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Abstract

Objective: To illustrate the use and value of measurement error models for reducing biases when 

evaluating associations between body fat and having type 2 diabetes (T2D) or being physically 

active.

Methods: Logistic regression models were used to evaluate T2D and physical activity among 

adults aged 19–80 years from the Photobody Study (n=558). Self-reported T2D and physical 

activity were categorized as “yes” or “no.” Body fat measured by 2D photographs was adjusted for 

bias using dual-energy X-ray absorptiometry scans as a reference. Three approaches were applied: 

regression calibration (RC), simulation extrapolation (SIMEX), and multiple imputation (MI).
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Results: Unadjusted 2D measures of body fat had upward biases of 30% and 233% for physical 

activity and T2D, respectively. For the physical activity model, RC-adjusted values had a 13% 

upward bias, whereas MI and SIMEX decreased the bias to 9% and 91%, respectively. For the 

T2D model, MI reduced the bias to 0%, whereas RC and SIMEX increased the upward bias to 

>300%.

Conclusions: Of three statistical approaches to reducing biases due to measurement errors, MI 

performed best in comparison to RC and SIMEX. Measurement error methods can improve the 

reliability of analyses that look for relations between body fat measures and health outcomes.
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INTRODUCTION

Measurement errors can manifest in healthcare research, particularly in obesity and nutrition 

studies in which self-reported measures are commonly used. It has been shown that self-

reported measures, such as of dietary intake (1, 2), physical activity levels, smoking behavior 

(3), and alcohol intake (4), are all prone to measurement error. These errors can arise from 

multiple sources and often lead to biased statistical inference and incorrect conclusions. In 

nutritional epidemiology, measurement errors have led to statistical bias when evaluating the 

relationship between self-reported energy intake assessed by use of food frequency 

questionnaires (FFQ) (5–7) and chronic disease outcomes. Measurement errors can lead to 

biased estimates of the effects of error-prone measures on the outcomes of interest, loss of 

statistical power for detecting health outcomes due to potential excess variability, and an 

obscuring of the true features of the data (e.g., of linear and nonlinear trends and 

associations between data variables) (8, 9).

Measurement error (systematic and random error) in health research can arise from multiple 

sources (e.g., heart rate may be prone to within-individual variability in repeated measures 

due to the instrument or physiology of an individual), and measurement error can manifest 

in different patterns (e.g. consistent under-reporting or over-reporting of self-reported 

variables). In nutritional epidemiology, for example, error-prone measurements of energy 

intake—such as FFQ data, which may be subject to inaccurate responses due to participants’ 

inability to accurately recall food consumption—lead to biased estimates of the effects of 

diet on health outcomes (7).

Several statistical methods are available to reduce bias due to measurement error, including 

the classic regression calibration (RC) approach (10), multiple imputation (MI) (5, 11, 12), 

the maximum likelihood (ML) method (13), simulation extrapolation (SIMEX) (14, 15), and 

other methods (16–18). Prior studies showed improvements in statistical inference for FFQ 

data following RC in Spiegelman et al. (10, 19). Prentice et al. (6, 20) showed that 

unadjusted parameters of energy intake obtained from FFQs were not significantly 

associated with cancer; however, after bias-adjustment of measurement error using 

calibration methods, energy and protein density were indeed positively associated with 

cancer incidence (20). In this example, adjusting for measurement error improved the 
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estimation of the association between diet and cancer, which further highlights the value of 

implementing these methods to improve estimation and reduce biases in statistical analyses. 

Similarly, calibrated or measurement error bias-adjusted energy consumption was positively 

associated with coronary artery disease risk (6), whereas unadjusted energy consumption 

was not.

Anthropometric measures, such as body mass index (BMI) (21, 22) and body fat percentage 

measured by 3D photonic scans (3DPS) or dual-energy X-ray absorptiometry (DXA) scans 

(23, 24), are also prone to inherent or unavoidable measurement error. While many body 

composition assessment methods are available, such as densitometry methods (e.g., air 

displacement or underwater weighing) and bioimpedance analysis, DXA scans are often the 

preferred method for estimating body fat. Furthermore, Garlie et al. showed that body fat 

percentage as estimated by 3DPS yielded 4.69–5.99% error relative to DXA (25). Hence, 

measurement error remains an issue in body composition data, and to our knowledge, the 

available statistical approaches for measurement error bias-adjustment have not yet been 

commonly adopted in body fat measures.

The purpose of this study was to illustrate the use and value of these methods to reduce 

potential biases due to measurement error when assessing the effects of body fat on two 

health outcomes: 1) the probability of having type 2 diabetes (T2D) and 2) the probability of 

being physically active (PA). In this study, we analyzed a unique dataset with body fat 

percentage estimated in two ways for all participants. First, body fat percentage was 

estimated by use of a novel 2D photographic-based method (BFPhoto), which was developed 

by Affuso et al. (26–28). This photographic method has shown to provide a valid estimate of 

body fat percentage compared to DXA in adults. However, this novel method may involve 

some inherent and unavoidable measurement error due to potentially lost information about 

muscle mass, bone mass, and fat mass, that may be lost when extracting body volume from 

2D photographs and therefore may lead to biased estimates of body fat percentage. Second, 

body fat percentage was estimated by DXA (BFDXA). The 2D photographic method has 

several advantages over DXA, such as its portability, low cost, convenience, and time 

efficiency. While BFPhoto estimates have been shown to be strongly correlated to BFDXA 

(26, 28), here we assume that BFDXA is the reference method, or is error-free, while BFPhoto 

is an error-prone body fat measure. In this work, three measurement error bias-adjustment 

techniques were applied to improve the predictions of health outcomes as estimated by 

BFPhoto by improving model parameters enough to yield results similar to those of the 

reference method, BFDXA.

METHODS

Subjects:

Adults aged 19 to 80 years, living in Birmingham, Alabama, were recruited between 

November 2012 and September 2015 as part of the Photobody Study described in prior 

publications (26–28), and a subset of the data is used here. This subset included participants 

who were non-Hispanic Black or non-Hispanic White only. Participants who reported a 

“moderate” level of regular physical activity were excluded to allow for greater contrast 

between the individuals with low and high activity. Participants were recruited through 

Murillo et al. Page 3

Obesity (Silver Spring). Author manuscript; available in PMC 2019 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



advertisements placed in local newspapers and newsletters, flyers were placed throughout 

the community (e.g., college campus and other businesses), individuals were directly 

approached at community events (e.g., health fairs and other local events), and enrolled 

participants communicated to others by word of mouth. Individuals meeting the following 

criteria were enrolled in the study: 1) weight less than 450 lbs (weight limit of DXA 

equipment); 2) absence of conditions that would prevent participants from lying down for 

DXA scans or standing for taking photographs; 3) presence of health conditions that may 

alter body composition (e.g., cancer, cachexia, or rheumatoid arthritis); 4) no missing body 

parts (except a finger or toe); and 5) not pregnant. Written informed consent was obtained 

for each eligible participant. All participants were compensated $20.00 for their 

participation. This study was approved by the University of Alabama at Birmingham’s 

Institutional Review Board.

Demographics, physical activity, and health conditions:

Self-reported race/ethnicity, age, sex, medical history (health conditions and medication 

use), physical activity status, and T2D status were obtained through an interviewer-

administered questionnaire. To assess physical activity status, participants were asked the 

question, “What is your current activity level (i.e., person’s average daily activity)?” and 

responded by selecting one of five options: “none,” “some,” “moderate,” “athlete,” or “elite 

athlete.” In this study, we grouped all participants into two physical activity groups: those 

who were not physically active (60.2%), which consisted of all individuals who reported 

either “none” or “some” regular physical activity, and the physically active group (39.8%), 

which consisted of participants who had “athlete” or “elite athlete” activity levels.

Body composition measurements:

Body composition was assessed for all participants using two approaches. First, DXA 

(encore 2011 version 13.6; GE Lunar iDXA Corporation, Madison, WI, encore 2011 version 

13.6) scans were used to estimate percentage body fat, denoted BFDXA. Second, 2D 

photographic images were processed for body volume and shape measures and were then 

used to calculate body fat percentage, denoted BFPhoto. This programming algorithm has 

been described in more detail elsewhere (26). Photographic images were obtained using a 

digital camera (Canon PowerShot - Model SX50; Cannon USA Inc., Melville, NY). All 

participants wore close-fitting tank tops (females only) and spandex shorts for body 

composition measurements in order to reduce measurement bias. Trained staff measured 

weight to the nearest 0.1 kg using a physician’s balance beam scale (Model 402LB; 

HealthOMeter, McCook, IL) and height to the nearest 0.1 cm using a stadiometer and these 

measurements were used to calculate BMI for each participant.

Statistical methods:

Descriptive statistics (mean ± SD) were calculated for the study sample. Mean body fat 

percentages (BFDXA and BFPhoto) were assessed on the basis of physical activity and T2D 

status by one-way analysis of variance (ANOVA). Pearson correlation coefficients, r, were 

computed between pairs of model variables (e.g., age, height, weight, BFDXA, and BFPhoto). 

Linear regression analyses were performed to compare body fat measures. Using Bland-

Altman analyses, we investigated the distribution of absolute and relative differences 
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between body fat measures to assess any biases in BFPhoto relative to BFDXA (29). Logistic 

regression analyses were performed to predict: 1) the probability of having T2D and 2) the 

probability of being physically active. All statistical analyses were performed using SAS 9.4 

(30) or R 3.2 (31) and with statistical significance accepted when P <0.05 (two-tailed).

Measurement error bias-adjustment methods:

Three measurement error bias-adjustment methods were used: RC, SIMEX, and MI. Details 

of the methods and algorithms are summarized in Appendices A–C. The RC method can be 

applied to an validation study (internal and external), when a gold standard or imperfect 

reference instrument is available (8, 19). However, for other studies, the non-iterative RC 

method can be used to approximate regression coefficients from regression models with 

measurement error in covariates when a reference method is not available (see (8, 19) for 

details). The RC method consists of estimating model parameters of the logistic model with 

error-prone variables and covariates, estimating regression coefficients for a linear model 

that relates the error-free to the error-prone variables, and subsequently using the estimated 

parameters from the linear model to obtain the RC-adjusted model parameters. The 95% 

confidence interval for the regression coefficients and their respective odds ratios were 

calculated using the variance-covariance matrix for the bias-adjusted model parameters (10, 

19) (see Appendix A). RC was implemented using SAS macro %blinplus (7, 10, 19).

The SIMEX method, developed by Carroll et al (14), is a simulation-based approach that 

reduces the bias in parameter estimates due to measurement error by introducing random 

error into the model (5, 14, 15, 19). Simulated data with additive error terms were used to 

characterize the relation between model parameters and the amount of measurement error 

through a resampling approach. To characterize this trend, the parameter estimates were 

modeled as a function of the measurement error and corresponding mean regression 

coefficients. In the next step, the model parameter estimates for a model with error-free 

predictors were obtained by extrapolating back to the case of zero error (see Appendix B). 

This was implemented using the R ‘simex’ package (15).

The MI framework was applied by treating the true values of the variables with 

measurement error as a missing data problem (5, 11, 12), i.e., imputing the bias-adjusted 

values for unadjusted values. Multiple (for example m) values or “imputations” were 

imputed for each unadjusted value under the MI principle and used to replace the unadjusted 

value so that m datasets with only bias-adjusted values were generated. In the subsequent 

analysis, the m datasets were analyzed individually, yielding m statistics (for example, mean, 

parameter estimates, etc.). Eventually, the m statistics were combined into a single statistic 

using Rubin’s rule (32) (see Appendix C). The MI method has been implemented in many 

statistical software packages, such as SAS 9.4 (30), R 3.2 (31), and others (33, 34), so that 

bias adjustment by MI can also be utilized conveniently.
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RESULTS

Body Composition Assessment:

The sample consisted of non-Hispanic White (51%) and non-Hispanic Black (49%) adult 

men (46%) and women (54%) aged 39 ± 15 years (mean ± SD) with BMI of 28 ± 6 kg/m2. 

About 5.3% of the participants self-reported having T2D, and 39.8% self-reported being 

physically active. Additional participant characteristics are summarized in Table 1. As 

expected, individuals considered to be physically active tended to have lower body fat 

percentages (Figure 1A). Body fat as estimated by BFDXA and BFPhoto was significantly 

greater in the individuals who were not physically active (BFDXA: 37 ± 10% and BFPhoto: 36 

± 10%) than in the physically active group (BFDXA: 26 ± 9% and BFPhoto: 30 ± 7%; P < 

0.0001). However, individuals with T2D had more variability in their body fat percentages 

(Figures 1B). Body fat estimates were significantly lower in individuals with T2D (BFDXA: 

32 ± 11% and BFPhoto: 33 ± 10%) than in those who did not report T2D (BFDXA: 40 ± 10% 

and BFPhoto: 40 ± 9%; P < 0.0004).

Pearson correlation coefficients (Table 2) indicated strong positive associations between 

BFDXA and BFPhoto (r=0.88, P<0.0001; Figure 1). Bland-Altman analyses (Figure 1C–F) 

were performed to evaluate the amount of bias in the BFPhoto data due to measurement error. 

The absolute mean difference uabs  between BFPhoto and BFDXA represents the average bias 

in body fat percentage. Here it was uabs = 0.38 % for all participants as a group (slope=

−13.94, P<0.0001), and the variance of this bias was σabs
2 = 27.36. The relative difference 

between BFPhoto and BFDXA was 0.05% (95% CI: −0.44, 0.56).

Measurement Error Bias-Adjustment:

Parameters estimated from the logistic regression model with BFDXA as the independent 

variable are denoted βDXA, and similarly, those estimated using BFPhoto are denoted βPhoto
UC , 

where the superscript “UC” denotes an unadjusted parameter. Adjusted parameters of 

BFPhoto that are bias-adjusted are denoted with appropriate superscripts, i.e., β Photo
MI  for the 

MI approach, β Photo 
RC  for the RC method, and β Photo

S  for the SIMEX procedure.

Model coefficients for predicting the probability of being physically active are shown in 

Figure 2 and Table 3. The effect of BFDXA on the odds of being physically active 

(βDXA = − 0.23 [95% CI: −0.26, −0.19]; OR 0.79 [95% CI: 0.75, 0.82]; P<0.0001) was 

greater than that of BFPhoto (βPhoto
UC = − 0.16 [95% CI: −0.23, −0.08]; OR 0.84 [95% CI: 

0.77, 0.92]; P=0.0002), which had an upward bias βPhoto
UC > βDXA . Similarly, an upward 

bias was observed for RC-adjusted estimates βPhoto
RC > βDXA , but a downward bias was 

found for SIMEX and MI βPhoto
S , βPhoto

MI < βDXA . To quantify the improvement of the 

measurement error bias-adjustment methods, the percentage changes for the adjusted model 

parameters, denoted Δβ (%), were calculated as the absolute change between the bias-
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adjusted parameter value (e.g.,βPhoto
UC , βPhoto

MI , βPhoto
RC , and βPhoto

S ) and the reference parameter 

value βDXA , divided by the absolute reference parameter value βDXA . The percentage 

change was lowest for MI (Δβ=9%), next lowest for RC (Δβ=13%), and significantly higher 

for SIMEX (Δβ=91%). Other significant covariates (adjusted and unadjusted) were age, sex, 

race, and weight (not shown); however, RC-adjusted age was not significant.

Model parameters estimated for predicting the probability of having T2D are shown in Table 

4 and Figure 3. The effect of BFDXA (βDXA=0.03 [95% CI: −0.04, 0.10]; OR 1.03 [95% CI: 

0.95, 1.12]; P=0.4447) on the odds of having T2D was smaller in comparison to BFPhoto 

(βPhoto
UC =0.10 [95% CI: −0.05, 0.25]; OR 1.11 [95% CI: 0.93, 1.32]; P=0.2188) and had an 

upward bias βPhoto
UC > βDXA . Both RC and SIMEX had an upward bias 

βPhoto
RC , βPhoto

S > βDXA ; however MI was unbiased Δ β = 0%; βPhoto
MI = βDXA . The 

percentage change was over 300% for RC (Δβ=333%) and SIMEX (Δβ=800%). Parameter 

estimates for the age variable (adjusted and unadjusted) was the only significant predictor 

for T2D status (not shown), with the exception of SIMEX-adjusted age.

DISCUSSION

We presented and compared three measurement error bias-adjustment methods—RC, MI, 

and SIMEX—to reduce potential biases in statistical models used to evaluate the effect of 

body fat on health outcomes. The performances of these commonly used measurement error 

techniques were compared using body fat percentage estimated by DXA scans (BFDXA) as 

the reference measure and a novel 2D photographic-based method (BFPhoto) as the error-

prone measure. We applied the error bias-adjustment methods to a logistic model involving 

body fat to predict the probability of two health outcomes: having T2D or being physically 

active.

In this bi-ethnic sample of adults, BFPhoto and BFDXA measures were strongly positively 

correlated; however, BFPhoto exhibited bias as measured by Bland-Altman analyses (see 

Figure 1). Body fat percentage (BFPhoto and BFDXA) was lower in individuals with higher 

physical activity levels, compared to individuals who were not active, and was a significant 

predictor of being physically active (see Figure 1), which was expected on the basis of prior 

studies of body composition and physical activity levels (35, 36). This association of body 

fat with the probability that an individual is physically active was also observed when the 

population was stratified by race. In contrast, BFPhoto and BFDXA were lower in participants 

with self-reported T2D, relative to individuals without T2D, which was not expected. That 

is, contrary to our expectations, excess body fat did not significantly increase the odds of 

having T2D in our cohort (see Table 4). Further, the association of body fat with the 

probability of having type 2 diabetes when the population was stratified by race were 

inconsistent, where it was statistically significant in some cases and not significant in others. 

However, the parameter estimates and 95% confidence intervals led to the conclusion that 

the association of body fat remained null, which is consistent with the findings shown in this 

study when the sample was analyzed as one group. Therefore, it is possible that our study 

Murillo et al. Page 7

Obesity (Silver Spring). Author manuscript; available in PMC 2019 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



participants with T2D had better body weight management than average: all participants 

with T2D reported being on medication(s) used for diabetes, weight loss, or other health 

conditions, which may explain the inverse relationship between body fat percentage and 

having T2D. The lower body fat percentage observed in participants with T2D could also be 

due to the cross-sectional design of the study, as well as the particular sample that 

volunteered to enroll in the study.

We also observed an upward bias from unadjusted BFPhoto data βPhoto
UC > βDXA  for models 

predicting the probability of being physically active and having T2D, which implies that 

unadjusted BFPhoto overestimates the effect of body fat on health outcomes. The 

performance of measurement error bias-adjustment methods to reduce this bias varied. For 

the physical activity model, SIMEX and MI methods led to a downward bias 

βPhoto
S , βPhoto

MI < βDXA , whereas the RC-adjusted estimate had an upward bias 

βPhoto
RC > βDXA ; however, MI had the lowest percent change (Δβ=9%). Thus, MI performed 

the best, followed next by RC, and then the SIMEX method. For the T2D status model, both 

RC-adjusted and SIMEX-adjusted values had an upward bias βPhoto
RC , βPhoto

S > βDXA , 

whereas the MI-adjusted estimate was unbiased βPhoto
MI = βDXA  and therefore performed the 

best. The RC- and SIMEX-adjusted model parameters corresponding to body fat had 

percentage changes exceeding 300% and overestimated the effect of body fat percentage on 

the probability of having T2D. Hence, these results indicate that parameter estimates bias-

adjusted by MI were closer to the reference estimates in comparison to RC and SIMEX. 

More specifically, MI-adjusted estimates consistently matched the estimates corresponding 

to BFDXA for both T2D and physical activity outcomes. RC overestimated the effect of body 

fat βPhoto
RC  the probability of having T2D, but improved the estimate of the effect of body fat 

βPhoto
RC  on the probability of being physically active. However, SIMEX overestimated the 

effect of body fat βPhoto
S  for both T2D and physical activity status outcomes. The standard 

error was greater for RC and SIMEX than for MI. Moreover, similar findings on the 

performance of MI, RC, and SIMEX for the bias-adjustment of parameter estimates have 

been reported in other studies (5, 11, 12, 37).

An advantage of our research is that we have concurrent body fat measures by DXA and a 

2D photographic-based method for the entire sample. Another novel aspect of our work is 

the use of measurement error approaches to improve model parameters of body composition, 

which to our knowledge has not been done before. A limitation of this work is that the three 

error bias-adjustment methods that we implemented have different assumptions, which 

makes comparison of their performance difficult. For example, while MI may be the most 

effective method for measurement error bias-adjustment in this study, the imputation 

procedure includes T2D and physical activity outcome variables to simulate new datasets, 

thus improving its accuracy. In contrast to MI, the SIMEX and RC methods are completely 

different approaches with a different set of assumptions (see supplementary file for 

Appendices A–C). Further, it is important to note that the RC method can be applied to 

validation studies (internal and external), when a gold standard or reference measure is 
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available (8, 19). However, in cases where this is not available, the non-iterative RC method 

can be used to adjust for measurement error in covariates (see (8, 19) for details). Another 

limitation is that these methods cannot address other biases such as those caused by 

unmeasured confounders and other biases. The results in our analyses are sensitive to all 

types of errors, not just measurement error, but also unmeasured confounders (38, 39). 

While these methods cannot address bias caused by unmeasured confounders, the 

measurement error models discussed here provide a valuable method for addressing 

measurement error when data are available and measurement error is a concern. Future work 

would be to consider unmeasured confounders when adjusting for measurement error. 

Lastly, another limitation is that the self-reported outcomes considered in this study, type 2 

diabetes and physical activity, may potentially be misclassified, and therefore, could affect 

our results. However, the focus of this study is to assess the impacts of measurement error in 

the covariates on these outcomes. Future work would involve exploring the effects of errors 

on the outcomes.

In conclusion, this study demonstrates the value of measurement error bias-adjustment 

methods to improve model parameters in nutrition and obesity research studies. Our purpose 

was to introduce three statistical approaches for reducing biases due to measurement errors 

and illustrated its value using real data. We presented a practical example that involves 

evaluating the relationship between body fat and health outcomes. These tools were applied 

for a specific statistical model (logistic model) and dataset (body fat measured by DXA and 

a novel photographic-based method). Our results suggest that, overall, MI performed the 

best in adjusting for measurement error and can be used to minimize statistical bias caused 

by measurement error, a finding which is supported by other studies (11, 12). Furthermore, 

our study evaluated the case where the variance in the reference measure (DXA) is larger 

than the error-prone method (photographic), and here MI clearly outperforms all other 

methods. In summary, this study illustrates the utility and value of these methods for 

investigators conducting research where measurement error is a concern.
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APPENDIX A:: RC

Adapting definitions from (11, 19), we briefly review RC theory. The RC method consists of 

estimating model parameters for the error-free model,

logit  Pr  Y X, W = α* + β1*X + β2*W , (1)

where α*, β1*, and β2* are vectors of the model parameters. Y is the binary outcome and in 

this case represents physical activity status or type 2 diabetes status. X is a vector of error-

free variables, which corresponds here to BFDXA. The covariates, included in the vector W, 

are also assumed to be error-free; here, we used the covariates height, weight, age, sex, and 

race/ethnicity. We introduce the vector Z, which consists of the error-prone variable(s), or 

BFPhoto. The distribution of Z is assumed to be equivalent regardless of the binary outcome 

Y (e.g., Y = 0 and Y = 1), that is, Pr(Z | X, Y = 1) = Pr(Z | X, Y = 0). The RC method 

consists of the following steps:

Step 1: Estimate the logistic regression coefficients in the error-prone model,

logit  Pr  Y Z, W = αUC + β1
UCZ + β2

UCW , (2)

where αUC, β1
UC, and β2

UC are vectors of the uncorrected (UC) model parameters.

Step 2: Estimate the regression coefficients that relate the error-prone variables to the error-

free variables. The following multivariate (e.g., here defined as multiple dependent variables 

(43)) linear regression model is applied:

X = λ′0 + λ1Z + λ2W + e, (3)

where λ′0, λ1, and λ2 are vectors of regression coefficients and e is the error vector, where 

e~N(0, Σ); that is, the errors follow normal distributions with a mean of zero.

Step 3: Estimate the RC-corrected model coefficients, βRC = β1
RC, β2

RC . Using the 

assumption that the probability of Y = 1 in the study sample is small, then

Pr Y X, W ≅ exp α* + β1*X + β2*W . (4)

Substituting equation (3) into (4) and rearranging terms gives,

Pr Y Z, W ≅ exp c + β1*λ1Z + β2* + β1*λ2 W , (5)
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where c = α* + β1*αUC. The “multivariate linear approximation estimator” (11) yields

β * = βRCλ−1, (6)

where βRC = β1
RC, β2

RC  and β * = β1*, β2* . Here λ =
λ1 λ2
0 I

, where 0 is a matrix of zeroes 

and I is the the identity matrix. Hence, βRC = β*λ , where β1
RC = β1*λ1 and β2

RC = β1* + β2*λ2.

Step 4: Estimate the variance-covariance matrix Cov β j1
RC, β j2

RC  (details are found in (11)).

Step 5: Estimate the 95% confidence interval for the jth true regression coefficient β j* using 

β j* ± Z1 − α/2 Var β j* . The 95% confidence interval of the corresponding odds ratio is 

calculated as exp β j* ± Z1 − α/2 Var β j* .

APPENDIX B:: SIMEX

The SIMEX method adjusts for bias in parameter estimates by first introducing random error 

into the model to uncover the relationship between model parameters and the amount of 

measurement error through a resampling approach and then extrapolating back to the case of 

no error to find the corrected model parameters (31–33). The SIMEX method consists of the 

following steps:

Step 1: Estimate the regression coefficients, βUC, corresponding to the error-prone model 

given in Equation (2) and calculate the measurement error variance, σU
2 , which is defined 

here as the variance of BFDXA − BFPhoto.

Step 2: Implement a simulation step to generate and add random error, ϵ, to the error-prone 

variables. This gives a new measurement error variance, 1 + θ σm
2 , where θ>0 and 

ϵ N 0, θσm
2 . Past work shows that θ ∈ (0.5, 1, 1.5, 2) are the typical choices of the scale 

factor representing measurement error (33, 44).

Step 3: The simulations in Step 2 are repeated B times for each θ. Parameters are estimated 

for Equation (2), enoted β
θ j , and then the mean regression coefficients for B iterations are 

calculated as follows: β θ j = 1
B ∑i = 1

B β
i, θ j , where j = 1, …, k scale factors (here k = 4).

Step 4: Determine the extrapolant function for each model parameter, βl, by identifying the 

functional relationship (i.e., linear or quadratic) between each regression coefficient and θj. 

This is defined as βl = f θ, βl
(θ)  for each of the l = 1, … , n model parameters.
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Step 5: Then extrapolate back to the case of zero error to get the “true” estimate. This yields 

the final estimates for βl = f θ0 = − 1, βl
(θ) , which is considered the case of no measurement 

error. The standard errors for the regression coefficients and 95% confidence intervals for 

the odds ratio were calculated.

APPENDIX C:: MI

The MI method corrects for measurement error by generating values that represent the 

unobserved true data using the known relationships between variable(s) of interest and 

covariate(s). Here, BFDXA is imputed based on the associations and distributions of variables 

in the data. The relationships among variables can be estimated using the Markov Chain 

Monte Carlo (MCMC) method under the multivariate normal distribution assumption or 

using the chained equations approach. The latter approach was used in this study and 

includes the following steps:

Step 1: Estimate regression coefficients, γk, where k = 1, … ,7 and residual variance σ2 for 

the model relating BFDXA and BFPhoto for subjects with both BFDXA and BFPhoto measures:

BFDXA = γ0 + γ1BFPhoto + γ2Age + γ3Sex  + γ4Race + γ5Height + γ6Weight + γ7Outcome 
+ ϵ,

(7)

where the variable Outcome represents either being PA for the PA model or having T2D in 

the T2D model and ϵ~N(0,σ2).

Step 2: For n subjects with BFPhoto only, the value of BFDXA is treated as missing, denoted 

as Xi, where i = 1, … , n. Then a possible value of Xi is randomly drawn from a normal 

distribution such that Xi N μl, σ2 , where 

μi = γ0 + γ1BFPhoto, i + γ2Agei + γ3Sexi + γ4Racei + γ5Heighti + γ6Weighti + γ7Outcomei for i = 

1, … , n.

Step 3: Repeat Step 2 m times to generate m datasets with corrected BFPhoto values (imputed 

BFDXA).

Step 4: A multivariable logistic regression (defined as a model with multiple dependent 

variables (45)) is used to evaluate the association between outcome and independent 

variables for each of the m datasets, yielding m sets of parameter estimates. By Rubin’s 

method, the m sets of parameter estimates can be combined into a single set of parameter 

estimates. For example for each model parameter : β = 1
m ∑ j = 1

m β j. Lastly, standard errors 

for the estimates and 95% confidence intervals for the odds ratio were calculated.
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ANSWER THE STUDY IMPORTANCE QUESTIONS (3 bullet points)

1. What is already known about this subject?

• Self-reported data are prone to measurement error.

• Measurement error can lead to biased conclusions in statistical 

analyses.

• Methods have been developed and applied for the bias-adjustment of 

self-reported data such as energy intake reported in food frequency 

questionnaires.

2. What does your study add?

• This study illustrates the use of these methods for the bias-

adjustment of body fat measures, which to our knowledge has not 

been done before.

• This study compares the performance of three statistical approaches 

for measurement error bias-adjustment.

• This study utilized a unique dataset with concurrent body fat 

measured by an assumed reference method (dual-energy x-ray 

absorptiometry scans) and an error-prone method (a novel 2D 

photographic-based method) for all participants.
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Figure 1: 
Associations and Agreements Between the Two Body Fat Percentage Estimates. BFPhoto and 

BFDXA, by physical activity (left column) and type 2 diabetes (right column) outcomes for 

all participants (n=588). (A-B) BFPhoto strongly correlates with BFDXA (r=0.88, P < 

0.0001). Bland-Altman tests with 95% confidence intervals (dashed green lines) for the (C-

D) absolute difference BFPhoto - BFDXA and (E-F) relative difference (BFPhoto - BFDXA)/ 

BFDXA show that BFPhoto overestimated body fat percentage for individuals with lower 

body fat percentage
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Figure 2: 
Physical Activity Status Results. Parameters estimated with standard error bars for the 

probability of being physically active are shown for the error-free measurement (DXA), the 

unadjusted error-prone measurement (UC, Photo), and the three measurement error bias-

adjusted cases (MI, RC, and S).
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Figure 3: 
Type 2 Diabetes Status Results. Parameters estimated with standard error bars for the 

probability of having type 2 diabetes are shown for the error-free measurement (DXA), the 

unadjusted error bias-adjusted measurement (UC, Photo), and the three measurement error 

bias-adjusted cases (MI, RC, and S).
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Table 1:

Summary of participant characteristics.

All (n=588)
1 Men (n=270) Women (n=318)

Age, years 39 ± 15
1 40 ± 16 38 ± 14

Height, cm 169.9 ± 9.8 177.3 ± 7.3 163.5 ± 6.7

Weight, kg 80.0 ± 19.8 85.2 ± 19.2 75.7 ± 19.2

BMI, kg/m2 27.7 ± 6.3 27 ± 5.5 28.3 ± 6.9

BFDXA , % 32.9 ± 11.2 26.1 ± 8.9 38.8 ± 9.5

BFPhoto , % 33.3 ± 9.7 26.6 ± 6.8 39.1 ± 7.9

Race, n (%)

 Non-Hispanic White 297 (50.5) 145 (53.7) 152 (47.8)

 Non-Hispanic Black 291 (49.5) 125 (46.3) 166 (52.2)

Physically Active (PA), n (%)

 No 354 (60.2) 136 (50.4) 218 (68.5)

 Yes 234 (39.8) 134 (49.6) 100 (31.5)

Type 2 Diabetes (T2D), n (%)

 No 557 (94.7) 255 (94.4) 302 (95.0)2

 Yes 31 (5.3) 15 (5.6) 16 (5.0)

1
Values are mean ± SD unless otherwise indicated.
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Table 3:

Summary of Physical Activity Results. Estimated model coefficients for body fat are shown for being 

physically active.

Model
Coefficient Parameter

1 Estimate (95% CI) %Δβ2,3 OR (95% CI) P-value

Body Fat βDXA −0.23 (−0.26, −0.19) - 0.79 (0.75, 0.82) <0.0001

βPhoto
UC

−0.16 (−0.23, −0.08) 30 ↑ 0.84 (0.77, 0.92) 0.0002

β Photo
MI

−0.25 (−0.28, −0.21) 9.4 ↓ 0.77 (0.73, 0.81) <0.0001

β Photo 
RC

−0.20 (−0.31, −0.08) 13 ↑ 0.81 (0.72, 0.91) 0.0008

β Photo
S

−0.44 (−0.57, −0.30) 91 ↓ 0.64 (0.55, 0.74) <0.0001

1
Unadjusted BFPhoto βPhoto

UC
, multiple imputation βPhoto

MI
, regression calibration βPhoto

RC
, and SIMEX βPhoto

S
.

2
The difference between βDXA and each parameter value (e.g. βPhoto

UC , βPhoto
MI , βPhoto

RC ,  and βPhoto
S

. The percentage change, denoted Δβ 

(%), were calculated as the absolute change between the BFPhoto-based parameter value (e.g., βPhoto
UC , βPhoto

MI , βPhoto
RC ,  and βPhoto

S
) and the 

reference parameter value βDXA  and the reference parameter value βDXA , divided by the absolute reference parameter value βDXA , and 

rounded.

3
The ↑ represents upward bias β > βDXA  and ↓ represents a downward bias β > βDXA .
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Table 4:

Summary of Type 2 Diabetes Results. Estimated model coefficients of body fat are shown for assessing type 2 

diabetes status.

Model
Coefficient Parameter

1 Estimate (95% CI) %Δβ2,3 OR (95% CI) P-value

Body Fat βDXA 0.03 (−0.04, 0.10) - 1.03 (0.95, 1.12) 0.4447

βPhoto
UC

0.10 (−0.05, 0.25) 233 ↑ 1.11 (0.93, 1.32) 0.2188

β Photo
MI

0.03 (−0.02, 0.08) 0 1.03 (0.96, 1.10) 0.3724

β Photo 
RC

0.13 (−0.06, 0.32) 333 ↑ 1.14 (0.92, 1.41) 0.2245

β Photo
S

0.27 (−0.02, 0.56) 800 ↑ 1.32 (0.98, 1.77) 0.0653

1
Unadjusted BFPhoto βPhoto

UC
, multiple imputation βPhoto

MI
, regression calibration βPhoto

RC
, and SIMEX βPhoto

S
.

2
The difference between βDXA and each parameter value (e.g. βPhoto

UC , βPhoto
MI , βPhoto

RC ,  and βPhoto
S

. The percentage change, denoted Δβ 

(%), were calculated as the absolute change between the BFPhoto-based parameter value (e.g., βPhoto
UC , βPhoto

MI , βPhoto
RC ,  and βPhoto

S
) and the 

reference parameter value βDXA , divided by the absolute reference parameter value βDXA , and rounded.

3
The ↑ represents upward bias β > βDXA  and ↓ represents a downward bias β > βDXA .
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