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Abstract

Metastasis is often accompanied by radio- and chemotherapeutic resistance to anticancer 

treatments and is the major cause of death in cancer patients. Better understanding of how cancer 

cells circumvent therapeutic insults and how disseminated cancer clones generate life-threatening 

metastases would therefore be paramount to the development of effective therapeutic approaches 

for clinical management of malignant disease. Mounting reports over the past two decades have 

provided evidence for the existence of a minor population of highly malignant cells within liquid 

and solid tumors, which are capable of self-renewing and of regenerating secondary growths with 

the heterogeneity of the primary tumors from which they derive. These cells, called tumor-

initiating cells or cancer stem cells (CSCs) exhibit increased resistance to standard radio- and 

chemotherapies and appear to have mechanisms that enable them to evade immune surveillance. 

CSCs are therefore considered to be responsible for systemic residual disease after cancer therapy, 

as well as for disease relapse. How CSCs develop, the nature of the interactions they establish with 

their microenvironment, their phenotypic and functional characteristics, as well as their molecular 

dependencies have all taken center stage in cancer therapy. Indeed, improved understanding of 

CSC biology is critical to the development of important CSC-based anti-neoplastic approaches 

that have the potential to radically improve cancer management. Here, we summarize some of the 

most pertinent elements regarding CSC development and properties, and highlight some of the 

clinical modalities in current development as anti-CSC therapeutics.
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Despite substantial advances in cancer diagnosis and treatment, the long-term survival rate 

for many cancer patients remains dismal.1 More than 90% of cancer-related mortality is 

ascribed to disease resurgence months or years after adjuvant therapy, either in the form of 

local recurrence or in the form of metastatic spread, which are typically refractory to 

existing treatment modalities (see Table 1).1,2 Novel anti-neoplastic therapeutic approaches 

aimed at eradicating residual relapsing disease are therefore sorely needed, but remain to be 

defined.

The cornerstone of current cancer management approaches relies on early detection and on 

chemotherapeutic and radiologic treatment of diagnosed neoplasms. Although detection 

methodologies have helped significantly in reducing the lethality associated with cancers 

such as prostate or breast neoplasms, they have had limited widespread efficacy in many 

others. Indeed, efforts to diagnose cancers early in their development are still hampered by 

serious limitations in technologies that cannot detect small tumorigenic growths or 

disseminated microscopic disease. Similarly, classical anti-neoplastic treatments, which 

target highly proliferating cancer cells, non-discriminately target bystander normal cells, 

such as hair follicle cells or gut-regenerating cells, causing high degree of systemic toxicity. 

In addition, these systemic therapies, are, to a large extent, inefficient in eradicating 

disseminated disease, and often result in the emergence of resistance.

The discovery that unchallenged human primary tumors harbor subpopulations of cancer 

cells that are distinguished from bulk populations by exclusive abilities to self-renew and 

generate heterogeneous secondary growths refocused attention on understanding the 

fundamental biology of how these cells emerge, and on identifying means to kill them. Such 

tumor-initiating cells (TICs), dubbed cancer stem cells (CSCs), which pre-exist already in 

untreated tumors, were found to be amplified in recurrent disease, and were shown to be 

highly malignant and with augmented tolerance to existing radio- and chemotherapeutics.3 

Indeed, it is widely accepted that CSCs represent the root cause for metastatic dissemination 

and disease relapse in cancer patients. As such, the identification of effective CSC-specific 

therapeutics has taken center stage in the development of anti-neoplastic therapies aimed at 

eradicating disease relapse.4

The molecular underpinnings of the CSC state have been extensively reviewed over the past 

several years, for example, by Bandhavkar,5 Kuhlman et al.,6 and others.7–17 The purpose of 

this article is to briefly summarize and highlight some of the most pertinent concepts 

surrounding CSC biology, as well as current and emerging therapies targeting CSCs. 

Bulleted format has been used to provide a more concise presentation of these broad topics 

to clinicians and researchers interested in an introduction to CSC research.

New anti-neoplastic therapeutic approaches are crucial to improve long-term survival in 

patients with cancer. Cancer stem cells (CSCs), a subpopulation of tumor cells that self-

renew and drive tumorigenesis, are emerging as therapeutic targets that can potentially 

revolutionize cancer patient management.
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Revival of the cancer stem cell hypothesis

• In the 1860s, Rudolf Virchow observed microscopic similarities between cancer 

(in this case, teratocarcinoma) and developing embryonic tissues; this led him to 

postulate that cancers derive from embryonic-like cells.18

• The concept that cancers originate from cells with stem cell characteristics was 

re-formulated by Julius Cohnheim.19,20 His theory, termed “embryonal rest 

hypothesis”, stated that cancers initiate from tissue-resident stem cells left over 

from embryogenesis, which remain dormant in such tissues until reawakened 

later in life to give rise to cancer.

• Cancer’s potential origin from embryonic/germinal-like progenitor cells that are 

inadvertently stimulated to grow uncontrollably in adult tissues was again 

entertained by Durante,21 Beard,22 Rippert,23 and Rotter.24

• The idea that tumors contain cancer populations with special malignant 

properties was re-visited by many researchers, such as Hewitt in 1953, who 

noted that variations in tumor-initiating potential and transplantability exist 

among varying inocula of sarcoma suspensions,25 or by McCulloch et al. in 

1971,26 who found that tumor colony-forming cells possessed different growth 

characteristics than their normal counterparts, and that the so-called tumor stem 

cells represented a very small percentage (0.01–1%) of the whole tumor 

population.

• In landmark studies published in 1989, 1994, and 1997,27–29 John Dick’s group 

used a model of acute myeloid leukemia (AML) to definitively show that AML 

was hierarchical in nature, that cells capable of serially initiating human AML in 

non-obese diabetic mice with severe combined immunodeficiency disease were 

rare, and that they possessed self-renewal, proliferative, and differentiation 

capacities consistent with “true” leukemia stem cells.

• Chia-Cheng Chang and colleagues isolated two types (type I and II) of 

antigenically and phenotypically different normal epithelial cells from human 

breast tissue, and showed that only one type (type I, with luminal characteristics) 

is prone for transformation by SV40.30 Interestingly, type I could be stimulated 

to generate type II cells (with basal characteristics), prompting the hypothesis 

that cancers may originate from specialized progenitor-like cells pre-existing in 

solid tissues.

• Using a model in which human breast cancer cells were grown in 

immunocompromised mice, Al-Hajj and colleagues demonstrated that not all 

cancer cells within carcinomas are equally tumorigenic and that only a small 

subset of cells within such tumors is able to generate secondary tumors when 

transplanted.31 These observations suggested that solid cancers are, like liquid 

cancers,28 also hierarchical in nature, and harbor a small proportion of so-called 

tumor-initiating CSCs (also termed TICs).
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• Cancer cells from several species were shown to exhibit stark activation patterns 

in molecular networks that otherwise function as critical regulators of 

embryonic, adult, and induced pluripotent stem cell homeostasis.32–35

• TICs/CSCs have now been identified in multiple malignancies, including 

multiple leukemias and various solid tumors36 such as lung,37 colon,38 prostate,
39 ovarian,40 brain,41 and skin cancers.42

• Tumor transplantation studies in histocompatible mice suggested that CSCs can 

be more abundant than previously estimated, constituting as much as 10% in 

leukemias and lymphomas,43 and as much as 25% in melanomas.44

• The proportions of CSCs within tumors correlate positively with poor prognosis.
45

A better understanding of CSC biology will not only lead to conceptual advances in 

understanding tumour etiology, but will also catalyze the development of important CSC-

based anti-neoplastic approaches that have the potential to radically improve cancer 

management.

Characteristics of cancer stem cells

• Normal self-renewing adult tissue stem cells give rise to progenitor cells that are 

often termed transit-amplifying cells which, in turn, divide and proliferate to 

engender more differentiated cells with restricted proliferating and clonogenic 

potentials. This hierarchical system calls upon stem cells (which sit at the top of 

the pyramid) to expand when more differentiated cells (laying at the bottom of 

the tissue pyramid) are depleted.

• The self-renewing ability of these stem cells ensures their continued presence 

within tissues and the balance between stem and differentiated cells ascertains 

tissue homeostasis.

• Normal stem cells are in constant interactions with their microenvironment, or 

niche, which tightly regulates stem cell state maintenance while controlling the 

expansion of the stem cell compartment.

• Tumors are formed of heterogeneous cancer cells that are organized in a 

hierarchy similar to that of normal tissues, and contain CSCs that share several 

characteristics with normal stem cells.

• The 2006 American Association for Cancer Research Workshop on Cancer Stem 

Cells defined a CSC as “a cell within a tumor that possesses the capacity to self-

renew and to cause the heterogeneous lineages of cancer cells that comprise the 

tumor.”46

• In this model, each tumor contains a sub-population of cells (the CSCs) that are 

able to divide asymmetrically in order to self-renew and give rise to a 
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phenotypically distinct daughter cell. CSCs are thus considered to be the source 

of all aggressive plastic cancer cells present in a malignant tumor.2

• Even within the CSC compartment, CSCs are heterogeneous, with some 

possessing short-term repopulating potential while others exhibit longer-term 

repopulation abilities.47

• By virtue of their ability to initiate new tumors, CSCs are thought to represent 

the cellular seeds responsible for tumor recurrence/relapse and the ones that give 

rise to distant metastases.2

• CSCs shuttle between quiescent and active states, and are characterized by their 

generally slow proliferating rates.48

• CSCs occupy specialized niches or tumor microenvironments (TMEs) that 

maintain stem cell-like properties of such cells via interactions mediated by the 

extracellular matrix (ECM) and activation of various signal transduction 

pathways.49,50

• CSCs exhibit increased drug resistance activities, attributes that are mediated by 

multiple mechanisms that include, among others, cell dormancy, hypoxia, 

enhanced activity of DNA repair enzymes, higher expression of drug efflux 

transporters (e.g., expression of the ATP-binding cassette [ABC] transporters, 

such as ABCB1 and ABCG2),51,52 and an elevated expression of anti-apoptotic 

proteins.4

• As such, CSCs exhibit increased resistance to standard radio- and 

chemotherapies.53–56

• Multiple stemness pathways are deregulated in CSCs, which include Wnt, tumor 

growth factor-beta (TGF-β), signal transducer and activator of transcription 

(STAT), and Hippo-yes associcated protein (YAP)/transcriptional co-activator 

with PDZ-binding motif (TAZ) (see Table 2).57

• CSCs also evade immune surveillance, which relies on innate and adaptive 

immune cells recognizing traits of malignant transformation. This occurs via 

multiple mechanisms that include the following:

– CSCs reduce (and even inhibit) the expression of tumor-associated 

antigens (TAAs), which limits their recognition and elimination by 

cytotoxic T cells (CTLs).58

– CSCs downregulate the expression of MHC class I molecules.59–61

– CSCs express CD95 and CD95 ligand, which in addition to its 

autocrine role in promoting CSC state, can kill neighboring CTLs.62,63

– CSCs express “don’t eat me” signals, such as CD47, which prevents 

their phagocytosis by macrophages.64,65

– CSCs may utilize the programmed death-1 (PD-1)/PD ligand-1 (PD-L1) 

system to inhibit the immune system.66,67 PD-L1 binds its receptor, 

Amey and Karnoub Page 5

Oncol Hematol Rev. Author manuscript; available in PMC 2021 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PD-1, which is found on multiple immune system cells such as CTLs, 

natural killer (NK), and dendritic cells. PD-L1/PD-1 signaling is 

thought to play a major role in inhibiting lymphocyte proliferation, 

thereby enabling the tumor cells to evade immune surveillance.

– In addition, CSCs secrete immunosuppressive chemokines and 

cytokines that can inhibit CTL functions (e.g., TGF-β and interleukin 

10 [IL-10]).11,68

– CSCs may regulate the recruitment of T-reg cells,11 which have diverse 

immune modulatory functions in cancer.69

The plasticity of CSCs, their ability to resist standard radiotherapies and chemotherapies, 

and their capacity to evade immune surveillence position them as key determinants of 

cancer malignancy.

Identifying cancer stem cells

• Surface markers can be used to differentiate CSCs from the tumor bulk. Partial 

phenotypes of CSC markers, organized according to cancer types, are presented 

in Table 3.36

• Such antigenic marker profiles have enabled the isolation of human CSCs from 

heterogeneous tumors using fluorescence-activated cell sorting28 or antibodies 

conjugated to magnetic beads.70

• Using these approaches, as well as efflux-based dye labelling (e.g., side 

population labelling), CSCs have been isolated from multiple solid and liquid 

tumors, including leukemias, lung, colon, prostate, ovarian, brain, and skin 

cancers,36–42 to name a few. For example:

– Leukemia stem cells (LSC) display a CD34+CD38− phenotype;28 the 

“true” CSCs can also be CD123+ or IL3-alpha+.71

– Certain breast CSCs have a CD44+CD24− phenotype.9

– Brain CSCs are also CD133+, similar to brain stem and progenitor cells.
72

– Ovarian CSCs are CD117+ and CD133+.73

• Three major in vitro and in vivo functional assays have been used to characterize 

CSCs:

– In vitro colony-forming assay,74 which relies on the ability of CSC-like 

cells to form colonies (or tumorspheres) under serial passages in three-

dimensional cultures.

– Limiting dilution analyses (LDA), which test the ability of CSCs to 

initiate tumors at low cell densities in immunodeficient mice.75

Amey and Karnoub Page 6

Oncol Hematol Rev. Author manuscript; available in PMC 2021 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



– Transplantability assays, which test the abilities of CSC-like cells to 

regenerate the tumor bulk once transplanted into animals, and the 

transplantability of these cells from one animal into another.28

Surface marker analyses have been instrumental in the identification of CSCs from bulk 

tumors, but it is important to note that such markers are not universal, even within the 

same tumor type, and that they result in the underestimation of CSC content in a certain 

tissue. In addition, the mechanical and/or enzymatic disruption of tumor tissues prior to 

the antibody-mediated isolation of putative CSCs from such preparations stands to alter 

the antigenic profiles of CSCs. Similarly, it is also important to note that the estimate of 

CSC content in tumors using the LDA approach is complicated by the fact that tumor-

initiation efficiency in recipient mice depends on the level of immune deficiency present 

in these recipient animals.27

Cancer stem cell genesis

Cancer stem cell genesis models

• In the hierarchical model, cancer is thought to initiate from stem/progenitor cells 

with intrinsic capacities for self-generation. Accordingly, tumors are viewed as 

hierarchical pyramids whereby, at the peak, CSCs can self-renew while 

generating non-CSC differentiated progeny, which form the rest/base of the 

pyramid, or the tumor bulk.

• Alternatively, the stochastic or clonal evolution model (CE model) posits that a 

variety of established tumor cells can contribute to generating TICs, in varying 

degrees, via both intrinsic (e.g., oncogenic lesions) and extrinsic (e.g., 

microenvironmental) factors such as TGF-β76 or hypoxia.77,78

• Reconciling these two seemingly opposing theories is the CSC plasticity model, 

in which the CSC state is a dynamic state that can be gained or lost based on 

external cues and the innate propensity of the tumor cells to plasticity. Cures 

according to this model and the stochastic models can only be achieved when 

treatments result in the death of sufficient numbers of tumor cell populations, 

hindering possibilities for tumor CSC regeneration and/or expansion (see Figure 

1).79

• Of note, Tomasetti and Vogelstein80 demonstrated, through statistical analysis, 

that the lifetime risk of different types of cancer is correlated strongly with the 

number of divisions of the normal self-renewing cells that maintain the 

homeostasis of these tissues. Therefore, variation in cancer risk among tissues 

can be explained by the number of stem cell divisions such tissues undergo, 

suggesting that tissue-resident stem cells are the origin of tumors or that their 

high turnover predisposes them to oncogenic mutations.
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How cancer stem cells arise

• There are several proposed hypotheses to explain how CSCs arise, including the 

following:

– Normal stem cells lose the constraints that limit their self-renewal, and 

accumulate oncogenic lesions while proliferating.78 In this view, 

normal stem cells themselves give rise to CSCs.81

– More differentiated transit-amplifying cells may acquire oncogenic 

mutations that cause the aberrant activation of their self-renewal 

pathways,78 leading to their uncontrolled proliferation while inhibiting 

their terminal differentiation.82

– Oncogenic mutations acquired by differentiated cells lead to their 

dedifferentiation towards more stem-like cells.82–83

– Mechanical- and/or chemical-mediated disruption of intercellular 

communication (e.g., via disruption of gap junctions), postulated a long 

time ago to be one of the main features of tumor tissues,84 can increase 

the propensity for CSC generation.78

– Fusion of normal stem cells and cancer cells, although rare, can also 

give rise to CSC-like populations within tumors.85

• The TME in CSC development:

– The TME contains a variety of cells, including inflammatory and 

fibroblastic cells, such cancer-associated fibroblasts and mesenchymal 

stem/stromal cells. These cells affect tumor growth, development and 

progression in early tumorigenesis and influence the microenvironment 

to sustain tumor growth as well as secondary tumor formation 

(metastasis) in other tissues.94

– Co-injection of stromal cells with cancer cells facilitates tumor 

formation in immune-deficient mice.95–97 This suggests that TICs, 

hence CSC-like cells, are indeed aided by microenvironmental factors 

produced by surrounding stromal cells.

– The TME may facilitate the plethora of CSC characteristics that allow a 

tumor cell to accumulate enough epigenetic and genetic changes over 

time to become highly malignant.98 Importantly, CSC-niche cross-talk 

may occur whereby the niche might not only regulate CSC traits, but 

may directly provide CSC traits to non-CSCs.99

– CSCs may foster a favorable niche by promoting the formation of a 

reactive TME.50 For example, secretion of TGF-β2/TGF-β3 from breast 

cancer cells that disseminated to the lung has been shown to induce 

stromal fibroblast expression of periostin (POSTN), which is a 

component of the ECM. In turn, TME-derived POSTN induces 
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recruitment of Wnt ligands, which increase Wnt signaling in the 

metastasis-initiating CSCs.100

• Hypoxia in CSC development:

– Hypoxia actively induces and maintains CSC phenotype,98,101,102 for 

example, in breast cancer10 and glioblastoma.103

– The effects of hypoxia on CSCs seem to be primarily mediated by 

hypoxia inducible factors (HIFs), particularly HIF2α.101

– Hypoxia induces a spectrum of changes that may contribute to 

malignancy including the selection of apoptosis-resistant clones104 and 

promotion of tumor invasion and metastasis.105

– HIF inhibitors can block chemotherapy-induced enrichment of CSCs, 

suggesting that HIFs play critical functional roles in CSC biology, and 

that their inhibition may increase survival in patients.10

• The epithelial-mesenchymal transition (EMT) in CSC development:

– The EMT is a crucial developmental program often activated during 

cancer invasion and metastasis. During this process, polarized epithelial 

cells are converted to mesenchymal cell-like migratory tumor cells.
106,107

– Transcription factors that regulate migration and EMT in embryonic 

tissues regulate EMT in cancer cells.108

– Several findings have indicated a direct link between the EMT and gain 

of epithelial stem-cell properties.109,110

– Many EMT transcription factors, including zinc finger protein SNAI1 

(also referred to as Snail), zinc finger E-box-binding (ZEB) and basic 

helix-loop-helix transcription factors,108 have been shown to regulate 

CSC phenotype and function in breast, pancreatic, and colorectal 

tumors.99

– EMT transcription factor pathways promote additional malignancy 

traits ascribed to CSCs, including therapy resistance and anti-apoptosis.
111–113

• Stiffness/tensegrity in CSC development:

– Growing evidence indicates that physical constraints, such as stiffness 

and porosity of the ECM, can influence tumor behavior as a whole.

– For example, matrix stiffness increased the proportion of human head 

and neck squamous cell carcinoma (HNSCC) TICs, concomitant with 

inducing higher tumorigenicity and metastasis.114

– High matrix stiffness promotes proliferation and increased 

chemotherapeutic resistance in hepatocellular carcinoma cells.115
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• Fusion:

– One other possible but controversial potential mechanism for the 

generation of CSCs is through fusion between stem cells and 

differentiated cells.85

Evidence indicates that CSCs may be generated and maintained by a plethora of 

mechanisms that can depend on genetic and epigenetic properties intrinsic to cancer cells, 

as well as on extrinsic stimuli emanating from the TME or niche. What is clear is that 

some CSCs are “born” while others are “made” by the tumor milieu. Although these 

notions can seem contradictory, it is attractive to postulate that both operate in tumors, 

and that the extent to which one mechanism is empahsized over the other depends on the 

stage of tumor progression.

Signaling networks in the makeup of the cancer stem cell state

• The ability of CSCs to retain their properties is determined by an array of 

signaling networks that are responsive to intrinsic and extrinsic stimuli.

• Pathway elements that play a role in the control of self-renewal and 

differentiation of CSCs include:

– Phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of 

rapamycin (mTOR) pathway activation are critical regulators of cell 

proliferation and survival. Increasing reports have also underscored the 

importance of PI3K in regulating the CSC state.116,117

– The Janus-activated kinase (JAK) signaling pathway has been 

implicated in tumorigenesis through STAT-3 activation.118 Blockade of 

JAK-STAT has been shown to inhibit tumor initiation and clonogenic 

recovery of prostate CSCs, substantiating a role for this pathway in 

tumor initiation.119

– Nuclear factor-kappa B (NF-κB) is an inducible transcription factor that 

affects the expression of several apoptosis-related proteins and cell 

cycle regulatory components. It has been shown to be upregulated in 

many cancers, and has been implicated in CSC genesis, as well as 

promoting invasion and metastasis.120

– Mammals express four transmembrane Notch receptors (Notch-1, −2, 

−3, and −4)121 and five canonical transmembrane ligands (Delta-like 

[DLL] 1, DLL3, DLL 4, Jagged-1, and Jagged-2).122–125 Notch 

signaling is an evolutionarily conserved pathway involved in the control 

of cell fate, with roles in carcinogenesis, tumor angiogenesis, and EMT.
126 Overexpression of Notch signaling components has been reported to 

promote self-renewal of CSCs in a variety of malignancies and is 

involved in the interaction between the tumor and the stroma in both 

primary and metastatic tumors.127,128
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– Hedgehog is a key morphogen regulating embryonic development and 

tissue repair. It has been implicated in the maintenance of the CSC 

phenotype.129 Interestingly, it regulates the expression of the ATP-

binding cassette sub-family G member 2 and multi-drug resistance 

genes, implying involvement of Hedgehog overexpression in the 

development of the chemoresistance characteristic of CSCs.130–133

– Wingless/integration (Wnt) signal transduction pathways play an 

important role in cell fate specification, cell proliferation, and cell 

migration. When aberrantly expressed, Wnt contributes to the 

tumorigenic potential of CSCs.134,135

– The YAP and TAZ are the major downstream effectors of the Hippo 

pathway, which regulates tissue homeostasis, organ size, regeneration, 

and tumorigenesis.136 YAP and TAZ are regulated by soluble 

extracellular factors, cell–cell adhesion, and mechanotransduction, and 

such regulation appears to be disrupted in cancer.137–140

– Enhanced nuclear accumulation of YAP1, due to upstream inhibition of 

Hippo signaling, has been shown to increase epidermal squamous cell 

carcinoma spheroid formation, invasion, and migration.141 Hippo 

pathway inhibition has also been shown to be a requirement for the 

enhanced migratory and invasiveness properties of breast cancer cells.
142 In breast CSC, TAZ activity sustains self-renewal and tumor 

initiation.143

– Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase, 

overexpressed in cancer, with roles in adhesion, survival, motility, 

metastasis, angiogenesis, and lymphangiogenesis. Involvement of FAK 

in CSC functions have also been reported.144,145

– Homeobox (HOX) genes are an evolutionarily highly conserved family 

of proteins with demonstrated regulatory roles in cell fate 

determination.123 Members of the HOX gene family have been 

implicated in tumor development and progression.146 Cross talk 

between HOX and other CSC-regulating mediators, such as sonic 

hedgehog, Wnt, and Notch signaling pathways147 suggest a central role 

for HOX in CSC homeostasis, and underscore its potential as a credible 

therapeutic target in the context of CSC-based therapy.

– EMT transcription factors (e.g., SNAIL, TWIST, Zinc finger protein 

SNAI2/SLUG) are induced during carcinoma progression148 and they 

exert critical determining roles in the promotion/genesis and in the 

maintenance of CSC traits.149

– Bmi-1, a polycomb family proto-oncogene, is required for the self-

renewal of diverse adult stem cells. It promotes stem cell self-renewal 

partly by repressing the expression of the tumor suppressor genes Ink4a 

and Arf.150 Roles for Bmi in CSC regulation have been described in 
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breast cancer,151 leukemias,152 prostate cancer,153 pancreatic cancer,154 

and in many other malignancies.

– Various protein kinase C isoforms have been implicated in the renewal 

of normal and CSCs.155 For example, PKC-iota (PKCi) was shown to 

promote CSC traits in ovarian carcinoma cells.156 Similarly, atypical 

PKC (aPKC) was shown to promote CSC-like EMT traits in a model of 

prostate cancer.157,158

The CSC state is maintained by the interplay of various signaling pathways. The 

complexity of these networks ensures redundancy in the maintenance of cancer cell 

stemness, and stands to frustrate therapeutic efforts aimed at inhibiting single molecular 

nodes. Renewed CSC-targeted therapies with clinical applicability therefore have to 

encompass the simultaneous inhibition of several critical targets to achieve clinical 

efficacy.

Cancer stem cells at the crossroads of metastasis and therapy resistance

Metastasis

• CSCs have been hypothesized to contribute directly to metastasis. Indeed, 

secondary tumors are initiated by cancer cells with the capacities of making new 

growths, drawing strong parallels between the CSC state and the metastatic state.
159,160

• Primary tumors derived from the implantation of CSCs isolated by the putative 

stem cell markers CD44+ and CD24−/low generate abundant lung metastases,161 

suggesting that TICs within primary tumors can generate metastatic CSCs.

• There are strong functional links between CSC markers and metastatic 

phenotypes. For example, CSC-associated CD44 is a homing and adhesion 

marker, and it has demonstrated activities in enhancing metastatic capabilities.
31,162

• Although CSC preponderance in primary tumors has been correlated with an 

increased incidence of metastasis, a causal relationship between the primary 

tumor CSCs and the cells-of-origin of distant metastases has not been proven.163

Therapy resistance

• Drug resistance invariably develops in most cancer patients on therapeutic 

regimens, limiting outcome and long-term survival.164,165

• Better understanding of how drug-resistance develops during initial tumor 

response and regression will lead to the development of more effective 

therapeutic modalities.

• For example, therapeutic inhibition of oncogenic drivers in drug-sensitive cancer 

cells has been shown to induce secretome changes that, paradoxically, establish a 

TME that supports the expansion of drug-resistant clones.166
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• Mounting evidence suggests that therapy-resistant clones share a great deal of 

similarities with CSCs.167

• Indeed, evidence from several cancers indicates that CSCs are highly resistant to 

ionizing radiation,168–176 as well as chemotherapy.171,177

• Underlying mechanisms through which CSCs resist therapy include:

– high free radical scavenger status;168,178

– cell-type specific fuctuations in proteasome activity;179,180

– expression of the ABCB5 multi-drug resistance protein;181

– enhanced DNA repair capacities and the ability to maintain low ROS 

content;182

– upregulation of oncogenic pathways;183

– upregulation of anti-apoptotic nodes, such as survivin;184

– upregulation of stem-cell-regulating master genes, such as Oct4.185–188

CSCs have been strongly linked to metastatic dissemination and therapeutic resistance. 

Prevention of tumor relapse therefore depends on eliminating CSCs, derailing their 

development under classical therapeutic management, or inhibiting the reawakening of 

disseminated tumor cells from dormancy.

Therapeutic opportunities for cancer stem cell-based therapies

• Resistance of CSCs to current chemotherapeutics and radiotherapies are major 

factors contributing to cancer recurrence.4

• CSCs have been shown to be essential for tumor pathogenesis and CSC targeting 

has proven to be effective in suppressing tumor development in a number of pre-

clinical proof-of-principle experiments.181,189

• CSC-based therapeutics therefore represent an attractive route towards 

developing cancer cures, and are aimed at interfering with the functions of 

surface markers, drug efflux channels, stemness pathways, epigenetic regulators, 

as well as key oncogenic signaling nodes that are essential for CSC homeostasis. 

Differentiation therapies as well as immunotherapeutics are also being developed 

with CSCs as their focused targets.

• Complicating these efforts, however, are the facts that not all CSCs express 

specific and exclusive markers,16 and that they may have dynamic phenotypes 

and genotypes,190 raising the difficulty in developing effective CSC-targeted 

therapies.

• Nevertheless, many novel and innovative approaches are in different stages of 

drug development and clinical testing, and some targets/pathways are 

enumerated here for illustration purposes.
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– CD133. Interest has grown in the use of monoclonal antibodies to target 

CSC surface markers. One example of this is CD133 (prominin-1), a 

cell surface glycoprotein that is expressed widely in solid tumors (see 

Table 3), and which has been associated with drug-resistant phenotypes 

and poor prognosis.191 CD133-positivity marks CSCs in a variety of 

tumors, including colon,192 brain,72,193,194 and lung.195 Anti-CD133 

cell therapy has been tested and shown to reduce the proliferative 

capacities of TICs.196

– PI3K/mTOR. The PI3K/mTOR signaling pathway, a key regulator in 

cancer progression and CSC survival, is targeted by VS-5584 

(Verastem), which is an inhibitor of PI3K, mTORC1, and mTORC2 that 

preferentially destroys CSCs. Verastem is currently conducting a phase 

I trial of VS-5584 in patients with advanced cancer (ClinicalTrials.gov 

identifier NCT01991938). Biomarkers of response to VS-5584 will also 

be assessed in archival tumor tissue, tumor biopsies (in consenting 

subjects), and blood samples.

– ABC. The ABC-driven efflux transporters are largely responsible for 

chemoresistance,197 and all the mechanisms involved in ATP 

transporter modulation may be potential therapeutic targets. Numerous 

members of ABC transporters have been described, although only a few 

are known to be expressed in human CSCs: multidrug resistance 1 

(MDR1) or P-glycoprotein (Pgp)/ABCB1, multidrug resistance protein 

1 (MRP1/ABCB1), breast cancer resistance protein (9BCRP), and the 

melanoma-associated, chemoresistance mediator, ABCB5. Schatton et 

al.181 identified a subpopulation enriched for human malignant 

melanoma-initiating cells (MMICs) that was defined by expression of 

ABCB5 and showed that specific targeting of this population inhibits 

tumor growth. Drugs targeting ABC transporters have had limited 

efficacy in clinical trials so far; however, they may prove more effective 

if used in combination with other anticancer agents that target CSCs.191

– Notch. As one of the most intensely studied potential therapeutic 

targets, several inhibitors of the Notch pathway are being developed.126 

These include monoclonal antibodies targeted against Notch receptors 

or Notch ligands and blocking peptides and inhibitors of the Notch 

inhibitor γ-secretase (GSIs). Demcizumab is a humanized 

immunoglobulin G2 antibody that binds to Delta-Like Ligand 4 

(Drosophila, DLL4), and is being studied in an ongoing phase 1b dose 

escalation study in combination with pemetrexed and carboplatin in 

chemotherapy-naïve stage IIIb/IV non-squamous non-small cell lung 

cancer.198

– Focal adhesion kinase (FAK). FAK inhibitors under study include 

defactinib (VS-6063) and VS-4718, NVP-TAE-226, 

pyrrolopyrimidines, and PND-1186.145 VS-4718 is currently being 
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investigated in subjects with metastatic non-hematologic malignancies 

(NCT 01849744) (Table 3).

– Wnt. Several agents have been developed for targeting of this pathway, 

e.g., OMP-54F28, rofecoxib; PRI-724, CWP232291; and monoclonal 

antibody against frizzled receptors, vanituctumab.199

– Nanog. Amcasertib (BBI503) is an orally administered investigational 

agent designed to inhibit Nanog and other cancer stem cell pathways by 

targeting kinases.200 A dose escalation study (n=26) established the 

recommended dose of amcasertib at 300 mg/day. Prolonged disease 

stabilization was reported in several heavily pre-treated patients and 

phase II trials are ongoing.

– STAT3. STAT3 activity has been shown to regulate self-renewal of 

CSCs.201,202 In phase Ib/II trials, the STAT3 inhibitor, napabucasin 

(BBI608), has shown promising anticancer activity when used in 

combination with other agents across advanced, pretreated and 

untreated metastatic pancreatic cancers, as well as advanced, pretreated 

colorectal cancer.203–205 Napabucasin plus weekly paclitaxel in the 

treatment of gastric and gastroesophageal junction cancer is being 

studied in the phase III BRIGHTER trial (NCT02178956). The final 

data collection date for primary outcome measure for the BRIGHTER 

Trial is August 2017. Napabucasin is also being studied (phase III) in 

colorectal cancer (CanStem303C, NCT02753127) and pancreatic 

cancer (CanStem111P, NCT02993731).

– Hedgehog. There is compelling evidence to suggest that inhibition of 

Hedgehog signaling in CSCs results in loss of stemness, as supported 

by a reduction in clonogenicity and pluripotency markers, thereby 

limiting the characteristics that would otherwise support 

chemoresistance. Targeting of CSCs and tumor bulk with Hedgehog 

inhibitors and conventional chemotherapeutics and/or radiation is thus a 

potential approach to prevent tumor relapse and improve patient 

outcomes.206

– CXCL12. CXCL12, also known as stromal-derived factor-1, is a 

chemokine that binds its receptor, CXCR4, and is involved in 

migration, invasion and survival of normal and malignant cells.207 

Involvement of CXCL12 in regulating several aspects of CSC biology 

has been documented,208 and its inhibitors show promise in 

experimental models.209

– CD47. CD47 represents a “don’t eat me signal” in CSCs and plays a 

significant role in inhibiting their phagocytosis; CD47 inhibition 

therefore could enhance immune cell (e.g., macrophage) -mediated 

elimination of CSCs.210–212 Leukemia stem cell function in murine 

xenotransplantation models of AML has been reported to depend on 
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inhibition of macrophages via the immunoglobulin superfamily 

receptor, SIRPα.213 Disrupting SIRPα signaling in macrophages by 

preventing engagement with its ligand, CD47, eliminated AML stem 

cells in the xenografts. Also, blocking CD47 signaling has been shown 

to promote engulfment of pancreatic neuroendocrine tumor cells by 

macrophages in vitro and inhibited xenograft tumor growth, preventing 

metastases, and prolonging survival in vivo.214

– Interleukin-4 (IL-4). IL-4-mediated drug resistance has been 

demonstrated in colon CSCs,215 providing the rationale for anti-IL-4 

antibody or IL-4 receptor-alpha antagonists as anti-tumor therapies.

– Proteasome. Glioma stem cell (GSCs) have been shown to be 1,000-

fold more sensitive to proteasomal inhibition compared with 

differentiated controls,216 which provides a further new potential 

strategy for targeting stem cells versus bulk cancer cells.

– Tenascin. Emerging evidence on additional mechanisms by which 

CSCs evade immune surveillance may enable the development of novel 

therapeutics. For example, CSCs derived from either prostate draining 

lymph nodes (PDLN) or mice harboring oncogene-driven prostate 

intraepithelial neoplasia (mPIN) use the ECM protein, Tenascin-C, to 

arrest T-cell activation by interacting with α5β1 and blocking 

reorganization of actin-based cytoskeleton.217

Translational strategies aimed at targeting CSCs are well underway, with many in 

advanced pre-clinical stages and others in bona fide clinical trials. Considering that the 

mulitple and often redundant number of pathways that uphold the CSC state, it is likely 

that combinatorial use of the aforementioned agents, with or without chemo- or 

radiotherapies, would prove most advantageous in disease management. It is also hoped 

that such CSC-directed approaches will reduce the toxicity associated with traditional 

cancer therapies, promoting longer patient survival, while ensuring appropriate quality of 

life metrics.

Concluding remarks

CSCs mediate tumor metastasis and, by their increased resistance to chemotherapy and 

radiation therapy, contribute to treatment failures and disease relapse.218 CSC-targeted 

therapies therefore have the potential to achieve higher efficacy and remission rates than 

standard regimens, and stand to revolutionize cancer management.

With this optimistic view comes the inherent plasticity of CSCs, which enables them to 

transition between CSC and non-CSC states as cells exhibit both functional and phenotypic 

heterogeneity.219 In this scenario, targeting specific CSC populations may ultimately prove 

futile. Rather, the potential of CSC-directed therapies may be more realized in conjunction 

with existing chemo- and radiotherapies (or even immunotherapies). Indeed, comprehensive 

combination strategies have been suggested to improve cancer treatments, which rely on, for 
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example, a ligand targeting CSC, an ABC transporter inhibitor to overcome drug resistance, 

coupled with an imaging agent to facilitate tumor response diagnosis.36

Ultimately, therapies that target CSCs are hoped to emerge as critical components of avant-

garde effective clinical strategies, particularly in malignancies that continue to exhibit high 

mortality rates, such as pancreatic, brain, and lung cancers. The field has come a long way, 

and as translational research into CSC biology is gaining pace, the clinical applications of 

such advances appear to be increasingly tenable.
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Figure 1: Cancer stem cell models
Hierarchical model (A), stochastic (B), and plasticity model (C).
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Table 1:

Five-year cancer survival statistics

Site 5-year survival (%)

Bladder 77

Breast 89

Colorectal 65

Kidney 73

Liver 17

Lung—non-small cell 17

Lymphoma—non-Hodgkin 70

Melanoma 92

Oral and oropharyngeal cancer 63

Ovarian, fallopian tube, and peritoneal cancer 58

Pancreatic 7

Prostate 99

Thyroid 98

Uterine 82

Data sourced from: www.cancer.net
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Table 3:

Markers of cancer stem cells according to tumor tissue origin

Cancer type Marker Reference

Brain CD133, CD90 Singh et al., 2003220

He et al., 2012221

Breast ESA, CD44, CD24, ALDH Al-Hajj M et al., 200331

Ginestier et al., 2007222

Colorectal ESA, CD133, CD166, CD44, CD24, ALDH Vaiopoulos et al., 2012223

Cherciu et al., 2014224,225

Huang et al., 2009226

Endometrial CD133 Rutella et al., 2009227

Gastric CD44 Takaishi et al., 2009228

Zhao et al., 201579

Head and neck CD44, CD24, ALDH Han J et al., 2014229

Hematologic CD34, CD38 Lapidot et al., 199427

Leukemia CD34, CD38, CD47, CCL-1, CD96, TIM3, CD32, CD25 Bonnet and Dick, 199728

Majeti et al., 2009230

van Rhenen et al., 2007231

Hosen et al., 2007232

Jan et al.,2011233

Saito et al., 2010234

Liver ESA, CD133, CD90, CD44, CD24, ALDH Yamashita and Wang, 2013235

Ma et al., 2008236

Lung CD133, CD44, CD90, ABCG2 or CXCR4 Alamgeer et al., 2013237

Donnenberg et al., 2007238

Bertolini et al., 2009239

Melanoma ALDH Boonyaratanakornkit et al., 2010240

Ovarian CD44+, c-Kit Zhang et al., 2008240

Pancreatic ESA, CD44, CD24, CXCR4, ALDH Li et al., 2014242

Herman et al., 2007162

Prostate integrin α2β1, CD44+ Collings et al., 200539

ALDH = aldehyde dehydrogenase; CLL = C-type lectin-like molecule-1; ESA = epithelial-specific antigen.
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