
Obesity: an expanding problem globally
Worldwide, the prevalence of adult obesity has almost 
doubled over the past three decades [1]. Th e increase in 
the United States and other high-income countries has 
drawn attention because of the generally high prevalence 
of obesity in these countries [2-4], but the obesity 
epidemic is also spreading to middle- and low-income 
countries [1]. Globally, the prevalence of obesity increased 
from 4.8% in 1980 to 9.8% in 2008 for men, and from 
7.9% to 13.8% in women, paralleled by an increase in 
mean body mass index (BMI) of 0.4 to 0.5  kg/m2 per 
decade (equivalent to 1.2 to 1.4  kg per decade for a 
person 1.6 to 1.8  m tall) [1]. By 2008, mean BMI had 
reached 23.8 kg/m2 for men and 24.1 kg/m2 for women [1].

However, substantial diff erences between nations have 
been noted; for example, since the 1980s, mean BMI has 
increased the most in Oceania (1.3 kg/m2 per decade in 
men, 1.8  kg/m2 per decade in women), whereas no 
change in BMI was observed in Central Africa (men) and 
Central and Eastern Europe (women) [1]. By 2008, the 
mean BMI in many countries from Melanesia, Micro-
nesia and Polynesia was greater than 30 kg/m2, whereas 
in several countries of sub-Saharan Africa and in East, 
South and Southeast Asia, it was less than 21.5 kg/m2 [1]. 
Diff erences in mean BMI and obesity prevalence across 
nations are, at least in part, due to the degree that the 
westernized lifestyle has been adopted [5,6]. In addition, 
genetic factors contribute to obesity-susceptibility, with 
heritability estimates ranging between 40 and 70% across 
populations, without a systematic higher or lower infl u-
ence for any specifi c ancestry [7]. Little is known, how-
ever, about whether the same genes contribute to obesity-
susceptibility across all ancestries or whether there are 
obesity-susceptibility genes that are unique to specifi c 
ancestries.

Large-scale genome-wide association studies (GWAS) 
have identifi ed at least 58 genetic loci that are robustly 
associated with obesity-related traits. Th e majority of loci 
have been discovered through GWAS in populations of 
European ancestry, but a growing number of studies are 
now being performed in populations of non-European 
ancestry. Here, we review the extent to which obesity-
susceptibility loci are shared across populations of 
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different ancestry and summarize the new insights that 
have been gained by cross-ancestry comparisons.

Why compare obesity-susceptibility across 
populations of diverse ancestry?
There are at least two reasons for comparing genetic loci 
across populations of diverse ancestry. First, cross-
ancestry comparisons can shed light on the physiology 
that underlies obesity-susceptibility around the world. 
Genetic loci that are shared across most ancestries may 
be indicative of core physiological pathways that are 
implicated in obesity-susceptibility, irrespective of ancestry. 
Such pathways might relate to general mechanisms that 
control the regulation of energy balance and body-fat 
distribution. Alternatively, loci that are specific to a single 
ancestry might contribute to differences in obesity-
susceptibility between populations. Such loci could 
explain, for example, why Pima Indians are much more 
susceptible to gaining weight than other Americans, even 
though they live in the same westernized environment 
[8], or why the prevalence of obesity-related comorbidi
ties differ across different races and ethnicities [9].

A second reason for cross-ancestry comparison relates 
to the fine-mapping of established obesity-susceptibility 
loci. Genetic loci identified through GWAS often harbor 
multiple genes, or sometimes no genes at all, which 
represents a major barrier for the follow-up of discoveries 
into functional research. By taking advantage of differ
ences in the genetic architecture between ancestries, 
genetic loci can be narrowed down, eventually to pin
point the causal gene(s) and/or genetic variant(s) that 
underlie the observed GWAS association.

We will illustrate both applications using (publicly) 
available data from large-scale, and thus sufficiently 
powered, genetic association studies, and we report solely 
on genetic loci for which the association with the obesity 
trait reached genome-wide significance (P < 5 × 10-8).

Current status of obesity-susceptibility loci
The search for obesity-susceptibility loci in humans 
started in the 1990s with candidate gene and genome-
wide linkage studies [10,11]. Despite the large number of 
studies conducted over the past 30  years, these two 
approaches have identified only a few genetic loci that are 
robustly associated with common obesity- or adiposity-
related traits [10,11]. The limitation of these approaches 
can often be ascribed to the small-scale of most of the 
studies and consequently insufficient power to identify 
the expected small genetic effects, and to the limited 
knowledge of human genetic variation and linkage 
disequilibrium (LD), particularly in the early years.

The advent of the genome-wide association approach 
in 2005, however, has substantially accelerated the pace 
of gene discovery for many common diseases and traits 

[12,13], including obesity-related traits [11]. We focus 
our review on the GWAS-identified loci because of the 
robustness of the associations and the availability of 
GWAS across populations of diverse ancestry.

Obesity-susceptibility loci identified in populations of 
white-European ancestry
GWAS of obesity-related traits have been performed 
predominantly in populations of European ancestry, and 
have, to date, identified 35 loci for BMI, three loci for 
body-fat percentage, five loci for waist circumference, 14 
loci for BMI-adjusted waist-to-hip ratio (WHRadjBMI), 
three loci for abdominal subcutaneous tissue (SAT) and 
visceral adipose tissue (VAT), six loci for extreme and 
early-onset obesity and nine loci for common childhood 
obesity. After accounting for the overlap of loci across 
traits, GWAS in populations of European ancestry have 
identified 54 obesity-susceptibility loci (Additional file 1; 
Figure 1).

Body mass index
To date, 32 BMI-associated loci have been identified over 
the course of four consecutive waves of GWAS meta-
analyses; each subsequent wave being larger and more 
fruitful than the preceding. The first obesity-susceptibility 
locus, in the first intron of FTO, was identified by two 
relatively small GWAS (NGWAS ~5,000) in 2007 [14,15]. 
One year later, a GWAS meta-analysis for BMI of nearly 
17,000 individuals confirmed the FTO locus and 
identified a second locus near MC4R [16]. In 2009, the 
GIANT (Genetic Investigation of ANthropometric 
Traits) consortium was established to further increase 
the sample size, combining 15 GWAS for BMI (NGWAS 
~32,000) [17]. At the same time, the deCODE Genetics 
research group performed a GWAS for BMI of a similar 
size [18]. Both studies confirmed the FTO and near-
MC4R loci, and identified an additional ten loci [17,18]. 
In 2010, the GIANT Consortium expanded further by 
combining 46 GWAS for BMI, including around 124,000 
individuals in total, which confirmed the 12 previously 
established BMI loci and identified an additional 20 loci 
[19].

Besides GWAS, the IBC (ITMAT-Broad-Candidate 
Gene Association Resource (CARe)) gene-centric array, 
comprising nearly 50,000 single nucleotide polymor
phisms (SNPs) across approximately 2,100 metabolic and 
cardiovascular-related loci, has been used to identify 
obesity-susceptibility loci [20]. A meta-analysis of the 
IBC array of nearly 93,000 individuals of European 
descent identified three additional BMI loci (TOMM40/
APOE/APOC1, SREBF2, and NTRK2) and confirmed 
seven of the previous GWAS-identified BMI loci [21].

Taken together, a total of 35 BMI-associated loci have 
been reported for populations of European ancestry.
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Body-fat percentage
While BMI is generally a good indicator of overall 
adiposity, it does not distinguish fat from lean mass. 
Hence, a GWAS meta-analysis for body-fat percentage, 
as a more accurate estimate of body composition, involv-
ing data from 15 studies (NGWAS ~36,500) was performed 
[22]. Besides the locus in FTO, loci near IRS1 and near 
SPRY2 were identifi ed. Interestingly, the fat-percentage-
increasing allele of the near-IRS1 locus is associated with 
a lower risk of type  2 diabetes [23] and cardiovascular 
disease [24], as well as with a favorable lipid profi le [25]. 
Th is association may be mediated through the fact that 
the fat-percentage-increasing allele is associated with 
increased SAT, but not with the metabolically more 
harmful VAT [22]. Th ese eff ects are signifi cantly more 
pronounced in men than in women [22]. Th e near-SPRY2 
locus that associates with body-fat percentage is 50  kb 
upstream of the gene and seems independent 

(LD  r2  <0.01) of the near-SPRY2 locus found to be 
associated with type  2 diabetes in East Asians [26] and 
Europeans [27], which locates approximately 200  kb 
downstream of SPRY2.

Waist circumference
On the basis of the hypothesis that distinct physiological 
pathways govern overall adiposity and abdominal 
adiposity, GWAS have been performed using proxy traits 
for body-fat distribution. Th e fi rst two GWAS meta-
analyses, by the GIANT consortium [28] and the 
CHARGE (Cohorts for Heart and Aging Research in 
Genomic Epidemiology) consortium [29], focused on 
waist circumference. All fi ve identifi ed loci were later 
confi rmed by GWAS for BMI and for early-onset extreme 
obesity [19,30], suggesting that these loci are associated 
with overall adiposity, rather than specifi cally with body-
fat distribution.

Figure 1. Obesity-susceptibility loci discovered through genome-wide association studies (GWAS) for body mass index (blue), three 
waves of GWAS for waist circumference and waist-to-hip ratio (pink) and two waves of GWAS for extreme and early onset of obesity 
(green). Each Venn diagram represents the loci from one paper, except for papers that discovered only one locus, that is, the fat mass and obesity 
associated gene FTO [14,15,33] and the near-MC4R loci [16,36], for which no Venn diagram was drawn. An additional three BMI-associated loci 
(TOMM40-APOE-APOC1, SREBF2, and NTRK2) were identifi ed using the gene-centric ITMAT-Broad-Candidate Gene Association Resource (IBC) array 
[21]; these are not depicted. Figure modifi ed and updated from Loos [11].
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WHR adjusted for BMI
When the GIANT consortium expanded in 2010, WHR 
(instead of waist circumference) was chosen as the 
parameter used to assess fat distribution [31]. In addition, 
to account for possible influences of overall adiposity, 
WHR was further adjusted for BMI. This meta-analysis 
combined data from 32 GWAS (NGWAS ~77,000), and 
identified 14 WHRadjBMI loci [31]. Seven of the 14 loci 
have a significantly more pronounced effect in women 
than in men [31].

Abdominal subcutaneous and visceral adipose tissue
While WHR is a non-invasive and inexpensive estimate 
of abdominal obesity, it does not allow discrimination 
between SAT and VAT. This distinction is important as a 
propensity to store fat viscerally rather than subcuta
neously (as assessed by VAT/SAT ratio) is metabolically 
more harmful. A GWAS meta-analysis of data on VAT 
and SAT, quantified using computed tomography (CT), 
from more than 10,000 individuals identified three loci 
[32]. The FTO locus was associated with SAT; the 
LYPLAL1 locus, previously identified in association with 
WHRadjBMI, was associated with VAT/SAT ratio; and a 
novel locus near THNSL2 was associated with VAT in 
women but not men [32].

Extreme and early-onset obesity
Individuals with early-onset and extreme obesity might 
be enriched for genetic variants that predispose to 
common obesity in the general population. Thus, GWAS 
comparing extremely obese individuals with lean controls 
might have greater statistical power than typical GWAS 
of quantitative obesity traits in the general population. 
Such GWAS have, to date, identified three additional 
obesity-susceptibility loci, while confirming the FTO, 
near-MC4R, and near MSRA loci [30,33,34].

Common childhood obesity
A meta-analysis of 14 GWAS of childhood obesity, 
defined as a BMI ≥95th percentile for a given age 
(<18 years of age), identified two loci that had not been 
identified before in studies of adults and confirmed seven 
previously identified (adult) BMI loci [35].

Obesity-susceptibility loci identified in populations of 
Indian Asian ancestry
In 2008, a GWAS for waist circumference in 2,684 Indian 
Asians identified the locus near-MC4R [36] at the same 
time that this locus was identified for BMI in Europeans 
[16]. No other or larger GWAS in populations of Indian 
Asian ancestry has been reported to date.

Obesity-susceptibility loci identified in populations of East 
Asian ancestry
The first GWAS in individuals of East Asian ancestry was 
performed in 2009. Genotypes of more than 8,800 Koreans 

were analyzed for association with eight metabolic and 
cardiovascular traits, including BMI and WHR [37]. This 
study confirmed the FTO locus but no new loci were 
identified for BMI [37]. For WHR, a SNP (rs2074356) in 
HECTD4 reached genome-wide significance [37]. While 
common in East Asians - minor allele frequency (MAF) 
11% in CHB (Chinese Hans of Beijing), 20% in JPT 
(Japanese of Tokyo), 15% in Koreans  - this SNP is not 
polymorphic in individuals of European or African 
descent. It is in moderate LD (LD r2

CHB/JPT = 0.58) with the 
Glu504Lys coding variant in ALDH2, which encodes an 
enzyme involved in alcohol metabolism.

In 2012, two GWAS meta-analyses for BMI in East 
Asians were reported, each involving around 27,000 
individuals (Additional file 1; Figure 1) [38,39]. Associa
tions of 11  loci reached genome-wide significance, and 
four of these loci (KLF9, CDKAL1, near GP2 and near 
PCSK1) had not previously been reported as obesity-
susceptibility loci in European ancestry populations 
[38,39]. The previously identified non-synonymous SNPs 
in a candidate gene study of PCSK1 in Europeans [40] 
seem independent of the locus reported in the GWAS of 
East Asian ancestry individuals (LD r2 < 0.10 in both the 
CHB/JPT and CEU (Utah residents with northern and 
western European ancestry) populations). We describe 
the overlap between European and East Asian ancestry 
BMI loci in greater detail below.

Taken together, GWAS in East Asians have identified 
one locus associated with WHR and four loci associated 
with BMI that had not been identified before in 
populations of European ancestry.

Obesity-susceptibility loci identified in populations of 
other ancestry
Two relatively small (NGWAS ~1,800) GWAS for BMI in 
individuals of African ancestry [41,42] and a GWAS of 
1,792 Filipino women [43] confirmed some of the loci 
previously identified in GWAS of European ancestry 
populations, but none were able to identify any new loci. 
A low-density GWAS of 413  Pima Indians identified a 
locus in A2BP1 that is associated with body-fat percen
tage, which was not replicated in Old Order Amish or 
Europeans [44].

Large-scale GWAS meta-analyses will be needed to 
establish more convincingly whether the identified 
obesity-susceptibility loci are specific to these ancestries 
or whether they are shared with other ancestries.

Transferability of obesity-susceptibility loci across 
populations of different ancestry
Since the first GWAS discoveries, numerous studies have 
examined whether the identified obesity-susceptibility 
loci are transferable across populations of other ancestry. 
As more than 90% of the current obesity-susceptibility 
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loci were first identified in populations of European 
ancestry, almost all studies reported to date aimed to 
replicate these European-identified loci in non-European 
ancestry populations. The majority of these replication 
studies limited their analyses to the GWAS-identified 
(index) SNP only. Few examined the wider locus sur
rounding the index SNP to account for potential 
differences in genetic architecture between the different 
ancestries. A major challenge that many studies face is 
the often limited statistical power to replicate associa
tions as sample sizes tend to be relatively small. After all, 
the majority of obesity-susceptibility loci have been 
identified in GWAS meta-analyses of 30,000 to 124,000 
individuals. Hence, large-scale studies will be required to 
confirm or refute with confidence whether a SNP or 
locus associates with obesity-related traits in other-
ancestry populations.

We have focused our review of the transferability of 
obesity-susceptibility loci on observations from larger 
studies (N  > 5,000 or the largest study for a given 
ancestry, typically N  > 1,500) that examined the BMI-
associated loci, for which there are convincing data from 
an already large body of literature. We have also taken 
advantage of the available data from the recent, and 
currently largest, GWAS of BMI in populations of East 
Asian [38,39] and European ancestry [19] to illustrate 
how the SNP-to-SNP versus locus-wide comparison can 
lead to different conclusions.

Transferability assessed by SNP-to-SNP comparisons
Studies that assess the transferability of the obesity-
susceptibility loci by SNP-to-SNP analyses only test 
whether the GWAS-identified SNP shows association 
with obesity-related traits in their population. SNP-to-
SNP analyses are cost-efficient, as only one SNP per locus 
needs to be genotyped. If, however, replication is tested 
in an ancestry that has a different genetic architecture 
(for example, haplotype structure differences or allelic 
heterogeneity) from the ancestry in which the discovery 
was made, then the interpretation of transferability is 
limited. For example, when making a discovery, we 
assume that the GWAS-identified (index) SNP is in 
strong LD with the causal variant (that was not geno
typed) in the discovery population. If replication of this 
index SNP is tested in a second population with a 
different ancestry, it is possible that the LD between the 
index SNP and the causal SNP is weaker in this second 
ancestry population than that in the discovery popula
tion, resulting in a weaker or no association with the 
obesity trait. Yet, other SNPs in the same locus might 
show strong LD with the causal SNP in the second popu
lation, and if tested, they would show association with 
obesity-related traits. If they are not tested for asso
ciation, as is the case in SNP-to-SNP comparisons, one 

may wrongly conclude that the locus does not transfer 
across ancestries. Thus, SNP-to-SNP comparison allows 
confirmation of the transferability of a locus when the 
index SNP shows association in other ancestries. If, 
however, the index SNP shows no association in other 
ancestries, transferability is not refuted. This is an 
important limitation to be kept in mind when inter
preting the replication studies in the literature.

The FTO locus was first identified in European ancestry 
populations in which each additional minor allele 
increases BMI by 0.39 kg/m2 (equivalent to 1,230 g for a 
person 1.7  m tall) and increases the risk of obesity by 
1.2-fold [19]. Of all currently identified loci, the FTO 
locus has the largest effect on obesity-susceptibility and 
its BMI-increasing allele is common in European 
ancestry populations: approximately 18% carry two BMI-
increasing alleles and another 49% carry one BMI-
increasing allele. Even though the effect of this locus is 
the largest known and the allele frequency is common, 
the FTO locus explains only 0.31% of the inter-individual 
variation in BMI (Table  1) [19]. Because FTO was the 
first identified obesity-susceptibility locus, many replica
tion efforts in non-European ancestry populations have 
been conducted. Small sample sizes may have led to 
inconsistent results in early studies, but in the past few 
years, there has been growing and convincing support for 
the transferability of the FTO locus across almost all 
ancestries that have been studied. More specifically, SNPs 
that cluster in the FTO locus have been found to associate 
with increased obesity-susceptibility in the Chinese 
[39,45-51], the Japanese [38,52-55], Koreans [37,56], Fili
pinos [43], the Vietnamese [57], Malays [46,49], Indian 
Asians [45,49,58-63], Pima Indians [64], Hispanics [65-
69] and, although somewhat less consistently, also in 
Africans and African Americans [69-75].

The locus near-MC4R was the second GWAS-identi
fied obesity-susceptibility locus, discovered in European 
[16] and Indian Asian [36] ancestry populations. This 
BMI-increasing allele has a substantially smaller effect on 
BMI (0.23 kg/m2/allele, equivalent to 665 g for a person 
1.70 m tall) and obesity risk (odds ratio 1.11/allele) and is 
much less frequent (5% of Europeans carry two and 36% 
carry one BMI-increasing allele) when compared to the 
FTO locus (Table 1) [19]. The evidence for transferability 
of the near-MC4R locus, although not yet as strong as 
that for the FTO locus, is growing for a number of 
different ancestries, including the Chinese [39,51,76-79], 
the Japanese [38,80], Koreans [37,81], Filipinos [43], 
Indian Asians [60,82,83], Hispanics [84], and Africans 
and African Americans [18,74,85,86].

SNPs identified by the more recent GWAS meta-
analyses, which included more than 30,000 individuals at 
the discovery stage, show much less consistency in SNP-
to-SNP comparisons between ancestries. This is most 
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probably due to too small sample sizes and thus a lack of 
statistical power to confirm associations, but it could also 
be due to differences in the genetic architecture of the 
different ancestry populations.

The recent two GWAS meta-analyses for BMI in East 
Asians reported association results that allowed compre
hensive SNP-to-SNP comparisons [38,39]. More specifi
cally, they provided association results from their 
GWAS-meta-analyses (N > 64,000) for all 32 previously 
GWAS-identified SNPs. In addition, they provided 
results from European ancestry GWAS meta-analyses for 
the newly identified loci in their GWAS (Table  1 and 
Figures 2 and 3). Of the 32 BMI-associated SNPs identi
fied first in European ancestry populations, eight SNPs 
(in or near PRKD1, SLC39A8, GPRC5B, LRP1B, FANCL, 
NRXN3, CADM2 and ZNF608) are not polymorphic in 
East Asians (Table 1 and Figures 2a and 3b). Thus, on the 
basis of the SNP-to-SNP comparison, they are considered 
non-transferable. The associations for the remaining 24 
SNPs with BMI in East Asians are all directionally consis
tent with those observed in European-ancestry popula
tions (Figures  2a and 3a). For 6 of these 24 European 
ancestry-identified loci (in or near FTO, MC4R, BDNF, 
SEC16B, MAP2K5 and ADCY3/RBJ/POMC), associations 
reached genome-wide significance in East Asians and are 
therefore considered to be transferable across European 
and East Asian ancestry (Table 1 and Figures 1 and 2a). 
Even though the transferability of the remaining 18 loci 
identified in European populations seems less clear-cut, 
the effect sizes of 12 of these loci (in or near TMEM18, 
GNPDA2, ETV5, NEGR1, FAIM2, SH2B1, MTCH2, 
TFAP2B, FLJ35779, TMEM160, TNNI3K and RPL27A) 
on BMI in East Asians are comparable to those observed 
for European-ancestry populations (Table 1 and Figure 2a), 
with most reaching nominal significance and some 
approaching genome-wide significance (Table  1). The 
effects of the six other loci (in or near KCTD15, GIPR/
QPTCL, MTIF3, LRRN6C, PTBP2 and NUDT3) are much 
less pronounced (P-values >0.20) in East Asian than in 
European ancestry populations (Table  1 and Figure  2a). 
Thus, of the 32 European-ancestry identified BMI loci, 
SNP-to-SNP comparisons suggest that 18 SNPs (56%) 
show comparable effects on BMI in European and East 
Asian ancestry populations, eight SNPs (25%) are non-
polymorphic in East Asians, and for six SNPs (19%) there 
is as yet no evidence of transferability to East Asian 
ancestry populations.

As some of the BMI loci were identified by a GWAS 
meta-analysis of more than 123,000 European ancestry 
individuals, a larger sample size of East Asian ancestry 
individuals might be needed to provide firmer evidence 
of the transferability of the European ancestry BMI loci. 
Furthermore, as noted above, the SNP-to-SNP compari
son has major limitations as it does not account for 

differences in genetic architecture between the two 
ancestries. This limitation is illustrated by the GIPR/QPTCL 
locus, which was first identified in European ancestry 
populations [19]. At first sight, the GIPR/QPTCL locus 
does not seem to be transferable to East Asian popula
tions as the effect of the SNP (rs2287019) representing 
this locus in European ancestry populations is much less 
pronounced in East Asians [38,39] (Table 1 and Figure 2a). 
However, the GWAS in East Asian ancestry populations 
identified another SNP (rs11671664) in the same GIPR/
QPTCL locus, the effect of which is less pronounced in 
European ancestry populations [19] (Table  1 and 
Figure 2b). The LD between the two SNPs is very low in 
East Asian ancestries (r2

CHB/JPT = 0.08) and modest in Euro
pean ancestries (r2

CEU  = 0.43), which suggests that the 
GIPR/QPTCL locus is an obesity-susceptibility locus in 
both European and East Asian ancestry populations, 
represented by ancestry-specific SNPs that each may be 
in LD with the same causal variant. A more in-depth 
analysis that takes advantage of differences in genetic 
architecture between ancestries will be required to 
pinpoint the causal variant(s).

Besides the GIPR/QPTCL locus, the recent GWAS 
meta-analyses in East Asian ancestry populations identi
fied four BMI-associated loci that had not been identified 
before in large-scale GWAS of European ancestry popu
lations [38,39] (Table  1 and Figures  1 and 2b). SNPs 
representing each of the four loci in East Asian ancestry 
populations show directionally consistent association in 
European ancestry populations (Figures 2b and 3a). For 
the near KLF9 locus, however, the association with BMI 
in European ancestry populations is not significant (P-
value  = 0.45; Table  1 and Figure  2b). For the CDKAL1 
locus, the rs9356744 SNP identified by Wen et al. [39] 
suggests no evidence of transferability to European 
ancestry populations (P-value  = 0.18) (Table  2 and 
Figure  2b). However, the rs2206734 SNP identified by 
Okada et al. [38] would suggest transferability of this 
locus (P-value = 0.005). While the LD between these two 
CDKAL1 SNPs is high in East Asian ancestry populations 
(r2

CHB/JPT = 0.93), it is much more modest in European 
ancestry populations (r2

CEU = 0.36), emphasizing the need 
for locus-wide comparisons (see also next section and 
Figure 4c,d). Even though the effect sizes of the two other 
loci (near GP2 and PCSK1) are relatively small, the asso
ciations reach nominal significance (Table 1 and Figure 2b). 
Taken together, the SNP-to-SNP comparisons suggest 
that two of the four loci identified in East Asian ancestry 
populations show some evidence of transferability to 
European ancestry populations, albeit this evidence is 
not as convincing as for the transferability of European-
identified loci to East Asian ancestries.

In an overall SNP-to-SNP comparison of the 36 BMI-
associated loci (Figure 3), we see that SNPs that were first 
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identifi ed in European ancestry populations have 
generally a larger eff ect and greater explained variance in 
European ancestry populations than in East Asian ances-
try populations and, vice versa, that SNPs fi rst identifi ed 
in East Asian ancestry populations have a larger eff ect 
and explained variance in East Asian than in European 
ancestry populations. Th is is not a surprise and is 
consistent with the fact that SNPs with larger eff ects and 
greater explained variance are statistically more easily 
discovered (Figure  3a,c). Th e frequency of the BMI-
increasing allele of European-identifi ed SNPs tends to be 
higher in European than in East Asian ancestries. 
Interestingly, the frequency of the BMI-increasing allele 
of East Asian-identifi ed SNPs is also higher in European 
than in East Asian ancestry populations (Figure 3b).

Taken together, the SNP-to-SNP comparison suggests 
that around 50% of the BMI-associated loci identifi ed in 
European ancestry populations transfer to East Asian 
ancestry populations and vice versa. However, the non-
transferability of the remaining 50% of BMI-associated loci 
cannot be substantiated because of the relatively small 

sample size and thus the insuffi  cient statistical power of 
the East Asian GWAS meta-analyses to repli cate some of 
the recently identifi ed loci in Europeans, and also because 
of the limitations of the SNP-to-SNP comparison.

Transferability assessed by locus-wide comparisons
In locus-wide comparisons, not only is the GWAS-
identifi ed (index) SNP examined for transferability to 
another ancestry but also the SNPs surrounding the 
index SNP are tested. Locus-wide comparisons are more 
comprehensive and account for diff erences in the genetic 
architecture between ancestries. Th e data needed for 
such comparisons are not, however, always available. For 
example, we showed earlier that of the 32  GWAS-
identifi ed BMI-associated SNPs found in European 
ancestry populations, 8 SNPs were non-polymorphic and 
another 6 showed no convincing evidence of association 
in East Asian ancestry populations. To fi rmly exclude the 
transferability of these 14 loci, not only the index SNP 
but also all other SNPs in the region must be examined, 
but these data are not publicly available at present.

Figure 2. Eff ect sizes for (a) t he 32 BMI-associated SNPs identifi ed in European ancestry populations and (b) the fi ve BMI-associated SNPs 
identifi ed in East Asian ancestry populations. The lighter shaded bars represent the eff ect sizes (and 95% confi dence interval (CI)) in European 
ancestry populations [19] (in both (a) and (b)), the darker shaded bars represent the eff ect sizes (and 95% CI) in East Asian ancestry populations 
[38,39]. Data were obtained and adapted from Wen et al. [39] and are presented in Table 1. Asterisks indicate SNPs that reached genome-wide 
signifi cance in GWAS meta-analyses of East Asian ancestry populations [39]. SD, standard deviation.
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Using the publicly available data from the latest GWAS 
meta-analysis for BMI from the GIANT consortium [19], 
we illustrate how the BMI-associated loci identifi ed in 
East Asian ancestry populations, of which the SNP-to-
SNP transferability to European ancestry populations 
was doubtful, do show evidence of transferability when 
the whole locus is examined. Th e fi rst example focuses on 
the GP2 locus, of which the rs12597579 SNP is associated 
with BMI at genome-wide signifi cant levels in East 
Asians, whereas the association in European ancestry 
populations, though directionally consistent with that in 
East Asians, is not as convincing (P = 9 × 10-3; Table 1). 
When examining the wider locus, however, SNPs at less 
than 325 kb downstream of GP2-rs12597579 show genome-
wide signifi cant association in European ancestry indi-
viduals, of which the most signifi cant SNP (rs12444979 
near GPRC5B) is not polymorphic in East Asians (Table 1 
and Figure  4a,b). Th us, although the SNP-to-SNP com-
parisons discussed earlier suggested possible trans fera-
bility of GP2-rs1257579 to Europeans and no evidence of 
transferability of GPRC5B-rs12444979 to East Asians 
(Table 1 and Figure 2), a locus-wide comparison depicts a 
more comprehensive picture, suggesting that GP2 and 
GPRC5B might be part of the same locus, which possibly 
represents one causal gene that is common to European 
and East Asian ancestry populations. Interestingly, in 
European ancestry populations, GPRC5B-rs12444979 is 
in perfect LD with a copy number variant [19].

Our second example focuses on rs9356744 in CDKAL1, 
which showed genome-wide signifi cant association with 
BMI in East Asian ancestry populations [38,39] but not in 
European ancestry populations (P-value  = 0.19) [19] 
(Table 1 and Figures 2 and 4). When examining the locus 
surrounding rs9356744, however, there is evidence that 
other SNPs that are not in LD with rs9356744 are also 
associated with BMI in European ancestry populations 

(P-values <10-3) [19] (Figure  4d), supporting the 
transferability of the CDKAL1 locus.

More rigorous analyses of each of the extended loci will 
be needed to establish transferability across ancestries, 
but these examples of locus-wide examinations provide 
preliminary insights to suggest that the transferability of 
obesity-susceptibility loci across ancestries might be 
more extensive than is suggested by SNP-to-SNP 
comparisons.

Fine mapping of obesity-susceptibility loci using 
data from populations of diff erent ancestry
Diff erences in the genetic architecture and LD structure 
of diff erent ancestries can help to narrow down the locus 
in order to pinpoint the causal gene or variants, at least 
for loci that are transferable across populations of 
diff erent ancestry. As the LD between SNPs in African 
ancestry populations is generally less extensive than that 
in European and East Asian ancestry populations, 
African populations are particularly suited for fi ne-
mapping eff orts. To date, the FTO locus has been the 
focus of most fi ne-mapping eff orts [70,75,87], mainly 
because, of all the obesity-susceptibility loci, FTO has 
SNPs that show the strongest associations with obesity-
related traits, and the FTO locus is one of the most 
generally transferable obesity-susceptibility loci. Th e 
most recent and largest fi ne-mapping project for the FTO 
locus has been reported by the PAGE (Population Archi-
tecture using Genomics and Epidemiology) study group 
[75]. Th e FTO locus is represented by a cluster of SNPs in 
the fi rst intron of FTO at chr16q12.2. In the PAGE study, 
the genotypes of 3,756 SNPs across a 646-kb region in the 
fi rst intron were interrogated for association with BMI in 
more than 20,000 African Americans [75]. Th e most 
signifi cant association with BMI in African Americans 
was observed for rs56137030. Th is SNP represents a 

Figure 3. SNP-to-SNP comparison of (a) eff ects on BMI, (b) frequency of BMI-increasing alleles, and (c) explained BMI variance in East 
Asian ancestry populations (y-axis) and European ancestry populations (x-axis) of the 32 BMI-associated loci identifi ed in European 
ancestry populations (blue diamonds) and fi ve BMI-loci additionally identifi ed in East Asian ancestry populations (green squares). Data 
were obtained and adapted from Wen et al. [39] and are presented in Table 1. SD, standard deviation.
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cluster (r2
CEU  >0.50) of 103 SNPs in Europeans, but in 

African Americans - due to weaker correlations between 
SNPs - this cluster includes only 29 SNPs, spanning 
44.5  kb [75]. Six of the 29 SNPs locate within intronic 
regulatory elements, two of which are predicted to have 
allele-specifi c binding affi  nities for diff erent transcription 
factors [75].

Th is example illustrates the great value of locus-wide 
comparisons using populations of diff erent ancestries. 
Th e weaker the LD structure and the larger the sample 
size of the other-ancestry population, the greater the 

power to narrow-down a locus. It should be noted that 
this approach requires the disease-locus to be trans-
ferable across the ancestries.

Conclusions and future steps
Using the data currently available, we have shown that of 
all GWAS-identifi ed loci, at least the FTO and near-
MC4R loci seem to aff ect obesity-susceptibility in a wide 
range of ancestries. While much less information is 
available for other obesity-susceptibility loci, SNP-to-
SNP comparisons of associations between European and 

Figure 4. Regional plots of (a,b) the GP2/GPRC5B and (c,d) the CDKAL1 loci in East Asian ancestry populations [39] and European ancestry 
populations, respectively [19]. SNPs are plotted by position on the chromosome against association with BMI (-log10 P-value). Recombination 
rates (from HapMap) are plotted in blue to refl ect the local LD structure. The SNPs surrounding the most signifi cant SNP (in purple) are color coded 
to refl ect their LD with this SNP (r2 values from the HapMap CHB/JPT and CEU data, respectively).
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East Asian ancestry populations suggest that at least half 
of the BMI-associated loci are shared across these two 
ancestries. Locus-wide comparisons suggest that the 
transferability might be even more extensive, but more 
rigorous analyses with larger samples will be required to 
establish these preliminary observations more firmly. The 
transferability of these loci is not unexpected: we might 
speculate that the general physiological pathways 
underlying obesity-susceptibility are shared across popu
lations of different ancestries, whereas ancestry-specific 
susceptibilities are more likely to be caused by low-
frequency variants that have not yet been identified. With 
the new genotyping arrays that focus on low-frequency 
and rare variants, studying populations of diverse ances
try will become even more important as such variants are 
more likely to be ancestry-specific.

At present, the publicly available data on the genetic 
susceptibility to obesity in non-European ancestry popu
lations is still limited. More and larger-scale collabora
tions, involving more ancestrally diverse populations 
with genome-wide genotype data of common and low-
frequency variants, will be needed to establish the trans
ferability of obesity-susceptibility loci to other ancestries. 
Furthermore, cross-ancestry comparison has the poten
tial to fine-map loci that harbor multiple genes and 
eventually to pinpoint one or a few genes for functional 
follow-up analyses. Fine-mapping of loci is a critical step 
in the translation of GWAS discoveries into functional 
research, and more large-scale efforts such as those for 
the FTO locus by the PAGE study will be important. 
Eventually, studying genetic susceptibility across popula
tions of different ancestry will contribute to a better 
understanding of the mechanisms underlying obesity at a 
global level. Furthermore, understanding similarities and 
differences in genetic susceptibility across populations of 
diverse ancestries might eventually contribute to a more 
targeted prevention and customized treatment of obesity.
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