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Transcriptional response of honey bee
(Apis mellifera) to differential nutritional
status and Nosema infection
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Abstract

Background: Bees are confronting several environmental challenges, including the intermingled effects of
malnutrition and disease. Intuitively, pollen is the healthiest nutritional choice, however, commercial substitutes,
such as Bee-Pro and MegaBee, are widely used. Herein we examined how feeding natural and artificial diets
shapes transcription in the abdomen of the honey bee, and how transcription shifts in combination with Nosema
parasitism.

Results: Gene ontology enrichment revealed that, compared with poor diet (carbohydrates [C]), bees fed pollen
(P > C), Bee-Pro (B > C), and MegaBee (M > C) showed a broad upregulation of metabolic processes, especially lipids;
however, pollen feeding promoted more functions, and superior proteolysis. The superiority of the pollen diet was
also evident through the remarkable overexpression of vitellogenin in bees fed pollen instead of MegaBee or Bee-
Pro. Upregulation of bioprocesses under carbohydrates feeding compared to pollen (C > P) provided a clear poor
nutritional status, uncovering stark expression changes that were slight or absent relatively to Bee-Pro (C > B) or
MegaBee (C > M). Poor diet feeding (C > P) induced starvation response genes and hippo signaling pathway, while
it repressed growth through different mechanisms. Carbohydrate feeding (C > P) also elicited ‘adult behavior’, and
developmental processes suggesting transition to foraging. Finally, it altered the ‘circadian rhythm’, reflecting the
role of this mechanism in the adaptation to nutritional stress in mammals.
Nosema-infected bees fed pollen compared to carbohydrates (PN > CN) upheld certain bioprocesses of uninfected bees
(P > C). Poor nutritional status was more apparent against pollen (CN > PN) than Bee-Pro (CN > BN) or MegaBee (CN >
MN). Nosema accentuated the effects of malnutrition since more starvation-response genes and stress response
mechanisms were upregulated in CN > PN compared to C > P. The bioprocess ‘Macromolecular complex assembly’ was
also enriched in CN > PN, and involved genes associated with human HIV and/or influenza, thus providing potential
candidates for bee-Nosema interactions. Finally, the enzyme Duox emerged as essential for guts defense in bees, similarly
to Drosophila.

Conclusions: These results provide evidence of the superior nutritional status of bees fed pollen instead of artificial
substitutes in terms of overall health, even in the presence of a pathogen.
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Background
The European honey bee (Apis mellifera) is primarily
reared for honey production, but its benefits are
substantially higher considering it is the most important
pollinator of crops [1]. Since 2006, US beekeepers have
experienced yearly colony losses of up to 45% [2–4].
These losses, which are attributed to different stressors
or stressor combinations [5, 6], extend to native bee species
[7, 8]. Some stressors garnering special interest are patho-
gens [9, 10], climate change [11], limited dietary diversity
[11], habitat loss [12, 13], pesticides [14–17], pathogen-
pesticides synergy [18, 19] and disease-malnutrition
synergy [20–22].
Colony survival depends on the availability of pollen (pro-

teins, lipids, and micronutrients) [23] and nectar (carbohy-
drates). Not all pollen species have adequate nutritional
composition, however [24]; hence monocultures may im-
pose strong dietary constraints that can have harmful ef-
fects on bee health [25]. In fact, pollen intake influences
lifespan [26] and several health indicators including physio-
logical metabolism [27], immunocompetence [28], disease
tolerance [22, 29] and pesticides resistance [30]. Monocul-
ture hazards also encompass possible natural toxins in nec-
tar or pollen that might be consumed in harmful
concentrations [11].
To offset pollen shortages, beekeepers feed bees read-

ily available and affordable plant-based protein substi-
tutes [31]. However, the nutritional value of these
commercial diets is unclear, as they performed similarly
to pollen in one study [32], but were nutritionally poor
or unpalatable in other studies [33–38]. Also, the long-
term effectiveness of these diets on the colony health is
unknown [11], prompting predictive efforts through
mathematical modeling [39].
Throughout evolution, animals, facing starvation, have

developed fitness traits to conserve energy and preserve
organismal homeostasis [40]. Drosophila melanogaster
enters diapause, a state of reproductive quiescence,
arrested development, and extended lifespan. These
reversible changes reveal immense phenotypic plasticity,
which physiologically may reflect a tradeoff between
programs geared toward growth and reproduction versus
extended survival [41]. The pathway insulin/Igf-like sig-
naling (IIS) is a key regulator of such processes. The IIS
system, which inactivates a gene from the FOXO family
that regulates metabolism and stress responses [42], is
interrelated with the Target Of Rapamamicin (TOR)
pathway [43]. The TOR cascade is mainly stimulated by
amino acid abundance [44], and responds by upregulat-
ing translation to promote growth.
Like malnutrition, to offset metabolic cost, the im-

mune response necessitates energy conservation by tra-
deoffs with reproduction and development [45]. The
immune cost also lowers tolerance to additional

stressors such as starvation [46] and, similarly, poor nu-
trition negatively impacts disease resistance [47, 48].
This nutrition-immunity interdependence led to the
emergence of the study of “nutritional immunology”,
which investigates dietary compositions for an opti-
mized defense response [49]. In addition to specific nu-
trients molding the immune response [50, 51], another
layer of complexity was recently added to this relation-
ship when genetics was shown to play a role [52].
Because bees are facing increasing malnutrition and

disease threats, it has become imperative to elucidate
which of their organismal mechanisms are influenced by
these stressors. To our knowledge, there are few studies
of how pollen feeding influences the transcriptome of
the honey bee, and no respective studies of artificial sub-
stitutes. Filling this knowledge gap can provide clues on
the nutritional values of these diets and, possibly, on
their long-term effectiveness on colony health. In
addition, one of the most threatening pathogens to bee
health is the midgut parasite Nosema ssp. [53, 54] from
the group of microsporidia. Because these parasites have
limited capacity for manufacturing ATP, and lack most
primary metabolite genes [55], they impose a high meta-
bolic cost on the host by appropriating these substrates
from the host cell [56, 57]. However, although Nosema
effects are expected to be exacerbated in the metabolic-
ally stressed malnourished bees, research results have
lacked consistency in this regard [29, 58–61]. Thus, in
this work we investigated the effects of pollen and pollen
substitutes on the transcriptional response in healthy
bees, but also in Nosema-infected bees.

Methods
Diets and Nosema trials
European honey bee colonies from the apiary of Carl
Hayden Bee Research Center (USDA-ARS Tucson, AZ)
were randomly sampled for frames of sealed brood
which were placed in an environmental room kept at
34 °C, 30–40% humidity atmosphere to produce newly
emerged bees. Within 10 h after emergence, the bees
were collected and distributed into 24 cages with 100
bees per cage. All cages were provided ad libitum with
carbohydrates (30% sucrose solution) and water. For diet
treatments, the cages were organized in 4 groups of 6
cages. Three groups were fed ad libitum with protein-
aceous diets (rich diets), which are respectively, pollen
collected in the Sonoran Desert by colonies in the spring
(P), Bee-Pro (B) and MegaBee (M). The fourth group re-
ceived exclusively carbohydrates to constitute the con-
trol (C) also referred to as poor diet, hereafter. To create
the diet/Nosema treatments PN, BN, MN, and CN, at
day-7, for each diet, 3 cages were randomly selected and
provided with a 60% sucrose feeding solution containing
105 spores/bee of Nosema apis inoculum and were
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continued on the same diet as prior to infection for the
remaining duration of the trial. The uninfected cages
were maintained Nosema-free and were used to create
the groups, hereafter, referred to as healthy or unin-
fected diet treatments P, B, M and C. Such design, thus,
yielded 4 diet/no-Nosema and 4 diets/Nosema treat-
ments, each containing 3 biological replicates (3 cages).
Experimentation was terminated on day-14, on which
bees were flash frozen and stored at − 80 °C for subse-
quent mRNA and hemolymph extractions.

Protein analysis and RNA-seq libraries preparation
To determine the protein concentrations of the hindgut
and hemolymph, 3 bees were randomly selected from
each treatment, and their abdomens were collected for
processing according to protocols published elsewhere
[62, 63]. To perform the transcriptome profiling, for
each treatment, 12 bees per biological replicate (cage)
were randomly chosen, and their heads discarded. The
abdomens were divided into 4 groups of 4 abdomens
that were collectively subjected to homogenization in
Trizol, followed by RNA extraction using RNeasy kit
(Qiagen). Subsequently, all three RNA pools were
equally combined into a larger single RNA bioreplicate.
The three biological RNA samples, thus obtained per
treatment, were used to prepare RNA-Seq libraries as
described elsewhere [64], which were sequenced on the
Illumina platform.

Analysis of sequenced data
Sequencing data were analyzed using CLC Genomics
Workbench 7.5.1 (Qiagen). First, sequences were prepro-
cessed for duplicate removal and demultiplexed into sep-
arate libraries representing the various replicates. The
bee genome Amel 4.5_scaffolds was used as a reference
for mapping the reads. Mapping options were set at mis-
match cost 2, insertion cost 3, depletion cost 3, length
fraction 0.5, similarity fraction 0.8, and gene expression
value set to RPKM [65]. Differential expression analysis
was performed with the ‘Transcriptomics Analysis’ tool-
box, and comprised ‘experiment set-up’, where treat-
ments pairs were analyzed with the option ‘All group
pairs’. This setting uses the Wald test, and reports the
expression mean of each gene with fold change between
the treatment pair. Expression values were normalized
using the options ‘by totals’ and ‘state numbers in read
1,000,000’. The normalized values were transformed
using “Add a Constant” set at the value ‘1’. In order to
identify the differentially expressed genes (DEGs) be-
tween a pair of treatments, a t-test was performed on
the transformed values for each mapped gene, and DEGs
were filtered based on p-value cutoff p < 0.05 and fold
change cutoff FC ≥ |1.5|. Drosophila homologs were
identified using BioMart (Ensembl) and the Hymenoptera

genome database [66], and used for gene ontology analysis
(GO) to uncover significantly enriched bioprocesses [67]
and pathways (KEGG). REVIGO [68] and GO browser
(GO tree) were used to remove redundant GO-terms
resulting from the functional analysis. Significance of the
number of genes overlapping between DEG lists was de-
termined by calculating a ‘representation factor’ [69]. The
overlap was further examined for concordance in the dir-
ection of regulation utilizing contingency tables on which
a chi-square test followed by Yates correction were per-
formed using R environment.

RT-qPCR of selected genes
Gene selection for qPCR testing was primarily based on
the RNA-seq results, but also on their role in the nutri-
tional or immune responses. We examined vitellogenin
(Vg) expression because of its importance as a storage
protein accumulated under rich nutritional status. In
fact, Vg is a proven marker gene that is responsive to
rich diet and is overexpressed under rich nutritional sta-
tus. Therefore Vg is especially relevant to test whether
natural and commercial diets differ in their nutritional
value. We also selected NADPH dual oxidase (Duox) be-
cause, to our knowledge, it was never linked to honey
bee gut defense, while it was recently shown as central
in Drosophila gut immunity (see section: effects of nutri-
tion on immunity).
Extracted RNA was first treated with DNase 1 to elim-

inate contaminating genomic DNA using the GenElute
binding columns (Sigma). Following reverse transcrip-
tion using the cDNA Synthesis Kit (Sigma), qPCR was
performed in a reaction of 10 μl total volume containing
2× Brilliant II SYBR Green ReadyMix (5 μl), 0.4 μM of
each primer, and cDNA sample (2 μl of 1/10 dilution).
The genes e1f11 and Rp49 were used for efficiency cor-
rection, and primer sequences for each gene were as
previously published (Vg: [70], Duox: [71], e1f11: [27],
Rp49: [72]). The thermal reactions consisted of 40 cycles
with the annealing step set at 50 °C for Duox, 51 °C for
Rp49, 54 °C for E1f111, and 55 °C for Vg. All healthy
treatments and all infected treatments were, respectively,
evaluated for Vg and Duox expression. Using R environ-
ment, results were analyzed, first by testing for normality
(Shapiro test), then assessing equality of variance (vari-
ance test). Subsequently, relative expression levels were
tested for differences in significance with t-test and Wil-
coxon test, respectively, when data were normally and
non-normally distributed.

Results
Protein content
The soluble protein concentration of pollen was 3 and 5
times higher than Bee-Pro, and MegaBee, respectively
(Table 1). Regarding protein digestibility, a significant
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diet effect was observed in healthy bees and in Nose-
ma-infected bees, with significantly higher concentration
of undigested proteins in the hindgut when bees were
fed MegaBee or Bee-Pro, compared with pollen (Table 2).
Nosema infection did not significantly alter hindgut pro-
tein content for any of the three diets (Table 2). Similarly
to the hindgut, protein titer of the hemolymph showed
significant between-diets differences in uninfected and
Nosema-infected bees. Pollen and Bee-Pro feeding
induced higher protein titers, contrary to the lower level
(indistinguishable) under MegaBee and carbohydrates
feeding (Table 2). As with the digestibility assay, within-
diets, Nosema had no effect on the protein levels in the
hemolymph.

RNA-seq analysis
Sequencing statistics
The sequencing generated 2 datasets, Diets_no_Nosema
and Diets_Nosema, each containing 3 libraries per diet. The
two datasets consisted of 34,183,883,593 sequenced nucleo-
tides from 338,454,293 reads that passed the initial quality
control. When mapped to the honey bee genome, Diets_-
no_Nosema generated 45,720,190 uniquely mapped
sequences while Diets_Nosema generated 35,707,804
uniquely mapped sequences. In terms of genes queried by
these reads, the Diets_no-Nosema and Diets_Nosema sam-
ples included 32,721,777 and 26,453,873 uniquely-mapped
reads that mapped to 15,314 honey bee genes (Table 3).

Genome-wide regulation
The results of the gene expression analysis are summa-
rized in Table 4. In healthy bees, pollen feeding compared
to carbohydrates (P vs. C) instigated more differential
transcription than Bee-Pro (B vs. C) and MegaBee (M vs.

C), while the latter diets were similar in that regard. No-
sema stress sharply accentuated global differential regula-
tion under pollen (PN vs. CN), but affected slightly bees
fed Bee-Pro (BN vs. CN) and MegaBee (BN vs. CN). A
tendency to global upregulation was evident in conditions
of malnutrition, and heightened when combined with No-
sema. The upregulation under malnutrition was wider in
the comparisons to pollen treatments (C > P and CN >
PN), uncovering larger numbers of DEGs than the com-
parisons to the substitutes. This trend holds true for a se-
lect subset of known genes recorded in at least 2
treatments (Additional file 1, Fig. 1). In healthy bees, over-
expression under rich nutrition, especially pollen (P > C),
was less marked than overexpression under carbohydrates
only diet (C > P). Nosema infection did not affect the
number of upregulated genes when bees were fed pollen
(PN > CN), however it exerted a severe inhibitory effect in
bees fed Bee-Pro (BN > CN) or MegaBee (MN >CN).

Gene ontology analysis
Effects of nutrition in healthy bees
The GO analysis of expression upregulation revealed
that healthy bees fed a rich diet (P > C, B > C and M > C)
exhibited a stimulated metabolism, albeit Bee-Pro effect
was slightly above significance cutoff (‘metabolic path-
ways’, p = 0.065). Although, pollen feeding (P > C) upreg-
ulated fewer genes, it affected more bioprocesses
(Fig. 2a) than MegaBee (M > C) and Bee-Pro (B > C)
(Additional file 2).
Comparison of carbohydrates feeding to pollen (C > P)

showed more altered bioprocesses (Fig. 2b) than com-
parison to Bee-Pro (C > B) or MegaBee (C >M) (Add-
itional file 3). Five genes associated with response to
starvation (CG7728, CG9107, Atg6, CG2972 and Ak6)

Table 1 Means (μg/ml) of soluble proteins of Sonoran Desert pollen and pollen substitutes

Diet ANOVA Tukey test

Mean F p-Val Comparison Q statistics p-Val Tukey rank

Pollen (P) 758.7 139.59 0.000 P vs. B 18.6997 0.0010053 1

Bee-Pro (B) 280.3 P vs. M 21.8737 0.0010053 2

MegaBee (M) 199.1 M vs. B 3.1740 0.1410405 2

Table 2 Proteins content (μg/ml) of the hindgut and hemolymph in bees with and without Nosema fed different diets

Hindgut Hemolymph

Diet t-test within-diet ANOVA between-diet (N+) ANOVA between-diet (N-) t-test within-diet ANOVA between-diets

N- N+ p-val Statistics Rank Statistics Rank N- N+ p-val Mean Statistics Rank

(within diet)

P 0.258 0.216 0.149 F = 341
p = 0.000

3 F = 25.32
p = 0.001

3 519.2 569.3 0.595 544.2 F = 8.69
p = 0.001

1

B 0.637 0.527 0.258 2 2 463.9 529.3 0.593 496.6 1

M 0.869 0.913 0.702 1 1 333.6 311.5 0.703 322.6 2

C – – – – – 351.9 248 0.341 299.9 2

Diet rank was determined using Tukey test, N- and N+, respectively, describe treatments without and with Nosema
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were upregulated in C > P, while only one gene (MESR3)
was overexpressed in C >M, and none in C > B. Overall,
the C > B and C >M comparisons flagged fewer GO
terms (see discussion).
Regarding the induction of genes associated with the

IIS-TOR pathways, insulin-like receptor-like (InR1),
Cdk4, and Pdk1 were significantly upregulated in C > P.
InR1 and Pdk1 were also upregulated in C > B and C >
M albeit not significantly, while Cdk4 was significantly
upregulated in C > B but not in C >M.

Effects of nutrition in Nosema-infected bees
The GO analysis of expression of the proteinaceous
treatments comparatively to carbohydrates revealed lar-
ger upregulatory effects of pollen feeding (PN > CN)
than Bee-Pro (BN > CN) and MegaBee (MN > CN), thus
repeating the observations in healthy animals (Add-
itional file 4). MegaBee-fed bees upheld certain meta-
bolic pathways but inhibited expression (‘chromatin
silencing’). Similarly to healthy bees, Bee-Pro effect was
minimal, with a single process (‘ion transport’) upregu-
lated in the infected bees. For all proteinaceous diets,
many DEGs did not enrich particular bioprocesses (re-
spectively, 28, 10, and 34 genes in PN > CN, BN > CN
and MN > CN; DAVID 6.7).
Induction of bioprocesses due to malnutrition in in-

fected bees was more evident comparatively to pollen
feeding (CN > PN) than Bee-Pro (CN > BN) and Mega

Bee (CN > PN), notably stimulating 11 genes associated
with response to starvation (Ak6, Mat89Ba, CG8038,
l(2)k09022, CG9422, CG12325, CG30349, Atg16, CG14
057, Gnat and Dicer-1). More enriched bioprocesses
were also obtained in CN > PN (Additional file 5, Fig. 3).

Overlap of nutritional effects
The present work provided several enriched biopro-
cesses overlapping with a previous transcriptome
analysis of different conditions associated with large nu-
trient stores in honey bee [27]. Key aspects such as type
of nutrition, type of enriched bioprocesses and their dir-
ection of regulation (Additional files 6 and 7) coincided
between both studies.
Within each diet in this work, we identified the DEGs

that overlap in the healthy and infected treatments (PN vs.
CN/ P vs. C, MN vs. CN/ M vs. C and BN vs. CN/ B vs.
C) to detect conserved diet effects in both infection sta-
tuses. The overlaps were all significant (Additional file 8),
proving they are due to diet effect rather than chance.
The concordance in the direction of expression was

highly significant except for BN vs. CN/ B vs. C (Table 5).
Regarding upregulation by rich diet, there was no overlap
in BN >CN/ B > C, and few known genes in MN>CN/
M>C and PN > CN/ P > C. The overlapping upregulatory
effect by carbohydrates comparatively to Bee-Pro or
MegaBee (CN > BN/ C > B and CN >MN/ C >M) was
minimal (Table 5). Contrarily, the upregulated overlapping

Table 3 Statistics of RNA-seq mapped sequences by type

Uniquely mapped Fraction Non-specifically mapped Fraction Mapped % of total mapped

a) Twelve libraries of diet/healthy-bees

Total gene 32,721,777 0.99 297,597 0.01 33,019,374 71.28

Intergenic 12,998,413 0.98 302,819 0.02 13,301,232 28.71

Total 45,720,190 0.99 600,416 0.01 46,320,606 100

b) Twelve libraries of diet/infected-bees

Total gene 26,453,873 0.99 282,617 0.01 26,736,490 73.87

Intergenic 9,253,931 0.98 205,394 0.02 9,459,325 26.13

Total 35,707,804 0.99 488,011 0.01 36,195,815 100

Table 4 Genes differentially transcribed in bees with or without Nosema fed rich diets versus carbohydrates

Treatment Comparison ↑ Genes ↑Drosophila orthologs ↓ Genes ↓ Drosophila orthologues Total A. mellifera genes

Pollen/Nosema
Pollen/no-Nosema

PN vs. CN 52 40 1489 906 1541

P vs. C 50 42 577 306 627

MegaBee/Nosema
MegaBee/no-Nosema

MN vs. CN 91 49 231 134 322

M vs. C 208 113 89 48 297

Bee-Pro/Nosema
Bee-Pro/no-Nosema

BN vs. CN 18 13 219 92 237

B vs. C 148 90 135 80 283

Numbers of genes regulated by rich diet feeding. Differential expression in healthy bees fed pollen (P), Bee-Pro (B) or MegaBee (M) is assessed against
carbohydrates only diet (C). Respectively, the same diet treatments in Nosema-infected bees are referred to as PN, BN and MN, which differential expression is
considered against carbohydrates/Nosema (CN). The up and down arrows denote genes that are up- or downregulated through RNA-seq analysis; the numbers of
known Drosophila orthologs are also described
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genes by carbohydrates in the pollen comparisons
(CN > PN/ C > P) involved a high number of DEGs
(Additional file 8) and enriched processes, which
almost entirely were also upregulated in C > P (Fig. 4).
We also examined the significance of overlap between

rich diets in healthy bees (P vs. C/ B vs. C, P vs. C/ M

vs. C and B vs. C/ M vs. C) (Additional file 8). The direc-
tion of expression analysis revealed a complete corres-
pondence for all genes, and a larger number of
upregulated transcripts overlapping between Bee-Pro
and MegaBee (B > C/ M > C) than with pollen (P > C/
B > C and P > C/ M > C) (Table 5). Regarding the

Fig. 1 Hierarchical cluster analysis of functionally known DEGs. a Select number of genes figuring at list in 2 treatments. PN vs. CN, BN vs. CN,
and MN vs. CN are, respectively, pollen, BeePro and MegaBee diet effects compared to carbohydrates in presence of Nosema. P vs. C, B vs. C and
M vs. C are the same effects, respectively, compared to carbohydrates in absence of Nosema. b Expression graph corresponding to the select
DEGs represented in the hierarchical cluster analysis
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overlapping upregulatory effect by poor diet, C > P/ C >
B generated the highest number of DEGs (down-overlap,
Table 5), but also enriched bioprocesses (Additional file 9),
of which some were also enriched independently in each
diet (C > P and C > B).
The numbers of DEGs overlapping between rich diets

in Nosema-infected treatments (PN vs. CN/ BN vs. CN,
PN vs. CN/ MN vs. CN and BN vs. CN/ MN vs. CN)
were significant (Additional file 8). The direction of
regulation showed perfect conformity in PN vs. CN/ BN
vs. CN and BN vs. CN/ MN vs. CN, and was highly con-
cordant for PN vs. CN/ MN vs. CN with only 6 genes
showing an opposite direction of regulation (Table 5).
The overlaps involved few upregulated genes, with PN >
CN/ BN > CN being the only comparison where genes of
known function were recorded. Upregulation under car-
bohydrates feeding in CN > PN/ CN > BN produced the

largest number of DEGs (down-overlap, Table 5), and
two enriched bioprocesses (Additional file 9).

Effects of nutrition on immunity
In the CN > PN comparison, pivotal players of a Toll-
mediated antifungal response were stimulated, including
sph (SP10/ GB49440, FC = − 2.7), nec (serpine-1/GB46970,
FC = − 2.5), TUB (GB51427), cactus (GB53302), Helicase
89B, PGRP-S3, and Apisimin (GB53576). In the CN > BN
and CN>MN comparisons, these genes showed the same
directional bias, but the changes did not satisfy the p-value
or FC cutoff criteria.
We uncovered 32 potential immune/defense DEGs

(Fig. 5), when screening the diet treatments (P vs. C, B vs.
C, M vs. C, PN vs. CN, BN vs. CN and MN vs. CN) for
known A. mellifera immune/defense genes [73, 74] and
Drosophila orthologs with immune/defense functions

Fig. 2 Upregulated bioprocesses under differential nutritional status. a GO-terms upregulated under pollen feeding compared to carbohydrates in
healthy bees (P > C). b GOterms upregulated under poor diet feeding, carbohydrates, compared to pollen in healthy bees (C > P). Pie chart shows the
percentage of genes involved in the GO terms
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(flybase). The upregulation under rich diets feeding in un-
infected bees (P > C, B > C and M>C) and infected bees
(PN > CN, BN > CN and MN>CN) was minimal (up to 3
genes). Regarding upregulation under poor diet feeding in
healthy bees, the comparisons to Bee-Pro (C > B) and
MegaBee feeding (C >M) led to few DEGs, while the com-
parison to pollen (C > P) uncovered a slightly larger num-
ber of DEGs (7 genes). The upregulation under poor diet
feeding in infected bees revealed more DEGs (21 genes)
compared to pollen (CN > PN) than compared to the sub-
stitutes. Because the PN vs. CN comparison yielded the
most immune-related DEGs (22 genes), it was further ex-
amined using a gene network analysis, with D. melanoga-
ster genome as the reference background (Fig. 6). The
network analysis uncovered that the 22 potential immune/
defense genes differentially regulated in the abdomen of
infected bees fed pollen compared to carbohydrates (PN
vs. CN) were interconnected with 74% co-expression
(same tissue) and 26% genetic (gene level) or physical in-
teractions (protein level). Of all genes, 68% (15 genes)
were interconnected functionally, either genetically or
physically, in a single pathway. Notably, in this pathway, all
genes were upregulated by poor diet (CN>PN) but the anti-
oxidant catalase that was upregulated by pollen feeding
(PN>CN). Importantly, with Drosophila genome as the ref-
erence, the immune gene list was enriched in bioprocesses
that are evidently relevant to fungus infection, especially with
an enriched Toll signaling pathway (Table 6).

RT-qPCR assays
For both genes, Vg and Duox, and in all treatment compari-
sons, qPCR results agreed with RNA-seq in terms of direc-
tion of regulation and diet classification. The RNA-seq
strategy had revealed Vg was highly expressed, but with in-
significant p-value, in healthy bees fed pollen (P >C: FC=

27.76, p= 0.17), followed by MegaBee (M>C: FC= 11.74, p
= 0.30) and Bee-Pro (B >C: FC= 6.94, p= 0.11). Results of
the qPCR analysis confirmed Vg overexpression under all
rich diets and in the same order (Fig. 7a), and with significant
p-values (P >C: p= 4.114e-05; M>C: p = 4.114e-05; B >C: p
= 8.227e-05). Similarly, the results of Duox expression ana-
lysis via qPCR and RNA-seq were in agreement, showing up-
regulation under poor diet feeding was more evident in
CN>PN comparison than CN>BN and CN>MN (Fig. 7b).
However, by contrast to RNA-seq, p-values attributed to the
latter two comparisons were significant in the qPCR
approach.

Discussion
Protein content
From the protein analysis results, it appears that in terms of
quality, pollen has greater amounts of protein that is more
readily digested by bees than either pollen substitute we
tested. In fact, although diet quality is commonly associated
to protein content, the nutritional value to an organism de-
pends on more than this single parameter. For example, the
nutritional value of pollen to bees is primarily defined by its
absolute and relative content of essential amino acids [75].
Similarly, the protein titer of the hemolymph is a good indi-
cator of a diet’s value to bees [76]; nevertheless, it is only one
of many such indicators, making conduction of several bio-
assays measuring different parameters necessary to deter-
mine the value of a given diet to honey bees [77]. Some
examples include hypopharyngeal glands development [24,
62, 78] and protein content [79], ovarian development [24,
80], longevity [81, 82], and fat body weight [83].

Genome-wide regulation
The honey bee tendency to genome-wide upregulation
under conditions of stress observed herein was also

Fig. 3 Bioprocesses upregulated under poor diet feeding compared to pollen in presence of Nosema (CN > PN). Pie chart shows the percentage
of genes involved in the GO-terms
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reported in Escherichia coli cells, which systematically
increased the number of expressed genes as substrate
quality declined [84]. This upregulation was seemingly
contradictory to the expected slow growth in limiting
conditions. However, rRNA synthesis that correlates to
growth rate [85] decreased proportionately with reduced
growth. These results implied that in response to the nu-
trient cues, a bias toward upregulation was possibly

triggered via global patterns of RNA polymerase (RNAP)
distribution. In fact, in E. coli, under optimal growth
conditions, only few RNAP molecules are dedicated to
transcribing 99% of the genes, while the majority of
RNAP molecules transcribe the remaining 1% which en-
code rRNA and tRNA [86]. Under suboptimal condi-
tions, few RNAP molecules transcribe rRNA and tRNA
genes, thus inciting a reprograming of the transcription

Table 5 Concordance in direction of regulation of overlapping gene lists

A) Rich diet overlap between presence and absence of Nosema PN vs CN P vs C

Total Up Down Significance

131 Up 7 0 X-squared = 85.458
p-value < 2.2e-16

Down 2 122

BN vs CN B vs C

Total Up Down Significance

11 Up 0 5 X-squared = 0.090909
p-value =0.763 *

Down 0 6

MN vs CN M vs C

Total Up Down Significance

21 Up 15 0 X-squared = 8.4077
p-value = 0.003736

Down 2 4

B) Overlap between rich diets in healthy bees P vs C B vs C

Total Up Down Significance

64 Up 5 0 X-squared = 50.86
p-value = 9.877e-13

Down 0 59

P vs C M vs C

Total Up Down Significance

56 Up 5 0 X-squared = 44.377
p-value = 2.708e-11

Down 0 51

B vs C M vs C

Total Up Down Significance

61 Up 22 0 X-squared = 56.74
p-value = 4.974e-14

Down 0 39

C) Overlap between rich diets in Nosema infected bees PN vs CN BN vs CN

Total Up Down Significance

117 Up 4 0 X-squared =88.674
p-value = < 2.2e-16

Down 0 113

PN vs CN MN vs CN

Total Up Down Significance

90 Up 0 0 X-squared = 67.6
p-value < 2.2e-16

Down 6 84

MN vs CN

BN vs CN Total Up Down Significance

44 Up 1 0 X-squared =10.494
p-value =0.001197

Down 0 43

Overlapping genes are sorted according to direction of regulation. PN vs. CN, BN vs. CN and MN vs. CN are, respectively, pollen, Bee-Pro and MegaBee diet treatments
with Nosema. P vs. C, B vs. C, and M vs. C are, respectively, the same diet treatments in healthy bees. Chi-square tests with Yates correction were performed to
determine if pattern of direction bias is statistically consistent between the considered two conditions. Asterisk (*) indicates lack of pattern consistence
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machinery in such a way that these genes are inhibited
and others are activated.

Differential regulation of gene expression
Upregulatory effects of rich diets in healthy bees
The pollen diet incited more rich nutrition-related bio-
processes than both pollen substitutes. Stimulation of
‘proteolysis’ in pollen-fed bees corroborates the above
discussed protein analysis results, and may reflect digest-
ibility and degradation within the cell to procure amino
acids for synthesis of new peptides. Enrichment of pur-
ine ribonucleotides biosynthesis mirrors an expected ef-
fect on anabolism, since these compounds have a wide
variety of cell functions. This enrichment also might be
due to a specific but unknown growth demand similarly
to well-fed Drosophila females, which upregulated ribo-
nucleotides synthesis probably in relation to increased
egg production [87]. On the other hand, the upregula-
tion of acetyl-CoA metabolism in P > C did not concord
with the downregulation of energy pathways in bees fed
rich vs. poor diet that mirrors the metabolic profile of
nurses vs. foragers [27]. One tangible explanation is a
possible increase of acetyl-CoA metabolism due to ex-
cess of amino acids in pollen. Indeed, in animals such as
mice [88] and rat [89] fed proteinaceous diets, the sur-
plus of amino acids not used in biosynthesis cannot be
stored, and is instead converted into acetyl-CoA, a major
metabolic intermediate of the tricarboxylic acid cycle.
Therefore, it might be that in bees under nutritional ex-
cess, there is increase of acetyl-CoA metabolism as well
as vitellogenin storage (Fig. 7a) to utilize the surplus of
macronutrients.
Lipid metabolism is indicative of response to rich nu-

trition [27, 28], and was the only significant general as-
pect of metabolism affected by all three proteinaceous

diets tested in this study. In bees fed MegaBee, other
upregulatory aspects of rich nutrition resided in the
enrichment of cell cycle bioprocesses (e.g. ‘cytoskeletal
organization and biogenesis’ and ‘mitotic spindle
organization’) suggesting guts tissue homeostasis, and
‘cellular amino acid biosynthesis’ (p = 0.051; the latter
bioprocess being the child term of ‘carboxylic acid bio-
synthesis’) that may reflect peptide biosynthesis.

Upregulatory effects of poor diet in healthy bees
Bees fed carbohydrates compared to pollen (C > P)
showed increased expression of bioprocesses associated
with suboptimal nutrition. Downregulatory mechanisms
of transcription regulation, macromolecule biosynthesis,
and translation were all enriched denoting an overall re-
pression of the main drivers of growth. Consistent with
this result, C > P stimulated hippo signaling, a conserved
pathway that regulates growth principally by restraining
cell proliferation and promoting apoptosis. Knowing that
upregulatory mutations of hippo signaling cause dramatic
changes in organ size, mostly the liver [90], our result im-
plies a possible role in curbing growth in the honey bee
abdomen. Developmental processes were widely elicited,
suggesting reuse of such functions is linked to foraging
transition. In fact, commonalities between development
and phenotypic plasticity were signaled in foragers versus
nurses [91], and poor diet versus pollen [27]. Moreover,
‘behavior’ and ‘adult behavior’ bioprocesses were upregu-
lated suggestive of behavioral maturation and reinforcing
the assumption of a possible transition to foraging in bees
fed deficient nutrition.
Another important aspect of poor nutrition, evident in

C > P, is the modulation of the ‘circadian rhythm’ biopro-
cess. This infers the abdominal peripheral clocks may be
altered to adapt the metabolic demands to environmen-
tal stress. Although food was provided ad libitum, ‘feed-
ing behavior’ was also altered, possibly due to changes of
feeding activity imposed by poor nutrition. These results
are in accord with a meta-analysis study (19 tissue types;
most frequently liver tissues), which compared caloric
restriction to ad libitum feeding in mammals [92]. In the
study, ‘rhythmic process’ and ‘circadian rhythm’ were
among the most upregulated bioprocesses, and two of
the top 10 upregulated markers were circadian clock
genes. The emergence of peripheral clocks as players in
the adjustment to poor nutrition is not surprising since
these clocks are dependent on the feeding cycle [93, 94].
Also, bees fed poor diet compared to pollen (C > P), in

agreement with previous reports [27], showed amplified
cell communication (e.g. intracellular and cell-cell sig-
naling). The ability of cells to communicate environmen-
tal cues, including nutrients availability, is the basis for
adapting and maintaining vital functions. Thus, cell sig-
naling, especially since it comprises the response to

Fig. 4 Histogram representing bioprocesses upregulated under poor diet
feeding. In blue are GO-terms resulting from the analysis of the overlap
between carbohydrates and pollen in absence and presence of Nosema
(C > P/ CN>PN), and in red are terms upregulated under carbohydrates
feeding compared to pollen (C > P). GO-terms with p<0.05 are illustrated
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starvation gene Ac76E, might be due to the imposed
suboptimal conditions.
Regarding the comparisons of carbohydrates feeding

to the substitutes, C > B showed enriched cell communi-
cation (‘signal transduction’; fewer terms than C > P),
regulation of transcription (5 out of 8 genes overlapping
with C > P), and development (‘multicellular organism
development’). These results denote the richness of
Bee-Pro compared to carbohydrates only diet, however,
the fact that these bioprocesses were more clearly
enriched in C > P, and the higher number of altered bio-
processes in C > P reflects the superior nutritional value
of natural versus artificial diet. In the case of the com-
parison to MegaBee, the paucity of enriched biopro-
cesses in C >M denotes that MegaBee is similar in many
respects to the carbohydrate diet and implies that on
certain aspects, this diet has lesser nutritional value than
pollen and Bee-Pro.

A final interesting aspect of enriched bioprocesses in
response to poor nutrition resides in the alteration of
maturation cues (development, behavior and adult be-
havior) apparent only in comparison to pollen. This re-
sult indicates that the disparity between poor and rich
diet causing these effects depends on rich nutrition com-
position and not on rich diet as a whole. This outcome
also suggests pollen as better for bee nutrition.
With regard to the influence of nutrition on the

IIS-TOR pathways in bees, a previous report indicated a
nurse-like downregulatory pattern when bees were fed
rich diet, and a forager-like upregulatory pattern when
fed poor diet [27]. For example an upregulation of the
insulin-like receptor (InR1) was reported in bee nurses
aged 4–6 days fed sugar instead of pollen, in both brain
and abdomen [71]. The 14-days old bees fed poor diet
instead of pollen in this study showed a significant up-
regulation of INR1 confirming the expected poor

Fig. 5 Hierarchical cluster analysis of DEGs involved in immunity and defense in honey bee or Drosophila. Genes significantly influenced at least
in one treatment are represented. Considered effects are rich diet feeding, pollen (P vs. C), Beepro (B vs. C) and MegaBee (M vs. C) compared to
carbohydrates, and the effects under the same rich diets in presence of Nosema, respectively PN vs. CN, BN vs. CN and MN vs. CN
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nutrition response to carbohydrates compared to pollen.
The same upregulatory effect was observed when
carbohydrates-fed bees were compared to the substi-
tutes, albeit without statistical significance. It is note-
worthy that under poor diet feeding (C > P), although
IIS-TOR pathways genes were upregulated in the abdo-
men, translation as whole was repressed as seen above.

Upregulatory effects of rich diet in Nosema-infected bees
Despite Nosema infection, animals fed pollen (PN > CN)
maintained the upregulatory effects and enrichment of
certain metabolic functions observed in the healthy
treatment, while infected bees fed Bee-Pro (BN > CN) or
MegaBee (MN > CN) showed less favorable effects.
Pollen upheld the metabolism of amino acids (histidine,

Fig. 6 Gene network of immune/defense genes triggered under carbohydtrates feeding in Nosema-infected bees (CN > PN). a Network generated using
GeneMania; stripped circles are the Drosophila ortologs of DEGs uncovered in the present study; plain black circles are genes uncovered from Genemania
database. Physical and genetic interactions between genes are represented by pink and green connections respectively. Some of the significant pathways
in relation to Drosophila genome are colored according to above legend. b Types of the network gene interactions and their corresponding percent
are represented
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tryptophan), and also that of lipids (6 DEGs; ‘oxidation--
reduction’ bioprocess). The activation of catalase (‘oxida-
tion-reduction’ bioprocess), a key component of
response to oxidative stress, shows that pollen-fed in-
fected bees not only upregulated some aspects of rich
nutritional status, they also combated disease stress. The
above considerations imply pollen upregulatory effects
under Nosema parasitism enabled bees to maintain func-
tion while reducing stress.

Upregulatory effects of poor nutrition in Nosema-infected
bees
Consistent with poor nutritional status, malnourished-
infected bees compared to infected bees fed pollen (CN >
PN) overexpressed several stress-related bioprocesses.
The broad ‘cellular response to stress’ bioprocess was

triggered, and included ‘DNA damage stimulus’ and
‘DNA repair’, thus reflecting the induction of genetic re-
pair mechanisms. Since these bioprocesses were not
enriched in C > P, it is conceivable that a combination of
disease and nutritional stress leads to elevated DNA
damage. Amino acid starvation possibly increased para-
site sensitivity, while the main driver of DNA damage

might have been Nosema, since microsporidia cause
DNA damage to host cells [95], notably to gastrointes-
tinal cells (increasing mutations rate) [96].
The overexpression of the ‘RNA processing’ biopro-

cess in CN > PN conforms to previous reports in similar
nutritional conditions [27]. This outcome is not surpris-
ing since modulation of RNA processing, including spli-
cing and alternative splicing (AS), is involved in stress
tolerance [97–100].
Inadequate nutrition might have been a regulator per

se as ‘RNA processing’ included response to starvation
genes (l(2)k09022, CG14057 and CG8038). This echoes
mammalian cell cultures, which when lacking amino
acids, activated pathways controlling transcription and
RNA processing from chromatin structure to translation
initiation [101]. In animals, AS plasticity is crucial to
stress tolerance, since it produces more efficient stress
response isoforms [102], including heat shock [103, 104]
and genotoxicity [105, 106]. In this work, RNA process-
ing and spliceosome machinery upregulation indirectly
suggests increased AS. The AS regulatory proteins (con-
trol of gene-specific splicing [107]), which enrich ‘RNA
processing’, also support such an assertion.

Fig. 7 Vitellogenin (Vg) and Duox relative expression measured by qPCR. a Healthy bees were fed pollen (P), Bee-Pro (B), MegaBee (M) or
carbohydrates (C; [control]); regulation of Vg in the proteinaceous treatments was determined compared to C; significance levels are indicated
with letters b (p < 0.01) and a (p < 0.001); error bars represent the standard error. b Nosema-infected bees were fed pollen (PN), Bee-Pro (BN),
MegaBee (MN) or carbohydrates (CN); Duox regulation by the rich diets was determined compared to CN; significance levels are indicated with
letters b (p < 0.01) and a (p < 0.001); Wilcoxon’s test performed when p < 0.001; error bars represent the standard error

Table 6 Gene network analysis of immune expression

Interaction % Bioprocess FDR # Genes

Co-expression 73.72 Positive regulation of antimicrobial peptide biosynthesis 7.90e-7 5/ 28

Genetic 13.17 Defense response to fungus 8.15e-6 5/ 52

Physical 12.74 External biotic stimulus 1.23e-11 12/ 288

Toll signaling pathway 1.30e-9 7/ 47

Immune and defense genes differentially expressed in infected bees fed carbohydrates instead of pollen (PN vs. CN) was analyzed in GeneMania. Types of
interactions in the resulting network are described with their percentage. Enriched defense processes were uncovered, of which a select number are described.
Gene accounts and FDR were calculated based on the Drosophila genome
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Nuclear transport, especially nuclear import, is down-
regulated by cellular stress [108, 109], including starva-
tion [110]. In fact, cytoplasm-nucleus trafficking is a
highly regulated pathway and would be affected if cellu-
lar homeostasis were compromised. The overexpression
of the bioprocess ‘negative regulation of protein import’
in CN > PN implies suboptimal nutrition aggravated by
disease adversely impacts the effectiveness of molecular
trafficking. In addition, there might have been active
interference by Nosema since microsporidia subvert nor-
mal host cell processes [111].
In CN > PN, the upregulation of the bioprocess ‘macro-

molecular complex subunit organization’ mirrors a similar
result under carbohydrate diet and vitellogenin knock-
down [27]. In the present study, this bioprocess involves
genes, which in Drosophila or mammals, are associated
with immunity, pathogen invasion, disease, apoptosis,
stress response, and cell senescence (Additional file 10).
Interestingly, some genes (Taf4, Trf, Taf5, Nlp and Tfb4)
enriching this bioprocess are associated with human HIV
infection and life cycle. ‘RNA biosynthetic process’, which
was also enriched, comprised genes functioning in defense
response to fungus, DNA repair, immunity, and HIV or
influenza life cycles (Additional file 10). The activation, in
the Nosema-infected bees, of genes that were identified in
human infectious diseases suggests a possible role in Nose-
ma-honeybee interactions. In addition, the overexpression
of immune and stress response genes in CN > PN denotes
a pronounced disease in the context of malnutrition.
Indeed, knowing the immune response is deployed mi-
nutes after infection, at day-7 post-infection, pollen-fed
bees possibly tolerated the infection while poorly fed bees
did not.
‘Mitochondrial translation’ was stimulated in CN > PN,

but not under malnutrition alone (C > P) since none of
the 17 mitochondrial ribosomal proteins were differen-
tially expressed in the latter comparison. This conforms
to the mingled effects of poor nutrition and parasitism.
For example, amino acids-deprived human cell cultures,
which energy needs were satisfied, still geared mitochon-
drial metabolism towards amino-acid consumption in-
stead of preservation [112]. This seemingly inefficient
response, in the latter report and in our study, might be
a way to hinder cytosolic translation that drives growth.
Regarding microsporidia-related stress, these amito-
chondriate parasites might have exploited the host cell
oxidative metabolism to support their own needs as pre-
viously observed [113–115].
(CN >MN) overexpressed ‘translation’ bioprocess. Al-

though ‘mitochondrial translation’ was not upregulated
per se, half of the ‘translation’ genes were mitochondrial
ribosomal proteins. Interestingly, other genes include
Tpc1 involved in mitochondrial transport, and RpS16 as-
sociated in humans with viral mRNA translation, and

the influenza infection/life cycle. Thus, seemingly poor
nutritional status enables Nosema to exploit the transla-
tional mechanisms in the host cell, especially that of
mitochondria. However, although it is apparent against
MegaBee, it is compared to pollen that this aspect is
most evident, as shown by the more marked activity of
the mitochondrial translation apparatus.
Infected animals fed carbohydrates compared to

Bee-Pro (CN > BN) upregulated ‘chitin-based embryonic
cuticle biosynthesis’, enriched with chitin or chitin-based
cuticle biosynthesis genes, including dib, which is also
involved in the midgut development [116]. The stimula-
tion of chitin biosynthesis in the honey bee abdomen in
stress conditions is not unexpected. In insects, the chi-
tinous matrix lining the gut mediates immunity by act-
ing as a barrier that prevents pathogens from direct
contact with the epithelium [117–119].
In CN > BN, ‘oxidation-reduction’ was also enriched,

and involved genes consistent with a metabolism coun-
tering Nosema-caused cellular stress in the gut. Such
genes are Henna (phagocytosis), NADPH oxidase (Nox;
gut antimicrobial activity through production of reactive
oxygen species [ROS] [120]), Alr (tissue regeneration)
and CG14221 (cell redox homeostasis). Upregulation of
oxidation-reduction was also seen in bee infected with
N. ceranea, possibly due to an enhanced generation of
ROS in response to the infection [121].
The components of the gut defense response uncovered

in this study, namely chitin biosynthesis, ROS production,
redox homeostasis, and tissue renewal are overall sup-
ported in Drosophila. In this insect, the response is com-
prised of four steps: 1) physical barriers (i.e. peritrophic
matrix); 2) production of ROS; 3) secretion of antimicro-
bial peptides (AMPs) into the hemolymph; and 4) epithe-
lium renewal in response to gut damage [122].

Overlap of nutritional regulatory effects
Within-diet overlap in presence and absence of Nosema
The overlapping-upregulated DEGs in the MegaBee
feeding treatments (MN > CN/ M > C) comprised only
few genes of known function, which were mostly related
to mitotic and meiotic processes (Klp3A, Ack, CG2852
and Cep135), alluding to probable cell proliferation with
MegaBee feeding regardless of infection status. The
known overlapping-upregulated DEGs in the pollen
feeding treatments (PN > CN/ P > C) involved genes
functioning in proteolysis (SP22 and SP36), lipid trans-
port and metabolism (Rfabg, CG6300, pudgy and Aldh)
consistent with a response to rich nutrition that is main-
tained in the presence of Nosema.
The upregulatory effects of the carbohydrate feeding

treatments when compared to the pollen feeding treat-
ments (CN > PN/ C > P) comprised a large number of
DEGs, and enriched bioprocesses associated with
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repressed transcription, adaptative circadian rhythm, al-
tered behavior, and reused developmental mechanisms.
These bioprocesses, which were also observed in C > P,
show that nutritional stress response involved similar
mechanisms in both infection statuses, but possibly
more moderately under infection (GO-terms not
enriched in CN > PN), perhaps to harness resources for
response to the Nosema infection (e.g. DNA repair). The
overlap also overexpressed ‘response to oxidative stress’
(p = 0.0822), probably due to N. apis as previously ob-
served with N. ceranea infection of bee gut [121]. Also,
this bioprocess included the gene Oamb which is re-
sponsive to starvation [123], suggesting that aside from
microsporidia, malnutrition incites oxidative stress. In-
adequate nutrition stimulated adenylate kinase 6 (Ak6),
which is involved in the stress-induced pathways, NF-κB
(cell survival control), and p53 (genotoxic/non-genotoxic
stress, starvation response [124–126]. Similarly to our
study, Ak6 was previously implicated in the response to
starvation [100].

Between-diets overlap in healthy bees
The complete correspondence in direction of regulation of
the DEGs overlapping between the rich diets (P vs. C/ B vs.
C, P vs. C/ M vs. C and B vs. C/ M vs. C) indicates a
clear-cut common response to proteinaceous nutrition, set-
ting the proteinaceous diets apart from the carbohydrates-
only diet. Moreover, in all comparisons, numerous genes
(about half) have an unknown function, implying that many
aspects of the molecular nutritional response are still un-
known. The larger number of common DEGs in bees fed
the two substitutes than in pollen highlights the major differ-
ences separating the natural diet from the artificial substi-
tutes. Finally, in response to malnutrition, ‘regulation of
transcription’ was clearly overexpressed in the triple com-
parison to rich diets (C > P/ C >B/ C >M). Additionally,
‘multicellular organism development’ overexpression in C >
P/ C >B, reflected the outcomes of the single diets compari-
sons (C > P and C >B). These results further support the
concept that regulation of gene expression and repurposing
of developmental genes are key processes of response to
amino acid starvation in adult honey bee.

Between-diets overlap in infected bees
The overlapping-overexpressed DEGs between pollen
and Bee-Pro treatments in infected bees (PN > CN/ BN >
CN) included melittin (active antimicrobial compound
of bee venom), and genes involved in immunity or
host-pathogen interactions; these are the transmembrane
transport protein CG11739 that in humans functions in
HIV interactions, Rfabg associated with lipid transport
and scavenging by class B receptors, and PGRP-SA that
regulates Toll signaling. These results suggest common

grounds of defense mechanisms in bees fed pollen and
Bee-Pro, but not MegaBee.
The overrepresentation of ‘oxidation-reduction’ bio-

process in CN > PN/ CN > BN overlap supports the idea
that under nutritional stress, defense against Nosema in-
cludes the steps: 1) countering microbes through super-
oxide release (Nox); 2) combating toxicity by breakdown
of the excess superoxide (CG31028); 3) ensuring redox
homeostasis at the cell level (CG14221); 4) promoting
midgut development (dib). The lack of these mecha-
nisms in overlaps involving CN > BN implies similarities
of MegaBee to the carbohydrate diet.

Nutritional regulation of immunity
A high expression of immunity was expected in a rich
nutritional status (especially with Nosema infection),
contrarily to an inhibited expression in a poor nutri-
tional status. This is because rich nutrition enhances im-
mune functions [127–129], while nutrient deficiencies
cause immune dysfunction [130]. However, herein, rich
and poor diets had minimal upregulatory effects on im-
munity expression including when bees were infected.
These results are similar to a reported minimal upregu-
lation under pollen feeding and a moderate increase
under carbohydrates feeding, even in presence of varroa
infection [131]. Other similar reports include a lack of
PO (phenoloxidase) response to diet quality in caterpil-
lars [128], and of PO and GST (glutathione-S-transfer-
ase) to ameliorated pollen quality or Nosema infection
in honey bee [22]. The lack of immune overexpression
in Nosema-infected bees seems to be a general trend ob-
served with N. apis, N apis and N. ceranea co-infection
[132], and N. ceranea [121]. In the current study, basal
constitutive expression of immune genes might be suffi-
cient to mount the initial defense response in case of a
pathogen attack, hence the lack of upregulation under
healthy and rich nutritional status. In presence of patho-
gens, the honey bee might rely on different mechanisms
to counter the attacks. In infected bees fed pollen (PN >
CN) such mechanisms might be reflected by the upregu-
lation of vitamin C (‘ascorbate and aldarate metabolism
pathway’), which in humans protects against oxidative
stress and has a role in immunity [51, 133, 134] as well
as catalase, which has a pivotal role in protection against
ROS. In fact, residual ROS has inflammatory effects, and
a balance between synthesis and elimination of ROS via
antioxidants is necessary to protect the gut, as seen
against N. ceranea [121]. Furthermore, PN > CN upregu-
lated transcripts involved in gut morphogenesis and de-
velopment genes (dpp, Zipper and garz), which infers
that gut host defense may encompass epithelial renewal
[121, 135]. This result agrees with previous observations
where N. apis disrupted midgut development [132], and
N. ceranea inhibited tissue renewal [121].
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The slightly increased expression of immune/defense
genes in CN > PN might reflect an escalated defense re-
sponse in bees fed carbohydrates due to difficulty over-
coming Nosema. In fact, defense activation was
persistent even during late stage of infection (7 days post
infection) relying on antimicrobial peptide biosynthesis
(vvl, Diap2, Hel89B) and defense response to fungus
(coq2 [136], cact, tub [137], and psh [138]). Moreover,
the overexpression of Mtl associated with response to
DNA damage [139], and Duox that produces hydrogen
peroxide are cues of a mounted defense against a
DNA-damaging microsporidium-like pathogen. The in-
duction of Duox hints at its pivotal role in bee gut
defense response, mirroring that of Drosophila in which
this enzyme is a key effector against ingested microbes
[120, 135, 140, 141]. In the CN > PN comparison,
the defense response (defense peptides, Toll pathway

genes, and Duox) was in concert with the upregulation
of cellular stress response, especially DNA repair. The
defense response in the context of nutritional stress is
even more clear in the overlap CN > PN/ CN > BN as
discussed previously.
The significant upregulation of the defense response

genes (including Toll pathway genes) in CN > PN but
not in CN > BN and CN >MN suggests that, in bees fed
the substitutes, the expression of these genes was suffi-
ciently high to not create significant differences with car-
bohydrates feeding. However, because most of these
genes exhibited the same direction of regulation in ani-
mals fed the different proteinaceous diets, there may be
a comparable yet nuanced immune response in bees fed
pollen, Bee-Pro and MegaBee.

RT-qPCR analysis of vitellogenin modulation
In the honey bee, the yolk lipoprotein vitellogenin,
synthetized in the fat body, is a storage protein with
multiple functions, including utilization in jelly produc-
tion [142], promotion of longevity [26, 143] and immun-
ity [144]. Vitellogenin levels are nutritionally modulated;
specifically, lack of proteins intake drastically reduces vi-
tellogenin expression [22, 27, 76, 131, 145].
In the present study, as expected, vitellogenin was

considerably upregulated in bees fed protein-based diets
compared to carbohydrates only. However, Vg overex-
pression under pollen feeding was considerably higher
than bees fed MegaBee or Bee-Pro (more than 290 times
greater), possibly reflecting the difference in protein
quantity and quality of pollen relative to the commercial
diets. In a recent study, varying quality of pollen-based
diets was also shown to play a role in vitellogenin ex-
pression, since poor-quality seasonal pollen (maize) in-
duced poor nursing physiology notably vitellogenin
expression [146].

Conclusions
Deep insights have been gained into the differences of
honey bee genomic response to pollen feeding versus
Bee-Pro and MegaBee. The study also provided insight
into the nuanced defense response of honey bee to No-
sema infection when fed pollen instead of pollen substi-
tutes. The most salient conclusion is the advantage
pollen diet provides over Bee-Pro and MegaBee in con-
ferring a richer nutritional status to bees, including in
presence of a fungal pathogen. Clearly, the superiority of
pollen to artificial substitutes cannot be generalized
since such claims should be substantiated by further
studies involving larger selection of pollen mixtures and
substitutes. Also, the data obtained through gene expres-
sion should be analyzed further by protein assays to
confirm the modulation of the uncovered pathways.
Nonetheless, the analysis presented herein supports the
hypothesis that a balanced, natural diet allows bees to
maintain a healthy metabolism and, in case of disease,
provides individuals with a better fitness to mitigate the
pathologic stress. Thus, a balanced, natural diet is essen-
tial to individuals and, by extension to overall bee colony
health.

Additional files

Additional file 1: Table S1. Subset of genes responsive to nutrition quality
with or without Nosema. List of a select number of genes differentially regulated
in at least 2 diet treatments in infected or healthy bees. Genes were chosen
based on known function or Drosophila ortholog. (XLSX 48 kb)

Additional file 2: Table S2. Bioprocesses and pathways upregulated in
healthy bees under rich diet. Upregulated bioprocesses (GO-terms) and Kegg
pathways in healthy bees under pollen (P > C), Bee-Pro (B > C) and MegaBee
(M >C) feeding compared to carbohydrates-only diet. (XLSX 46 kb)

Additional file 3: Table S3. Bioprocesses and pathways upregulated in
healthy bees under poor diet. Upregulated bioprocesses (GO-terms) in
healthy bees under poor diet feeding (carbohydrates-only) compared to
pollen (C > P) and Bee-Pro (C > B). (XLSX 48 kb)

Additional file 4: Table S4. Bioprocesses and pathways upregulated in
Nosema-infected bees under rich diet. Upregulated bioprocesses (GO-
terms) and Kegg pathways in Nosema-infected bees under pollen (PN >
CN), Bee-Pro (BN > CN) and MegaBee (MN > CN) feeding compared to
carbohydrates-only diet. (XLSX 36 kb)

Additional file 5: Table S5. Bioprocesses and pathways upregulated in
Nosema-infected bees under poor diet. Upregulated bioprocesses (GO-
terms) and Kegg pathways in Nosema-infected bees under poor diet
feeding (carbohydrates-only) compared to pollen (C > P), Bee-Pro (C > B)
and MegaBee (CN >MN). (XLSX 92 kb)

Additional file 6: Table S6. Bioprocesses upregulated under rich diet
overlapping with the study by Ament et al. (2011). In the present study,
upregulation in healthy bees under Bee-Pro (B > C), MegaBee (M > C) and
pollen (P > C) feeding is represented compared to carbohydrates-only
diet; respectively, BN > CN, MN> CN and PN > CN represent the same diets
comparisons in Nosema-infected bees. Overlapping bioprocesses with the
study by Ament et al. (2011) are listed; upregulated treatments in the latter
study are nurse vs. forager (N > F), rich diet vs. poor (R > Pr), vitellogenin wild
type vs. vitellogenin RNAi (Vg > Vg(−)), and queen mandibular pheromone
treatment (QMP) vs. control (Q > Ct). All listed bioprocesses are upregulated
in this study (+); bioprocesses that are expressed in the opposite direction
in Ament et al. are indicated with the sign minus (−). (XLSX 10 kb)
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Additional file 7: Table S7. Bioprocesses upregulated under poor diet,
overlapping with the study by Ament et al. (2011). Upregulation in
healthy bees (no-nosema) under carbohydrates-only feeding is represented
compared to pollen (C > P), and in presence of Nosema compared to Mega-
Bee (MN>CN) and pollen (PN > CN). Overlapping bioprocesses with the study
by Ament et al. (2011) are listed; upregulated treatments in the latter study are
forager vs. nurse vs. (F > N), poor diet vs. rich (Pr > R), vitellogenin RNAi vs. vi-
tellogenin wild type (Vg(−) > Vg). All listed bioprocesses are upregulated in this
study (+); the non-concordant bioprocesses in direction of regulation in
Ament et al. are indicated by the sign minus (−). (XLSX 11 kb)

Additional file 8: Table S8. a) Gene overlap of pollen and Bee-Pro feeding
(P vs. C/ B vs. C), pollen and MegaBee feeding (P vs. C/ M vs. C) and Bee-Pro and
MegaBee feeding (B vs. C/ M vs. C) in healthy bees. b) Respectively, P vs. C, B vs.
C and M vs. C are healthy bees fed pollen (P), Bee-Pro (B) and MegaBee (B)
compared to carbohydrates only (C); respectively, PN vs. CN, BN vs. CN and
MN vs. CN are the same diet treatments in Nosema-infected. c) Gene overlaps
of PN vs. CN/ BN vs. CN, PN vs. CN/ MN vs. CN and BN vs. CN/ MN vs. CN are,
respectively, the same diet comparisons in presence of Nosema. RF is the
representation factor indicating fold enrichment for the overlap, and p-value
is the overlap statistical likelihood based on a hypergeometric distribution.
(XLSX 10 kb)

Additional file 9: Table S9. Upregulated bioprocesses resulting from
different overlaps of poor diet comparisons. Upregulated bioprocesses, in
healthy bees, generated by carbohydrates-only feeding in the overlaps of
pollen and Bee-Pro (C > P/ C > B), Bee-Pro and MegaBee (C > B/ C > M),
and the triple overlap of pollen, Bee-Pro and MegaBee (C > P/ C > B/ C >M)
are listed; also listed are the same comparisons in presence of Nosema,
respectively, CN > PN/ CN> BN, CN > BN/ CN>MN and CN> PN/ CN > BN/
CN>MN; the comparison CN> PN/ CN>MN indicates overlap of upregulation
by poor diet when compared to pollen and MegaBee in infected bees. The
upregulated bioprocesses generated by carbohydrates-only when compared to
pollen in healthy and Nosema-infected bees (C> P/ CN> PN) are also indicated.
(XLSX 12 kb)

Additional file 10: Table S10. Potential immune/defense genes
enriching GO:0043933~macromolecular complex subunit organization.
(XLSX 11 kb)
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