S), RhoA
(CST—2117S), Phospho-RhoA (Abcam—ab41435), and GAPDH (Abcam—ab8245). The
membranes were then incubated with an appropriate HRP-conjugated secondary anti-
body (Pierce, Waltham, MA, USA). Blots were visualized utilizing ECL™ Prime Detection
Reagent (GE Healthcare, Little Chalfont, UK) and ChemicDoc MP Imaging system (Biorad;
Hercules, CA, USA).

4.6. CXCL12 ELISA

Plasma was prepared and CXCL12 levels were quantified using a commercially avail-
able ELISA kit (R&D systems, Minneapolis, MN, USA, Mouse CXCL12/CXCL12 alpha
Quantikine ELISA Kit) following manufacturer’s instructions.

4.7. Histology and Immunostaining

Hearts were excised, fixed in 4% formalin overnight at 4 ◦C, and embedded in paraffin
according to standard histological methods. The hearts were sectioned in 3–5 µm thin
longitudinal and transversal slices. Paraffin sections were stained with hematoxylin and
eosin (H&E) to analyze histopathology. To evaluate collagen deposition, sections were
stained with picrosirius red stain kit (Polysciences, Inc, Warrington, PA, USA) and quan-
tified by Image J software. Ferret diameters and cross-sectional areas of cardiomyocytes
were analyzed after staining cell membranes with Texas Red™-X conjugated antibodies
against wheat germ agglutinin (WGA; Invitrogen, Waltham, MA, USA, 1:100). Twenty-five
cardiomyocytes per field and 10 fields for each section were analyzed using Image J analy-
sis software. Capillaries were stained with antibodies against CD31 (Santa Cruz—SC1506,
1:50), and AEC was used as the chromogen. Arteriole density was measured using a SM22a
antibody (Abcam—ab14106, 1:200). Apoptotic cells were detected using the TUNEL assay
(DeadEnd™ Fluorometric TUNEL System, Promega). Sections were co-stained with DAPI
to detect all cell nuclei. For quantification, the apoptotic index (AI) was calculated as the per-
centage of TUNEL+ nuclei (green) to total nuclei DAPI (blue). Cardiomyocyte proliferation
was detected using pH3+ antibody (Merck—06–570, 1:500) and the percentage calculated
to total nuclei (DAPI). Digital photographs were taken at a magnification of 400×, and four
random high-power fields (HPFs) of each heart sample (n = 6) were analyzed utilizing NIH
Image J software. For immunofluorescence analyses, hearts were embedded in optimal
cutting temperature compound (OCT). Cryosections with 10 µm thickness were prepared
and immunostained using standard techniques. Cryosections were stained with the fol-
lowing antibodies: CXCL12 (R&D systems, IC-350G, 1:10), CXCR4 (Santacruz, Santa Cruz,
CA, USA, SC-53534-AF488, 1:50), CXCR7 (Novus Biologicals, NBP2-24779AF488, 1:100),
PECAM-1 (Santa Cruz, SC1506, 1:50), smooth muscle protein 22-alpha (SM22a) (Abcam,
Cambridge, UK, ab14106, 1:200), and Sarcomeric α-Actinin (Sigma, St. Louis, MO, USA,
A7811, 1:500). Following immunostaining, sections were embedded into ProLong™ Glass
Antifade Mountant with NucBlue™ (Hoechst 33342, Thermofisher Scientific, Waltham,
MA, USA). Sections were analyzed under Zeiss fluorescence microscopy and images were
acquired with a Zeiss AxioCam (Carl Zeiss Microscopy GmbH, Jena, Germany).
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4.8. Flow Cytometric Analyses of Spleen, BM and Heart

Three- to four-month-old age-matched control and mutant murine hearts and spleens
were isolated, washed in 1× PBS, and placed in fresh ice-cold HBSS. Tissues were digested
and single cell suspensions were isolated as previously described [69]. BM cells were
collected by gently flushing the tibia and femur with ice-cold 1× HBSS solution and
followed the protocol as previously described [51]. Cell suspensions were filtered using
a 40 µm cell strainer and centrifuged at 1500 rpm for 5 min at 4 ◦C. Cell pellets were
resuspended in 1× Red Blood Cell Lysis Buffer (Biolegend, San Diego, CA, USA) and
washed twice with cell staining buffer solution (Biolegend). Before staining with various
antibodies, cells were treated with FC receptor blocking with TruStain FcX™ PLUS (anti-
mouse CD16/32 Antibody; Biolegend) for 5 min on ice. The following list of BD biosciences
and Biolegend antibodies were used for analysis: CD45-BV510 (Clone 30-F11, 1:25), CD19-
BV650 (Clone 6D5, 1:10), CD90-BUV395 (Clone 30-H12, 1:33), F4/80-PE (Clone BM8, 1:10),
Gr-1-BV421 (Clone RB6-8C5, 1:100), CD184-FITC (Clone 2B11, 1:10), CD11b-BV785 (Clone
M1/70, 1:50), and CD206-APC (Clone C068C2, 1:10). For cell viability, 7-AAD (#420403)
was added 5 min before measurement. For fluorescence compensation, all isotypes of the
mouse were used with AbC™ Total Antibody Compensation Bead Kit (#A10497). Gates
were set with the help of fluorescence minus one control. Samples were measured on a
FACSymphony A5 flow cytometer (BD biosciences), and data were analyzed using FlowJo
software v9.9.6 (FlowJo, Ashland, OR, USA).

4.9. RNA Sequencing

Library preparations and sequencing were performed at the Institute of Genomics
and RNomics, Biocenter, Innsbruck Medical University. For RNA sequencing, total RNA
from mouse hearts was extracted with Qiagen RNeasy mini kit (Qiagen GmbH, Hilden,
Austria), quality validated with the Agilent Bioanalyzer (Agilent Technologies, Waldbronn,
Germany), and submitted to library preparation with the Quantseq 3’-mRNA-seq library
kit (Lexogen GmbH, Vienna, Austria). The resulting libraries were sequenced with an
Ion Proton sequencer using PI chips and Hi-Q chemistry (Thermo Fisher, Vienna, Austria)
at a minimum of 25 million quality filtered reads per library. Fastq files were mapped
with a STAR + bowtie pipeline against an mm10 reference build file of 43,280 known
murine transcripts. Raw counts were RPM + mean total count normalized and subjected to
an “all-zero” and “single count” filter, leaving 22,169 unique transcripts. Before further
analysis, the remaining normalized raw counts were regularized logarithm-transformed,
providing a roughly homoscedastic distribution. Differential expression was calculated
using the DEseq2 package, filtered by all genes with p < 0.05 after Benjamini–Hochberg
(BH) multiple testing correction and ascendingly ordered by fold-change. Hierarchical
clustering was performed using the pheatmap package (euclidean distance). The KEGG
(Kyoto Encyclopedia of Genes and Genomes) and Reactome pathway enrichment analyses
of the differentially expressed genes were conducted by the Enrichr (https://maayanlab.
cloud/Enrichr/enrich?dataset=9ae3742d8fd7ee20209051133e10491c, access date 30 May
2021) online bioinformatics tool. For predicting protein–protein interactions (PPI) and
constructing the PPI network, the STRING database (http://string-db.org, access date
30 May 2021) was employed. Sequencing datasets were deposited at the NCBI GEO SRA
database with accession number PRJNA648836.

4.10. Statistical Analysis

Data were presented as mean ± SD. Data were analyzed statistically using the GraphPad
Prism 8 software (Graph Pad Software, La Jolla, CA, USA). Multiple group comparisons were
performed by one-way analysis of variance (ANOVA) followed by the Tukey’s and Sidak
multiple comparisons test. Comparisons between the two groups were performed using the
unpaired two-sided Student’s t-test. p ≤ 0.05 was considered statistically significant.

https://maayanlab.cloud/Enrichr/enrich?dataset=9ae3742d8fd7ee20209051133e10491c
https://maayanlab.cloud/Enrichr/enrich?dataset=9ae3742d8fd7ee20209051133e10491c
http://string-db.org
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5. Conclusions

In our study, we show for the first-time evidence implicating an important role of
SMC derived CXCL12 for coronary artery development and maturation, progression of
cardiac hypertrophy, and tissue homeostasis of M2 CD206 macrophages, advancing the
understanding of CXCL12/CXCR4/CXCR7 biology in the cardiovascular system. While
cKO of CXCL12 in SMCs lead to decreased expression of its corresponding receptor CXCR7
in endothelial cells, treatment with a CXCR7 agonist attenuated cardiac hypertrophy and
restored cardiac function in cKO mice. Since CXCL12 was also highly expressed in human
smooth muscle cells, pharmacological stimulation of CXCR7 might be a promising target
to limit the progression of excessive hypertrophic myocardial remodeling.
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