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Background: Korean Red Ginseng (KRG) is a traditional herbal medicine made by steaming and drying
fresh ginseng. It strengthens the endocrine and immune systems to ameliorate various inflammatory
responses. The cyclooxygenase-2 (COX-2)/prostaglandin E2 pathway has important implications for
inflammation responses and tumorigenesis. Peroxisome proliferator-activated receptor gamma (PPARg)
is a transcription factor that regulates not only adipogenesis and lipid homeostasis, but also angiogenesis
and inflammatory responses.
Methods: The effects of the KRG on inhibition of hypoxia-induced COX-2 via PPARg in A549 cells were
determined by luciferase assay, Western blot, and/or quantitative reverse transcription-polymerase chain
reaction (qRT-PCR). The antimigration and invasive effects of KRG were evaluated on A549 cells using
migration and matrigel invasion assays.
Results and conclusion: We previously reported that hypoxia-induced COX-2 protein and mRNA levels
were suppressed by KRG. This study examines the possibility of PPARg as a cellular target of KRG for the
suppression of hypoxia-induced COX-2. PPARg protein levels and PPARg-responsive element (PPRE)-
driven reporter activities were increased by KRG. Reduction of hypoxia-induced COX-2 by KRG was
abolished by the PPARg inhibitor GW9662. In addition, the inhibition of PPARg abolished the effect of
KRG on hypoxia-induced cell migration and invasion.
Discussion: Our results show that KRG inhibition of hypoxia-induced COX-2 expression and cell invasion
is dependent on PPARg activation, supporting the therapeutic potential for suppression of inflammation
under hypoxia. Further studies are required to demonstrate whether KRG activates directly PPARg and to
identify the constituents responsible for this activity.
� 2016 The Korean Society of Ginseng, Published by Elsevier Korea LLC. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction enhanced by these special processes, mostly due to changes in the
Ginseng is a popular herbal medicine that has been used for over
2,000 y in Oriental countries. Its use is not confined to Asia but has
expanded to Western countries as one of the top 10 best-selling
herbs [1]. This popularity and its worldwide consumption indi-
rectly demonstrate its efficacy, and accumulating scientific evidence
shows that ginseng has awide range of pharmacological activities in
the cardiovascular, endocrine, immune, andcentral nervous systems
[2]. It is especially well established that ginseng ameliorates in-
flammatory responses [3e5].Datahave shown that ginsenosides are
pharmacological compounds with antiinflammatory and anticarci-
nogenic effects both in vivo and in vitro [6,7].

Red ginseng is made by steaming and drying fresh ginseng. The
pharmacological efficacy of Korean ginseng is known to be
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characteristics of the constituent ginsenosides [8,9]. During the
steaming process, seven ginsenosides (Rg1, Re, Rb1, Rc, Rb2, Rb3,
and Rd) decreased, while five ginsenosides (Rh1, Rg2, 20R-Rg2, Rg3,
and Rh2) increased [10].

Hypoxia is a state of reduced overall tissue oxygen availability
and a hallmark of solid tumors that leads to cell invasion and
metastasis [11]. Cyclooxygenase-2 (COX-2) is induced by various
stimuli such as lipopolysaccharide (LPS), cytokines, hypertonicity,
and hypoxia [12e15]. COX-2 increases the metastatic potential of
cancer cells, and silencing COX-2 inhibits metastasis and delays
tumor onset in poorly differentiated metastatic cancers [16,17].
Mammary epithelial cells express peroxisome proliferator-
activated receptor gamma (PPARg), and its signaling is critical
during breast tumorigenesis and correlated with COX-2
ity, Kwang-Jin-Gu, Seoul 05006, Republic of Korea.
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expression [18]. These observations indicate the importance of
COX-2 inhibition in preventing hypoxia-induced cell invasion.

PPARg, a member of a nuclear receptor superfamily, hetero-
dimerizes with the retinoid X receptor and activates transcription
by binding to the PPAR response elements of its target genes [19].
Endogenous ligands for PPARg include fatty acids and prostanoids.
PPARg regulates adipogenesis by differentiating adipocytes, lipid
metabolism, inflammation, and angiogenesis [20]. PPARg regulates
COX-2 gene expression through PPAR response elements within the
promoter of COX-2 [21,22]. However, depending on the cell type,
PPARg can both activate and inhibit COX-2 through PPARg-depen-
dent and -independent mechanisms [23e25]. Continuous research
is required to understand these complex phenomena. PPARg-acti-
vating natural products and plant extracts have been extensively
sought after and studied because of their great potential for use in
the treatment of a variety of metabolic syndromes [26,27].

We previously showed that Korean Red Ginseng (KRG) effi-
ciently blocks hypoxia-induced COX-2 mediated by sirtuin-1 (SIRT-
1), the pathway of which differs from that of dexamethasone [28].
This provides scientific evidence of KRG being effective for the
suppression of the inflammatory response and tumorigenesis un-
der hypoxia through mechanisms other than those of steroids. We
present herein further evidence that KRG suppresses hypoxia-
induced COX-2 and is dependent on the PPARg signaling pathway
and that PPARg activation by KRG may reduce the tumorigenesis of
pulmonary epithelial cells.

2. Materials and methods

2.1. Materials

KRG was kindly supplied by the Korea Ginseng Cooperation
(Daejeon, Korea). KRG is prepared from roots of 6-yr-old KRG.
Voucher specimen (KGC No. 201-3-1081) of KRG was deposited at
the herbarium located at KGC Central Research Institute (Daejeon,
Korea). Yield of KRG extract was 75%. The water content of the
pooled extract was 36% of total weight. Phytochemical character-
istics of KRG with standard ginsenosides were identified by HPLC
analysis as reported previously [29,30]. HPLC analysis result of
standard ginsenosides is provided by Korea Ginseng Cooperation
[28]. The ginsenoside content in KRG is 7%, and it is composed of
major ginsenosides (G-Rg1, 1.79 mg/g; G-Re, 1.86 mg/g; G-Rf,
1.24 mg/g; G-Rh1, 1.01 mg/g; G-Rg2s, 1.24 mg/g; G-Rb1, 7.44 mg/g;
G-Rc, 3.04 mg/g; G-Rb2, 2.59mg/g; and G-Rd, 0.91mg/g), and other
minor ginsenoside components [29,30]. GW9662 and celecoxib
were purchased from Sigma (St. Louis, MO, USA). T0070907 was
purchased from Selleckchem (Houston, TX, USA). Fetal bovine
serum (FBS), Trizol Reagent, and penicillin/streptomycin were
purchased from GIBCO Invitrogen (Grand Island, NY, USA). Anti-
COX-2 was obtained from Cayman Chemical (Ann Arbor, MI,
USA). Anti-b-actin was purchased from Sigma. Anti-sirtuin-1 (SIRT-
1), anti-PPARg and anti-peroxisome proliferator-activated receptor
gamma coactivatior-1 alpha (PGC-1a) was purchased from Santa
Cruz Biotechnology (Santa Cruz, CA, USA).

2.2. Cell culture and hypoxic conditions

Human pulmonary epithelial A549 cells were maintained in
Roswell Park Memorial Institute medium (RPMI) containing 10%
FBS and penicillin/streptomycin. Cells were grown at 37�C in a
humidified atmosphere of 95% air/5% CO2 and fed every 2e3 d.
Before treatment, the cells were washed with phosphate-buffered
saline and cultured in RPMI/5% charcoaledextran stripped FBS
(CD-FBS) for 2 d. For the hypoxic condition, cells were incubated at
a CO2 level of 5% with 1% O2 balanced with N2 using a hypoxic
chamber (Thermo Fisher Scientific, Waltham, MA, USA). KRG stock
was prepared at 10 mg/mL in phosphate buffer saline and diluted
with media to 1 mg/mL just prior to use and sterilized by filtration
with a 0.22 mm bottle top filter (Thermo Fisher Scientific).

2.3. Transfection and luciferase assays

A549 cells were transiently transfected with plasmids by using
the polyethylenimine (Polysciences, Warrington, PA, USA). Lucif-
erase activity was determined 48 h after treatment with an Auto-
Lumat LB9507 luminometer (EG & G Berthold, Bad Widbad,
Germany) using the luciferase assay system (Promega Corp., Madi-
son, WI, USA) and expressed as relative light units. PPARg-respon-
sive element-Luciferase (PPRE-Luc), a firefly luciferase reporter
construct containing PPRE-elements, was kindly provided Dr. Ron
Evans (The Salk Institute, San Diego CA, USA).

2.4. Reverse transcription-polymerase chain reaction

Total RNA was extracted using Trizol Reagent according to the
manufacturer’s instruction. To synthesize first strand cDNA, 3 mg
total RNA was incubated at 70�C for 5 min with 0.5 mg of random
hexamer and deionized water (up to 11 mL). The reverse tran-
scription reactionwas performed using 40 units of MoloneyMurine
Leukemia Virus (M-MLV) reverse transcriptase (Promega Corp.) in
5� reaction buffer (250 mmol/L Tris-HCl; pH 8.3, 375mM KCl,
15mM MgCl2, 50mM dithiothreitol (DTT)), RNase inhibitor at 1
unit/mL, and 1mM dNTP mixtures at 37�C for 60 min. Real-time
polymerase chain reaction (PCR) was performed with STEP ONE
(Applied Biosystems, Foster City, CA, USA) using a SYBR green
premix according to the manufacturer’s instructions, as reported
previously [31e33]. The primers used were: b-actin sense primer,
50-CAAATGCTTCTAGGCGGACTATG-30; b-actin anti-sense primer, 50-
TGCGCAAGTTAGGTTTTGTCA-30; COX-2 sense primer, 50-TGAA-
GAACTTACAGGAGAAAA-30; COX-2 anti-sense primer, 50-TACCA-
GAAGGGCAGGATACA-30. Using the comparative threshold cycle
(Ct), relative expression was calculated and normalized by the ex-
pressions of b-actin from the same samples.

2.5. Western blot analysis

Protein was isolated in lysis buffer (150mM NaCl, 50mM Tris-
HCl, 5mM EDTA, 1% Nonidet P-40, 0.5% deoxycholate, 1% SDS)
with protease inhibitor cocktail (Sigma) on ice for 1 h and then
centrifuged for 20 min at 13,000g. Supernatant was collected and
protein concentrations were measured using the Bradford method
(Bio-Rad, Hercules, CA, USA). Proteins were dissolved in sample
buffer and boiled for 5 min prior to loading onto an acrylamide gel.
After SDS-PAGE, proteins were transferred to a polyvinylidene
difluoride membrane, blocked with 5% nonfat dry milk in Tris-
buffered saline containing 0.1% Tween-20 (TBST) for 60 min at
room temperature. The membranes were incubated for 2 h at room
temperature with antibody. Equal lane loading was assessed using
b-actin monoclonal antibody (Sigma). After washing with TBST,
blots were incubated with 1:5,000 dilution of the horseradish
peroxidase conjugated-secondary antibody (Invitrogen, Grand Is-
land, NY, USA), and washed again three times with TBST. The
transferred proteins were visualized with an enhanced chem-
iluminescence detection kit (GE Healthcare Life Sciences, Pitts-
burgh, PA, USA).

2.6. Cell migration and invasion assays

The migration assay was performed with transwell inserts that
have 6.5 mm polycarbonate membranes with 8.0 mm pores
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(Corning Inc., NY, USA). Matrigel invasion assay was performed
using membranes coated with matrigel matrix (BD Science, Sparks,
MD, USA). A549 cells were seeded into the upper chamber in
serum-free media. The lower chambers consisted of RPMI media
containing 10% FBS. After incubation under normoxia or hypoxia for
24e48 h, noninvasive cells present on the upper surface of the
membrane were scraped with cotton swabs and the invasive cells
present on the lower side of the membranewere fixed with ice cold
methanol, stained with 0.1% crystal violet. The cells that migrated
and invaded to the lower side of the filter were observed using a
light microscope and counted.

2.7. Statistical analysis

All data were analyzed and expressed as means and standard
deviations. The two-tailed, unpaired Student t test was applied
using SPSS software (version 23.0; IBM, Armonk, NY, USA). The t
test was used to compare data between the hypoxia and KRG-
treated groups. The criterion for statistical significance was
p < 0.05.

3. Results

3.1. KRG induces PPARg and inhibits hypoxic induction of COX-2
expression in A549 cells

COX-2 is transcriptionally induced by hypoxia and has been
implicated in tumor progression and angiogenesis in tumor cells.
We have previously shown that KRG inhibits COX-2 expression
under hypoxia in A549 lung cancer cells, where COX-2 is also
Fig. 1. Korean Red Ginseng (KRG) induces peroxisome proliferator-activated receptor gamm
2,000 mg/mL for 24 h under hypoxia and analyzed by Western using indicated antibodies. (
luciferase reporter gene. The following day, A549 cells were cultured in medium containin
antagonist T0070907 (5mM) for 48 h and luciferase activities were determined. (C) A549 c
Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay was performed. All ex
strongly implicated in tumorigenesis [28]. In the course of
studying the mechanism of KRG inhibition of COX-2 under hyp-
oxia, the protein levels of PPARg were examined. A549 cells were
preincubated with KRG for 1 h and cotreated with hypoxia. KRG
at doses of 500e2,000 mg/mL increased PPARg protein levels. At
the same time, as observed previously, KRG efficiently blocked
the expression of hypoxia-induced COX-2 protein (Fig. 1A). KRG at
doses of 100e2,000 mg/mL activated PPARg luciferase reporter
activity. To confirm that the activities of KRG are PPARg-medi-
ated, we cotreated the cells with the PPARg antagonist T0070907
at a concentration of 5mM, which is enough to block almost all the
PPARg on the cells. A known PPARg agonist, rosiglitazone, was
used as a positive control. The transcriptional activation of the
reporter plasmid by KRG was blocked by T0070907, indicating
that luciferase gene activation is PPARg-specific (Fig. 1B). The
concentration of 100e500 mg/mL KRG was chosen as the treat-
ment condition in further experiments because KRG exerted its
efficacy with no effect on cell viability at these concentrations
(Fig. 1C).

To further confirm the involvement of PPARg in inhibiting the
hypoxic induction of COX-2, COX-2 was examined after treatment
with another PPARg antagonist, GW9662. In accordance with our
previous report, SIRT-1 levels were increased with KRG treatments.
The enhanced protein levels of SIRT-1, PPARg, and COX2 were
blocked by GW9662, suggesting that the response involves PPARg
(Fig. 2A). Induction of COX-2 occursmostly at the transcription level.
Inhibition of COX-2 at the mRNA level by 500 mg/mL KRG was
blocked by GW9662 (Fig. 2B). These results indicate that the inhi-
bition of hypoxia-induced COX-2 regulation by KRG at the tran-
scription and translation levels in A549 cells is dependent on PPARg.
a (PPARg) activity and its expression. (A) A549 cells were treated with KRG at 100e
B) A549 cells were transiently transfected with the PPARg-responsive element (PPRE)-
g vehicle or KRG (100e2,000 mg/mL) or PPARg agonist rosiglitazone (1mM) or PPARg
ells were incubated with KRG at 10e2,000 mg/mL for 24 h under hypoxia and 3-(4,5-
periments were repeated at least three times.



Fig. 2. Korean Red Ginseng (KRG) downregulates cyclooxygenase-2 (COX-2) expression through peroxisome proliferator-activated receptor gamma (PPARg) activation. (A) A549
cells were pretreated with KRG (100 mg/mL or 500 mg/mL) and/or GW9662 (5mM) for 1 h before treatment with hypoxia for 24 h. Total proteins were prepared and protein levels of
sirtuin-1 (SIRT-1), PPARg, and COX-2 were determined by western blot. (B) A549 cells were pretreated with KRG (500 mg/mL) and/or GW9662 (5mM) for 1 h before treatment with
hypoxia for 24 h. Total RNA from A549 cells were analyzed for COX-2 mRNA expression by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). All experiments
were repeated at least three times.
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3.2. KRG inhibits cellular migration and invasion of A549 cells
under hypoxia

To determine whether hypoxia induces cell migration via COX-
2edependent PGE2 production in A549 cells, cell migration was
examined with the COX-2 inhibitor, celecoxib. Hypoxia-induced
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cell migration was inhibited by celecoxib, suggesting that COX-2
plays an important role in hypoxia-induced cell migration
(Fig. 3A). KRG decreased the migration of A549 cells under hypoxic
conditions by approximately 50%. KRG inhibition of cell migration
was significantly blocked by GW9662 and T0070907, indicating
that the effects of KRG on hypoxia-induced migration are mediated
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by PPARg (Fig. 3B). Similarly, hypoxia enhanced A549 cell invasion
and KRG treatments significantly decreased this effect (Fig. 4). In-
hibition of invasiveness was absent in the presence of GW9662,
indicating that the anti-invasive effects of KRG under hypoxic
conditions are dependent on PPARg. The invasiveness was absent in
the presence of PPARg inhibitors, indicating that the anti-invasive
properties of KRG under hypoxic microenvironments require
PPARg activation and occur via a COX-2/PGE2-dependent pathway.
However, this migration and invasionwere also inhibited by SIRT-1
inhibitors [28], suggesting that this cellular movement is a
complicated phenomenon relying on multiple factors.

4. Discussion

We have recently reported that SIRT-1 is an important player in
the suppression of hypoxia-induced COX-2 by KRG in A549 cells
[28]. We suggested that SIRT-1 activation by KRG has potential
therapeutic value in the suppression of inflammation and in cancer
therapies under hypoxic conditions. COX-2 is rapidly induced by
various stimuli such as LPS, high osmolarity, and hypoxia, and plays
a pivotal role in the production of proinflammatory eicosanoids.
High levels of PGE2 synthesized by COX-2 are an important medi-
ator in airway inflammatory responsiveness and angiogenesis
involved in tumor development [34]. Many reports have shown
that KRG possesses antiinflammatory and antioxidant properties
both in vitro and in vivo [35,36]. However, better understanding of
the molecular mechanisms underlying the inhibitory effect of KRG
on hypoxia-induced COX-2 is still needed. In this study, we exam-
ined the PPARg-mediated KRG inhibition of COX-2 under hypoxia
and showed that PPARg activation is responsible for COX-2 sup-
pression under hypoxia.
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Peroxisome Proliferator-Activated Receptors (PPARs) is a ligand-
activated transcription factor and regulates diverse biological
functions including adipocyte differentiation, lipogenesis, inflam-
mation, and insulin sensitivity. PPARg is one pathway that modu-
lates the thriving of cancer cells by multiple complex pathways,
thereby sustaining uncontrolled tumor growth. Endogenous li-
gands including prostaglandins (15d-PGJ2) and synthetic ligands
including the antidiabetic thiazolidinediones are known to bind
PPAR. Upon ligand binding, PPAR is modified by phosphorylation,
sumoylation, ubiquitination, and acetylation. PPARg is acetylated
by CBP/p300 and deacetylated by SIRT-1 [37].

Some PPARg-activating ligands that modulate inflammation
have been discovered from natural products such as curcumin,
alpha-linolenic acid, magnolol, and orange peel extract [38e41]. A
recent report showed that fisetin, a flavonol present in vegetables
and fruits, upregulates adiponectin with antiobesity, antidiabetic,
and antiatherosclerotic functions through the activation of SIRT-1
and PPAR [42]. Ginsenosides from ginseng showed differential
response to PPAR activation. Ginsenosides Re and Rg1 showed
inhibitory effects on the differentiation of 3T3-L1 adipocytes [43].
However, ginsenosides Rb2, Rb3, and Rc displayed promotional
activities [44]. Ginsenoside-Rg3 induces inhibition of adipogenesis
through the activation of AMP-activated protein kinase (AMPK) and
the inhibition of PPARg transcriptional activity in 3T3-L1 adipo-
cytes [45]. Protopanaxatriol is a novel PPARg antagonist with
moderate binding activity [44]. By contrast, Ginsenoside-Rb1 binds
to PPARg, attenuates central inflammation and leptin resistance,
reduces the release of free fatty acid, and alleviates the ectopic
deposit of triglyceride by upregulating the expression of perilipin in
adipose tissue [26]. Ginsenoside-Re reduces insulin resistance
through activation of PPARg pathway and inhibited the production
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of inflammatory cytokine [43]. Ginsenoside-Rg1 can increase the
insulin-degrading enzyme expression in the hippocampus by
upregulating PPARg, attenuated hippocampal histopathological
abnormalities, and improved learning and memory in a rat model
of Alzheimer’s disease [46].

Our study showed that total ginseng extract exhibited PPARg
and SIRT-1 activationwith simultaneous suppression of COX-2. Our
observation was derived from the sum of activity from each
component and interactions between the components. These re-
sults will aid our understanding of how ginseng is beneficial in the
treatment of metabolic disorders. Our data imply that KRG inhibits
COX-2 expression by increasing SIRT-1 deacetylase activity, leading
to increased interactions with the PPAR complex and ultimately
transcriptional activation. The activation of SIRT-1 by KRG may
deacetylate PGC-1a, which in turnmay increase its interactionwith
the PPAR complex to suppress COX-2 transcription. Our ongoing
study is designed to characterize the COX-2 suppression and PPARg
activation functions of each ginsenoside in A549 cells, as used in
this study, and 3T3L1 preadipocytes. Our findings are important for
the clinical usage of ginseng and provide a mechanistic explanation
of its effects on metabolic disorders and cancer.
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