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Abstract: The evaluation of radiation-induced (RI) risks is of medical, scientific, and societal interest.
However, despite considerable efforts, there is neither consensual mechanistic models nor predictive
assays for describing the three major RI effects, namely radiosensitivity, radiosusceptibility, and
radiodegeneration. Interestingly, the ataxia telangiectasia mutated (ATM) protein is a major stress
response factor involved in the DNA repair and signaling that appears upstream most of pathways
involved in the three precited RI effects. The rate of the RI ATM nucleoshuttling (RIANS) was shown
to be a good predictor of radiosensitivity. In the frame of the RIANS model, irradiation triggers the
monomerization of cytoplasmic ATM dimers, which allows ATM monomers to diffuse in nucleus.
The nuclear ATM monomers phosphorylate the H2AX histones, which triggers the recognition of
DNA double-strand breaks and their repair. The RIANS model has made it possible to define three
subgroups of radiosensitivity and provided a relevant explanation for the radiosensitivity observed
in syndromes caused by mutated cytoplasmic proteins. Interestingly, hyper-radiosensitivity to a low
dose and adaptive response phenomena may be also explained by the RIANS model. In this review,
the relevance of the RIANS model to describe several features of the individual response to radiation
was discussed.
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1. Introduction

To date, the evaluation of the risks linked to an exposure to radiation, whether clinical, occupational,
or environmental, has become a societal, medical, and scientific issue. This is notably the case of the
investigations about the secondary effects of anti-cancer radiotherapy [1,2], the radiation-induced
cancers after repeated mammographic views in young women [3], and the radiation-induced (RI)
pathologies observed in nuclear workers [4]. Unfortunately, there is still no consensus about the
prediction of these RI risks from molecular and cellular data [2]. This review is therefore devoted to the
quest of a unified mechanistic model that would be the basis of a reliable prediction of the individual
response to radiation.

Less than 10 years after the discovery of X-ray by Roentgen [5], the three major clinical consequences
of irradiation were identified already (Figure 1):

• Radiosensitivity responses, i.e., adverse tissue events, are non-cancer effects, attributable to
cell death. First reported by Giezel, Voigt, Albers-Schönberg, and Bouchacourt [6–8], detailed
descriptions of radiodermatitis and RI reactions to other irradiated organs have progressively led
to the definition of consensual severity scales [2,9], like the Common Terminology Criteria for
Adverse Events (CTCAE) [10] and the Radiation Therapy Oncology Group (RTOG) [11] scales.
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These two scales classify RI tissue reactions in six grades (grade 0: no event; grade 5: death), for
each organ and independently of the early/late nature of the reactions. The CTCAE or RTOG
severity grades are the most reliable endpoints to quantify clinical radiosensitivity. On a biological
scale, the quantification of radiosensitivity is dependent on the whole knowledge of RI cell death.
The only consensual endpoint to quantify cellular radiosensitivity is clonogenic cell survival,
which obeys the empirical linear-quadratic (LQ) model [12–14]. However, the cell survival assays
are too time-consuming to be applicable in routine. Lastly, while the skin burns and other RI
tissue reactions were described earlier, it is noteworthy that the term “radiosensitivity” appeared
for the first time in 1907 [15].

• Radiosusceptibility responses, i.e., RI cancers, are non-toxic effects attributable to cell
transformation and genomic instability. First reported in 1902 [16], and revealed to the public by
the story of the radium dial painters [17], RI cancers have been significantly documented by the
reports of Hiroshima survivors [18–20]. To date, the most reliable endpoints to quantify the risk of
RI cancers is the excess relative risk ratio (ERR) or any related endpoints from epidemiology [21].
However, the statistical robustness of these endpoints is strongly dependent on the size of
the cohorts studied. To describe the ERR as a function of radiation dose, two major models
were proposed: the linear non-threshold (LNT) and the non-linear threshold (NLT) models.
The relevance of these two empirical models is still the source of controversy [22–24]. On a
biological scale, the quantification of radiosusceptibility is dependent on basic knowledge about
carcinogenicity mechanisms. To date, the numbers of G2 chromosomal aberrations [25] and
hypoxanthine phosphoribosyltransferase (HRPT) mutations frequency [26] may be considered as
the most specific endpoints of the RI cellular transformation but are not consensual. Lastly, while
the first RI cancers were described earlier, it is noteworthy that the term “radiosusceptibility” was
proposed for the first time in 2016, to avoid any confusion with the use of “radiosensitivity” [15].

• Radiodegeneration responses, i.e., non-cancer effects, are non-cancer effects attributable to
mechanisms related to accelerated aging [18,27]. First reported in 1903 in humans, RI cataracts
are the most frequent radiodegeneration response [28]. RI cardiovascular effects, first reported
in 1932, also belong to this category [29]. Like for RI cancers, the estimation of the incidence of
RI radiodegeneration effects is limited by the lack of specific epidemiological data. Similarly,
on a biological scale, the quantification of radiodegeneration is dependent on basic knowledge
of senescence and aging mechanisms. Telomere length and telomerase activity are frequently
cited as the most specific endpoints to describe aging [2,30]. Lastly, it is noteworthy that the term
“radiodegeneration” was proposed for the first time in 2016, in order to distinguish syndromes
associated with cancer proneness and those associated with aging [15].

Although the three major RI effects differ by their clinical features and their molecular origins, they
share common points. Particularly, they obey specific dose-, time-, and dose-rate effect functions that
are not necessarily linear and can present some thresholds [2,31]. Such dependence on both dose and
time suggests that functional assays (i.e., those involving non-irradiated and irradiated cells) should be
more suited to predicting the three major RI effects than the approaches derived from spontaneous
data only (like DNA sequence, genomics, proteomics on non-irradiated cells). In addition to this dose-
and time- dependence, the occurrence and the degree of the three precited RI effects strongly depend
on the individual status [2] and on the irradiated tissues/organs [27]. The prediction of individual
radiation response therefore requires a wide spectrum of individuals/tissues to be tested in order to be
reliable statistically [32].
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Figure 1. The major radiation-induced (RI) effects and their specific features. This figure aims to
summarize the current basic knowledge of radiosensitivity, radiosusceptibility, and radiodegeneration.
The threshold doses were reviewed in [2].

2. A Survey of Human Radiosensitivity

Among the three RI effects mentioned above, individual radiosensitivity is historically the most
documented [15]. Hence, let us focus on this notion through its different clinical features and the
different attempts to predict them.

2.1. The Different Clinical Features of Radiosensitivity

By omitting accidental irradiation, radiosensitive individuals can be divided into two subcategories.
The first one gathers individuals who have been treated against cancer by radiotherapy and who
showed RI tissue reactions with CTCAE/RTOG grades higher than 1. This subpopulation may represent
5–20% of individuals [2]. With the exception of well-characterized genetic diseases (see below), these
individuals did not show obvious and specific clinical signs of radiosensitivity before their treatment.
The second subcategory gathers individuals who suffered from a well-characterized genetic disease for
which radiosensitivity is one of the numerous symptoms. In these cases, the radiosensitivity can be
revealed during a radiotherapy treatment as far as the disease is also associated with cancer proneness.
In the other cases, generally related to neurodegenerative diseases that are not associated with high
cancer proneness (like progeria [33] or Huntington’s disease [34]), the radiosensitivity is revealed by
in vitro radiobiological studies on cells from patients. It is noteworthy that the subcategory defined
above can also concern patients whose genetic disease has not been diagnosed [35,36].

The relationship between clonogenic cell survival and radiosensitivity has been considerably
documented [37] and surveys of human radiosensitivity make it possible to present a general picture of
human cellular radiosensitivity, encountered in about 30 genetic diseases [38,39]. The survival fraction
at 2 Gy (SF2) appears to be one of the best parameters to quantify cellular radiosensitivity and in good
agreement with the clinical response to radiation [39]. In human non-transformed fibroblasts, SF2
ranges from 1–70% [39,40] (Figure 2):
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Figure 2. Cellular radiosensitivity as a function of syndrome prevalence. Survival fraction at 2 Gy (SF2)
was fixed at 1% for ataxia telangiectasia mutated (ATM)-mutated cells and 100% for normosensitive
patients. Each syndrome is represented by confidence zones. Data were taken from the databank of
our lab and from [39].

• Hyper-radiosensitivity: The most hyper-radiosensitive cells (SF2 ranging from 1–10%) derive from
leukemia/lymphoma patients suffering from homozygous mutations of the Ataxia Telangiectasia
Mutated (ATM) gene (the highest hyper-radiosensitivity observed in humans) and homozygous
mutations of the ligase IV (LIG4) gene (only one case reported) who succumbed after radiotherapy
or homozygous mutations of the Nijmegen Breakage Syndrome (NBS1) gene. Furthermore,
the mutations of lamina A (LMNA) derived from patients suffering from the progeroid
Hutchinson–Gilford syndrome belong to this group [2,33,39,41,42]. The cumulative incidence of
these syndromes does not exceed 1%: they represent, therefore, a minority of patients, whose
symptoms are mostly detectable in pediatrics. On the biological scale, all these mutations result in
the loss of protein function and lead to a strong inhibition of DNA double-strand breaks (DSB)
recognition or repair [2,33,39,41,42].

• Moderate radiosensitivity: SF2 ranging from 10–50% corresponds to a moderate sensitivity,
such as that observed in genetic syndromes associated with high cancer proneness, like Fanconi
anemia (FANC mutations), Bloom’s syndrome (BLM mutations), and neurofibromatosis (NF1
mutations). Another subset of genetic syndromes belonging to this subcategory gathers aging
and/or neurodegenerative diseases like Cockayne syndrome (CS mutations) or Huntington’s
disease (HTT mutations) [2,39]. Such moderate radiosensitivities do not correspond to fatal
reactions after radiotherapy but to morbidity reactions (i.e., CTCAE/RTOG severity grade ranging
from 2 to 4). The cumulative incidence of the cases of moderate radiosensitivity represents
the majority of patients who showed significant post-radiotherapy tissue reactions [2]. At the
biological scale, all these mutations do not necessarily result in the loss of protein function but
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lead to a relative inhibition of DSB repair and signaling. Furthermore, it is noteworthy that some
heterozygous mutations are associated with an overexpression of the mutated protein, like with
Li Fraumeni syndrome (heterozygous p53 mutations) [43].

• Normosensitivity (or radioresistance): SF2 ranging from 50–70%, even up to 80% for some tumors,
corresponds to individuals considered “radioresistant”, who do not suffer from cancer (with
the notable exception of occupational cancers) and who do not show any secondary effects after
radiotherapy (CTCAE/RTOG grade 0) [2]. Normosensitivity is often defined by historical cell lines,
for which patient follow-up is well characterized. However, normosensitive controls are difficult
to obtain since a patient may or may not show post-radiotherapy tissue reactions, according to the
radiotherapy modality and the way of delivering the dose [35].

Interestingly, some of the syndromes that are associated with a moderate radiosensitivity [39] are
caused by mutations of cytoplasmic proteins, like Huntington’s disease [34], neurofibromatosis type
I [44], tuberous sclerosis [45], and Bruton’s [46] and Usher’s syndromes [47]. This is also the case of
the progeroid Hutchinson–Gilford syndrome, caused by mutations of lamina A, that is not directly
involved in DNA damage signaling and repair [33]. Such observations suggest that radiosensitivity is
not necessarily based on DNA repair defects only and raise questions about the importance of the
nuclear membrane permeability and radiosensitivity. The radiosensitivity observed in syndromes
caused by cytoplasmic mutated proteins can be therefore considered an enigma of radiobiology.

2.2. The Major Approaches to Predict Radiosensitivity and Their Limits

To date, the major approaches to predict radiosensitivity do not reach all the above requirements
for a reliable prediction of radiosensitivity:

• Assays based on cellular death: while SF2 is one of the best parameters to quantify
cellular radiosensitivity [39], clonogenic cell survival assays are too time-consuming to predict
radiosensitivity in routine. Assays based only on a particular cell death are not robust enough
statistically to reliably predict radiobiology [32,48]. For example, assays based on apoptosis are
irrelevant for predicting the radiosensitivity of fibroblasts that do not show this type of cell death.
Furthermore, when applied on lymphocytes, apoptotic assays provide an inverse correlation
between apoptotic yield and clinical radiosensitivity (the higher the apoptotic yield, the more
radioresistant the patient is) which is not in agreement with the current models and needs further
investigation [2,49].

• Assays based on cytogenetics: yields of unrepaired chromosomes, and especially micronuclei,
have been quantitatively correlated with radiosensitivity [2,50]. However, the ranges of unrepaired
chromosomes and of micronuclei are too small (0–12% and 0–25% per 100 cells, respectively)
to reflect moderate radiosensitivity. The predictive power of cytogenetic endpoints is therefore
limited [35].

• Assays based on DSB repair: while there is a quantitative correlation between unrepaired DSB
and SF2, such a correlation does not make it possible to predict the intermediate radiosensitivity,
for the same reasons evoked above with cytogenetics: the yield of unrepaired DSB ranges between
0 and 8 while SF2 varies from 1–70% [35,40].

• Genomics: as evoked above, the boolean nature (yes/no) of the DNA sequence endpoints cannot
account for any dose-function. For example, any endpoint from genomics cannot provide biological
interpretation of the LQ model. Conversely, genomics data are very useful for identifying gene
mutations and new syndromes associated with radiosensitivity [51].
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3. ATM, a Nucleocytoplasmic Protein Upstream of the Molecular Response to Radiation

3.1. ATM, a Nucleocytoplasmic Protein Early Activated after Irradiation

Since the 1970s, ataxia telangiectasia caused by homozygous mutations of ATM has been known
to be associated with the highest radiosensitivity encountered in humans [52]. Since the SF2 of the
ATM-mutated cells is systematically lower than that of the other radiosensitivity cases, the ATM protein
is likely to be upstream of the molecular process of the radiation response [53]. Interestingly, the
SF2 of the ATM-mutated cells is systematically lower than that of the LIG4-mutated cells, suggesting
that the loss of ATM activity itself leads to more severe consequences, such as a strong defect in the
non-homologous end-joining pathway (NHEJ) (the predominant DSB repair pathway in humans) [19].
Hence, ATM may act upstream of the NHEJ pathway. In addition to these observations, it was suggested
that ionizing radiation and oxidative stress trigger the ATM monomerization, which stimulates the
ATM kinase activity [54]. Because of the current hypothesis that DNA damage is the origin of any
cellular radiosensitivity, the ATM protein has long been considered as mainly nuclear, even if there was
no clear evidence of the absence of cytoplasmic ATM forms. By contrast, to date, there is increasing
evidence that ATM kinase is also a cytoplasmic protein. In 1998, Oka and Takashima and Lim. et al.
were the first groups to evoke the cytoplasmic form of ATM [55,56]. Furthermore, a number of reports
provided solid evidence of the existence of cytoplasmic forms of ATM but also of a nucleoshuttling of
ATM with different experimental approaches, like immunofluorescence, immunoprecipitation, and
enzyme-linked immunosorbent assay (ELISA) techniques [57–62].

3.2. ATM and the Other Serine/Threonine Kinases Involved in the DNA Damage Recognition

In parallel, the ATM-dependent phosphorylation of the variant histone H2AX on serine 139
(γH2AX) was shown to be one of the earliest RI events of the NHEJ pathway, through its relocalization
as discrete nuclear foci, easily quantifiable by immunofluorescence [63]. The formation of γH2AX
foci was considered to be the recognition step of NHEJ [63]. It is noteworthy that the γH2AX foci
were also shown to be produced by Ataxia Telangiectasia mutated and RAD3-related (ATR) and
DNA-dependent protein kinase (DNA-PK) kinases after genotoxic stress [64,65]. However, the roles
of these two proteins in radiosensitivity seem to be different. Firstly, the mutations of the ATR gene
(that notably cause Seckel’s syndrome) do not lead to the same level of hyper-radiosensitivity as
that observed in ATM-mutated cells [66,67]. Furthermore, after exposure to UV, the ATR kinase is
activated early post-exposure while ATM is not activated. By contrast, after exposure to ionizing
radiation, ATM is activated in the first minutes post-irradiation, while ATR is activated after the
first hour post-irradiation [53]. Hence, the γH2AX foci that could be potentially produced by ATR
have been observed much later that those produced by ATM [53,64]. With regard to DNA-PK, a
heterozygous mutation of the DNA-PK catalytic subunit (DNA-PKcs) gene has been found in a patient
suffering from severe combined immunodeficiency (RS-SCID). However, this mutation does not affect
DNA-PK activity and this syndrome is not associated with hyper-radiosensitivity like ATM-mutated
patients [67,68]. There is no human syndrome associated with homozygous DNA-PK mutations,
probably because they cause embryonic lethality [68]. Furthermore, the DNA-PK-mutated M059J
tumor cells show an early formation of γH2AX foci (in the first hour post-irradiation), with a number
similar to that assessed in radioresistant cells. By contrast, in the same DNA-PK-mutated tumor cells,
the number of residual γH2AX foci reflecting unrepaired DSB was found to be persistent from 4 h
post-irradiation, like in LIG4-mutated cells, suggesting a strong defect in NHEJ [40,69]. Altogether,
these data show that despite some significant influence in the RI DNA damage repair and signaling,
the mutations of the ATR and DNA-PK kinases taken separately is of a lesser extent than those of ATM
and the level of their activity cannot explain the large spectrum of human radiosensitivity.

Finally, it was also suggested that some foci formed by γH2AX and tumor suppressor p53 binding
protein 1 (53BP1) co-localize on the DSB sites. However, the exact temporal co-localization was not
observed in the first 1 h post-irradiation [70]. For example, 10 min after 2 Gy, only 15 53BP1 foci
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per Gy per cell were observed in radioresistant fibroblasts, while about 80 were scored with γH2AX
antibodies [40]. No correlation was established between radiosensitivity and 53BP1 foci formation,
suggesting that co-localizations with γH2AX foci should be interpreted with caution [70]. Lastly, it
must be stressed that all of the data mentioned here are related to quiescent cells and not proliferating
cells. Since 53BP1 foci have been observed in S-G2/M cells, differences in the 53BP1 action vis-à-vis
the cell cycle phase should also be considered [70]. Altogether, these data suggest that the number of
53BP1 foci cannot reliably predict human radiosensitivity.

3.3. A Crucial Observation Raising Basic Questions about the Role of ATM

In the frame of our systematic study of human radiosensitivity, by applying γH2AX
immunofluorescence on fibroblasts from hundreds of patients showing a wide range of
post-radiotherapy radiosensitivity, the number of γH2AX foci assessed 10 min after radiation was
found to be systematically lower than the expected induction rate of about 40 γH2AX foci per Gy per
cell [35] (Table 1). Besides this, since ATM phosphorylates H2AX to form γH2AX foci, the γH2AX foci
are rare or absent in the ATM-mutated cells. Conversely, the number of γH2AX foci in the LIG4-mutated
cells reaches the expected values of about 40 γH2AX foci per Gy per cell, (similar to normosensitive
cells) since the LIG4-mutated cells show a normal ATM function but impaired NHEJ activity [40]. All
the literature data converge to the double statement that the DSB induction is a physico–chemical
but not a biological process and that irradiation induces the same number of DSB per Gy per cell,
independent of radiosensitivity [63,71]. Conversely, a lower number of γH2AX foci and a moderate
cellular radiosensitivity suggest decreased ATM kinase activity in the nucleus [35]. When applying
pATM immunofluorescence to the same cells, the number of pATM foci appeared also to be lower in
cells showing a lower number of γH2AX foci [35] (Table 1). It was therefore hypothesized that the
diffusion of ATM from the cytoplasm to the nucleus was impaired, which may explain the lower ATM
kinase activity in the nucleus.

Table 1. Numerical values of the major endpoints reflecting clinical, cellular, and molecular radiosensitivity 1.

Radiosensitivity
of the Patients

CTCAE/RTOG
Grade SF2 (%)

γH2AX Foci
at 10 min

Post-Irradiation

pATM Foci
at 10 min

Post-Irradiation

γH2AX foci at 24 h
Post-Irradiation

Group I 0 50–70 70–80 30–40 0–2
Group II 0–4 10–50 10–70 10–30 2–8

Group III 5 1–10 IIIa2: 0–5
IIIb2: 70–80

IIIa: 0
IIIb: 30–40

IIIa: 0–5
IIIb: 30–40

1 Experimental values were taken from [35]. The subgroup IIIa gathers syndromes with gross defects in the DSB
recognition step like those caused by ATM mutations; the subgroup IIIb gathers syndromes with gross defects in the
DSB joining step like those caused by LIG4 mutations [35].

4. The RIANS Model: A Solid Basis for Predicting Radiosensitivity

4.1. Major Principles of the RIANS Model

From the observations described above and derived from our COPERNIC collection of more than
100 fibroblast cell lines, the RIANS model was therefore proposed [35,71] (Figure 3). The two major
hypotheses are that ATM is mainly situated in cytoplasm as dimers formed by two autophosphorylated
(pATM) monomers at serine 1981, and that ionizing radiation triggers the monomerization of the
cytoplasmic ATM dimers in a dose-dependent manner, as suggested already in the literature [72,73].
Thereafter, the ATM monomers, that are active forms, diffuse in the nucleus, probably more easily
than dimers for steric reasons [71]. Active ATM monomers phosphorylate H2AX, which triggers
NHEJ, and phosphorylate some nucleases, like MRE11, which inactivates the MRE11-dependent
recombination-like DSB repair pathway responsible for cancer proneness or genomic instability [71].
Once DSBs are repaired, the proximity of the two active ATM monomers helps in forming a dimer,
which produces pATM nuclear foci. This last step is supported by a ratio of 2, observed routinely
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between the number of early γH2AX foci and the early pATM foci, as shown previously [74]. Any
delay of RIANS therefore leads to radiosensitivity and/or genomic instability, as validated by the
COPERNIC fibroblasts collection [35]. The hyper-radiosensitivity of ATM-mutated cells is naturally
explained by the absence of an ATM kinase activity in the nucleus (no DSBs are recognized by NHEJ),
while that of LIG4-mutated ATM-mutated cells is explained by a gross repair defect by NHEJ (all
the DSBs are recognized but they are not repaired by NHEJ) [71]. At this stage, to our knowledge,
there is no other relevant model that could qualitatively and quantitatively explain the individual
radiation response by considering ATM expression or other phophosphorylated or steric forms of ATM.
However, since some encouraging studies suggest that ATM expression may serve as a prognostic
factor in medical oncology [75], further investigation is still needed to relate the kinase activity of ATM
with its expression level in both healthy and tumor cells.
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Figure 3. The radiation-induced ATM nucleoshuttling (RIANS) model and its applications.
(A) Representative image of pATM immunofluorescence before or after irradiation (2 Gy) in human
normosensitive control fibroblast cell lines. (B) Schematic illustration of the three groups of
radiosensitivity defined from the RIANS model. (C) Schematic illustration of the hyperradiosensitivity
to low doses (HRS) and the adaptive response (AR) phenomena and of the effect of the combination of
statins and bisphosphonates (zoledronate+pravastatin, (ZOPRA)) on the RIANS. Since the link between
radiosensitivity and the nuclear membrane permeability is still unknown, membranes are represented
in the same manner.

4.2. A Reliable Prediction of Individual Radiosensitivity

From the same COPERNIC fibroblasts collection, a quantitative correlation between CTCAE/RTOG
severity grades (reflecting clinical radiosensitivity) and the number of the pATM foci (reflecting cellular
radiosensitivity) was observed [35]. This correlation was found to be independent of the early/late
nature of the post-radiotherapy reactions and of the nature/localization of the tumor [35]. Such a
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correlation is at the basis of a reliable prediction of clinical radiosensitivity from skin biopsies sampled
before radiotherapy. The clinical applicability of the pATM assay was demonstrated in 2016 [35,76].
A variant pATM assay, based on the ELISA technique, was proposed in 2018. This faster pATM
assay has the advantage of avoiding the time-consuming cellular proliferation step, but provides a
lower statistical robustness than the pATM immunofluorescence assay [77]. However, despite these
differences, both pATM assays (via immunofluorescence or ELISA) were shown to be characterized by
the highest statistical performances among all the predictive assays proposed in the literature [32,49,77].
Hence, the best endpoints to reflect the RIANS remain the number of nuclear pATM foci observed by
immunofluorescence and, to a lesser extent, the number of nuclear pATM molecules observed by the
ELISA technique.

4.3. Three Groups of Human Radiosensitivity

From our data, the analysis of the delay in the RIANS in human cells enables us to define three
groups of radiosensitivity [32,35,71,76–78] (Figure 3):

• Group I (about 75–85% of the whole population) represents the normosensitive (radioresistant)
patients with a rapid RIANS after 2 Gy, and a low risk of post-radiotherapy tissue reaction
and cancer;

• Group II (about 5–20% of the whole population) represents the patients who elicit a delay in
the RIANS because of the sequestration of ATM in cytoplasm due to the formation of new
cytoplasmic ATM substrates or their overexpression. These patients are moderately radiosensitive
and susceptible to either cancer or to neurodegenerative disease;

• Group III (<1% of the whole population) represents the ATM-mutated patients or those who show
strong DSB repair defects, hyper-radiosensitivity, and either high cancer proneness or severe
accelerated aging [40,79].

Such classification is in good agreement with the observations described above in chapter 2.
Indeed, for the homozygous mutations or some neo (mosaicism) mutations of proteins essential for
the vital cellular functions, a significant dysfunction is observed (group III cases), but such gene
mutations remain very rare. For the heterozygous gene mutations that are more frequent, a paradoxical
overexpression of the mutated protein may contribute to delaying the RIANS by a more probable
binding to ATM in the cytoplasm (group II cases) [2,34,45].

4.4. Radiosensitivity Caused by Mutated Cytoplasmic Proteins

One of the most important success of the RIANS model is the resolution of the radiosensitivity
caused by mutated cytoplasmic proteins. For example, Huntington’s disease is associated with cellular
radiosensitivity, while the huntingtin is a cytoplasmic protein. Mutations of huntingtin lead to the
fusion of huntingtin with polyQ substrates. The wild-type huntingtin is not an ATM substrate. By
contrast, ATM may bind to the polyQ domain of the mutated huntingtin, which may favor a binding
of ATM to huntingtin in the cytoplasm and result in delaying the RIANS [34,80]. Another example
is given by tuberous sclerosis complex (TSC) syndrome. TSC is caused by mutations of either the
hamartin or tuberin proteins, which are mainly cytoplasmic. In the cytoplasm, ATM interacts with
the TSC complex, which contributes to inhibiting the mTOR pathway. In the case of heterozygous
mutations of the TSC2 protein, the TSC1 and TSC2 proteins separate, which contributes to activating
the mTOR pathway. In parallel, the over-expression of the TSC2 protein contributes to sequestrating
ATM in the cytoplasm [45]. In addition, neurofibromatosis type 1 (NF1) is also affected by these
characteristics. NF1 is caused by heterozygous mutations of neurofibromin, a cytoplasmic protein that
is an ATM substrate. Since these mutations are also associated with overexpression, they favor the
ATM–neurofibromin complex in the cytoplasm, which results in a sequestration of ATM and a delay in
the RIANS [44]. Similar observations in cells from patients suffering from retinoblastoma, Bruton’s
tyrosine kinas, and Usher’s syndrome, all caused by cytoplasmic proteins, are in progress or have been
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submitted (work in progress, N.F. personal communication). Altogether, these data consolidate the
relevance of the RIANS model but also suggest that some other proteins and mechanisms are to be
identified to explain how the same delay in the RIANS may lead to different clinical syndromes. It
is noteworthy that, to our knowledge, there is no other unified mechanistic model that provides a
common molecular explanation to the radiosensitivity of these specific syndromes.

5. A Unified Model to Describe the Response to High- and Low-Dose of Radiation?

5.1. A New Biological Interpretation of the LQ Model

For nearly one century, the radiation response has been described by the target theory. In those
studies, cell survival was described by a Poisson distribution of the lethal DNA damage [14]. In the
frame of the RIANS model, two types of lethal DSB have been hypothesized: (1) The α-type DSBs,
which are recognized by the ATM monomers in the nucleus (presence of γH2AX foci) but which remain
unrepairable (persistent γH2AX foci). The number of the α-type DSBs, Nα, was demonstrated to be
proportional to the radiation dose D with α, as the proportionality coefficient: Nα = α D [71]; (2) The
β-type DSBs, which are not recognized by the ATM monomers in the nucleus because of a delay or an
absence of the RIANS (absence of γH2AX foci). The number of β-type DSBs, Nβ, was demonstrated to
be proportional to the square of the radiation dose D with β, as the proportionality coefficient: Nβ = β

D2 [71]. As a result, the sum N(D) = Nα(D)+ Nβ(D) represents the number of all lethal DSBs as a
function of the dose, whatever the origin of the lethality of the unrepaired DSB. The expression of the
clonogenic cell survival S as a function of dose therefore becomes: S = exp(−N(D)), i.e., corresponding
to the formula of the LQ model S = exp(−α D − β D2) [71]. For the first time, to our knowledge, the
LQ (α, β) parameters received a relevant biological interpretation that links the RIANS model to cell
survival and to the capacity of the cell to mobilize the ATM kinase activity in the nucleus [71].

5.2. A Relevant Explanation for the Hyper-Radiosensitivity of the Low Dose Phenomenon?

The hyper-radiosensitivity to the low dose phenomenon (HRS) results in a significant reduction
(about 25%) in clonogenic cell survival, an increase in the number of chromosome breaks, micronuclei,
and unrepaired DSB between 1 and 500 mGy [81–83], which represents a biological effect equivalent
of a dose 5 to 10 times higher [83,84]. The HRS phenomenon also concerns cellular transformation,
since HRS has been observed with hypoxanthine-guanine phosphorybosyltransferase (HPRT) gene
mutations as an endpoint [85]. The HRS phenomenon has been observed in numerous types of cells,
whether derived from healthy tissues or tumors, but more preferentially in proliferating cells and in
cells showing moderate radiosensitivity (see also below) [81–83]. Despite of the number of hypotheses,
the intrinsic mechanisms of HRS remain unsolved [83].

The induction rate of the RI DSB assessed experimentally in a number of cells [63] and the
induction rate of the RI ATM monomers, as suggested by literature data [72,73] and simulated in
the frame of RIANS model [71], depend on the radiation dose but not on individual radiosensitivity.
They were found to be about 40 RI DSB and 10,000 RI ATM monomers per Gy per human fibroblast,
respectively [71]. By contrast, the number of ATM monomers that diffuse in the nucleus is strongly
dependent on the RIANS and therefore on the individual radiosensitivity group. Hence, if all the
RI DSB are recognized 10 min after 2 Gy in radioresistant (group I) cells, this is not the case for
moderately radiosensitive (group II) cells. At low doses, the number of RI DSB and ATM monomers
is reduced—the radiation dose may not be high enough to produce a significant amount of active
ATM monomers that cross the nuclear membrane. If the flux of ATM monomers is not sufficient, some
DSBs may not be recognized by NHEJ and therefore become unrepairable and lethal (leading to an
increased radiosensitivity) and/or misrepaired by the MRE11-dependent recombination-like pathway
(leading to an increased radiosusceptibility) [71]. If the radiation dose increases a bit more to reach the
dose required for a sufficient flux of active ATM monomers in the nucleus, cell survival paradoxically
increases, because more DSBs are recognized. Such a phenomenon describes a U-shaped survival curve
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in the range of 1 to 500 mGy. We have shown that this situation is quantitatively predictable by the
RIANS model. For the first time, to our knowledge, the RIANS model provides a biologically-relevant
explanation of the HRS phenomenon [71] (Figure 3).

Altogether, these data show the importance of the ratio between the number of RI DSB and
the number of active ATM monomers that diffuse in the nucleus. The dose dHRS, at which HRS is
maximal, belongs to the range of 0.1–0.2 Gy for human non-transformed fibroblasts. Interestingly, dHRS

was shown to correspond to a minimal flux of ATM monomers to recognize DSB, and such value is
preferentially reached in group II cells because of the delayed RIANS that characterizes these cells [71].

5.3. A Relevant Explanation for the Adaptive Response?

The adaptive response (AR) results in a protective phenomenon occurring after two successive
doses: a first “priming” dose (dAR) precedes a period of time (∆tAR) and a “challenging” dose (DAR).
The AR phenomenon occurs when the effect of dAR + ∆tAR + DAR is lower than that of DAR. The priming
dose dAR is generally interpreted as a stimulus of the cellular defenses to reply to the challenging
dose [86–88]. However, despite a number of observations on different materials [88], the nature of
such defenses is still unidentified.

HRS is a single-dose phenomenon, while AR is an effect due to two successive doses. Both HRS
and AR are preferentially observed in moderately radiosensitive (group II) cells but not in radioresistant
and hyper-radiosensitive cells [89–91]. More precisely, a recent review has provided evidence that
HRS positive cells are systematically AR positive but the contrary is not verified, since the dose dAR

is generally much smaller than dHRS [92]. The RIANS model has provided a biologically relevant
interpretation of AR (Figure 3):

• The dAR dose triggers the production of DSB and ATM monomers that diffuse in the nucleus. At
this stage, the irradiation conditions are similar to HRS;

• The period of time ∆tAR favors the accumulation of the ATM monomers in the nucleus. However,
if ∆tAR is too long, the number of ATM monomers will be reduced because of the limited activity
half-time of the ATM protein. If ∆tAR is too short, the accumulation of active ATM monomers in
the nucleus will be reduced;

• The challenging DAR dose triggers the production of a high number of ATM monomers. However,
the excess of remaining ATM monomers induced by dAR and still active in nucleus after dAR +

∆tAR will facilitate the biological response to the RI DSB induced by DAR: the effect of dAR + ∆tAR

+ DAR is therefore lower than that of the challenging DAR dose alone.

The radioresistant (group I) cells do not need such an excess of ATM monomers due to dAR, since
the flux of ATM monomers induced directly by DAR is largely sufficient to provide a positive biological
response. In hyper-radiosensitive (group III) cells, the flux of monomers is already so reduced that even
an excess of ATM monomers induced by dAR is not sufficient to provide a positive response to DAR.
Hence, the RIANS model explains why AR is preferentially observed in moderately radiosensitive
(group II) cells but not in group I and III cells. Interestingly, dAR would correspond to the dose required
for producing a sufficiently high flux of active ATM monomers to reduce the effect of the challenging
dose DAR [92] and therefore is likely to be similar to DHRS.

Lastly, with regard to the hormesis phenomenon, which is defined as a J-shaped dose-response
curve and leads to a benefit to irradiated cells, some preliminary data suggest that at doses lower
than 25 mGy, the flux of ATM monomers is very important, while this dose range corresponds to the
absence of RI DSB. Hence, the excess of nuclear ATM kinase activity may contribute to reducing the
spontaneous oxidative stress in the cells and contribute to decreasing genomic instability. However,
such a phenomenon would be preferentially observed in radioresistant (group I) cells, since the
spontaneous oxidative stress and the genomic instability of radiosensitive (group II) cells would be too
high (experiments in progress).
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5.4. Statins and Bisphosphonates: A New Approach of Radiological Protection?

In the group II cells, the radiosensitivity is explained by the delay in the RIANS. But what does
happen if the RIANS is accelerated or facilitated? To date, the approach of radiological protection has
consisted of decreasing the amount of RI DNA damage by using antioxidant drugs [93]. However, to
decrease the amount of RI DNA damage does not necessarily mean that it will be repaired. Conversely,
in the frame of the RIANS model, the diffusion of the ATM monomers depends on the permeability of the
nuclear membrane [71]. Zoledronate is an anti-osteoporosis bisphosphonate agent and pravastatin is an
anti-cholesterol drug. The combination of zoledronate and pravastatin (ZOPRA) was shown to inhibit
the nuclear membrane farnesylation of progerin, a mutant form of nuclear lamin A, and to correct some
biological features of cells from the progeroid Hutchinson–Gilford syndrome [33]. It is also likely that
pravastatin may act on the cholesterol forms situated at the proximity of the nuclear membranes [94].
The application of ZOPRA treatment to fibroblasts was shown to significantly accelerate the rate of
the RIANS, notably in cells derived from the Huntington’s disease [34], neurofibromatosis type I [44],
tuberous sclerosis [45], Bruton’s [46] and Usher’s syndromes (data submitted), and from the progeroid
Hutchinson–Gilford syndrome [33]. It is noteworthy that the significant effects of ZOPRA treatment is
a crucial element that consolidates the RIANS model and makes it possible to open new approaches of
radiological protection in mammalian cells (Figure 3).

6. Other Applications of the RIANS Model

To consolidate it, the biological relevance of the RIANS model should be tested in all the
experimental conditions in which radiosensitivity varies. This is notably the case with the relationship
between high linear energy transfer (LET) particles and the relative biology efficiency (RBE), that is
a classical feature of radiobiology. Recently, the RIANS model was shown to explain the shape of
the LET-RBE curves, with different types of particles like protons and carbon ions [74]. Similarly, the
relevance of the RIANS model was also tested in dose hypo/hyper fractionation effects and on different
radiotherapy modalities (experiments in progress). Furthermore, one of the important questions raised
by radiobiology is the tissue-dependence of the response to radiation: an increasing body of evidence
suggests that the RIANS is not specific to human fibroblasts and is easily observed in any mammalians
cells, whether normal or tumor (paper in preparation).

7. Conclusions

To predict individual radiosensitivity requires a number of constraints and the resolution of some
historical enigmas of radiobiology. The current predictive assays do not reach all these requirements.
In 2016, from a collection of more than 100 human primary fibroblasts cell lines, it was hypothesized
that ionizing radiation induces the monomerization of cytoplasmic ATM dimers and triggers their
diffusion in the nucleus to recognize DSBs and repair them via NHEJ [35,71]. This general mechanistic
model makes it possible to describe most of the RI radiosensitivity-related phenomena, whether they
occur after high- or low-dose. Obviously, as primum movens upstream of the DNA damage repair
step, the RIANS does not explain by itself why, with the same delay in the RIANS, some syndromes
are associated with a radiosensitivity + radiosusceptiblity or a radiosensitivity + radiodegeneration
phenotype. However, some encouraging series of data have provided important elements on cancer
proneness syndromes via the MRE11-recombination-like pathway, which is overactivated if RIANS
is delayed [40], and on accelerated aging syndromes via the ATM monomers trafficking close to the
nuclear membranes [33]. The RIANS model has also the considerable advantage that each of its steps
is already described via mathematical modeling [71] and is opening the door to a new radiological
protection approach with ZOPRA treatment. Further investigations are therefore needed to increase
the spectrum of the biological and clinical applications of the RIANS model, in order to propose a
unified view of the individual radiation response.



Cancers 2019, 11, 905 13 of 17

Author Contributions: The three authors have equally contributed to this work.

Funding: This work was supported by the Commissariat General à l’Investissement (Programmes Investissement
d’avenir – projet INDIRA), the Association Pour la Recherche sur l′Ataxie-Telangiectasie and the National Space
Agency (CNES).

Conflicts of Interest: N.F. is co-founder and the scientific advisers of the Neolys Diagnostics start-up company
that developed predictive assays. A conventional agreement between the academic UA8 Inserm unit and Neolys
Diagnostics has been validated by the Deontology Commission of INSERM. It is noteworthy that this company
had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript, or in the decision to publish the results”.

References

1. Domina, E.A.; Philchenkov, A.; Dubrovska, A. Individual Response to Ionizing Radiation and Personalized
Radiotherapy. Crit. Rev. Oncog. 2018, 23, 69–92. [CrossRef] [PubMed]

2. Foray, N.; Bourguignon, M.; Hamada, N. Individual response to ionizing radiation. Mutat. Res. Rev. 2016,
770, 369–386. [CrossRef] [PubMed]

3. Pauwels, E.K.; Foray, N.; Bourguignon, M.H. Breast Cancer Induced by X-Ray Mammography Screening? A
Review Based on Recent Understanding of Low-Dose Radiobiology. Med. Princ. Pract. 2016, 25, 101–109.
[CrossRef] [PubMed]

4. Hatch, M.; Cardis, E. Somatic health effects of Chernobyl: 30 years on. Eur. J. Epidemiol. 2017, 32, 1047–1054.
[CrossRef] [PubMed]

5. Roentgen, W. Über eine neue Art von Strahlen. Vorläufige Mitteilung. Aus den Sitzungsberichten der
Würzburger Physik.-medic. Gesellschaft Würzburg 1895, S137–S147.

6. Serwer, D.P. The rise of radiation protection: Science, In Medicine and Technology in Society, 1896–1935; Princeton
University Press: Princeton, NJ, USA, 1976.

7. Albers-Schönberg, H. Über die Benadlung des Lupus und des chronischen Ekzems mit Röntgenstrahlen.
Fortschr. Rôntgenstr. 1898, 2, 20–29.

8. Bouchacourt, L. Sur la différence de sensibilité aux rayons de Roentgen de la peau des différents sujets, et,
sur le même sujet des différents régions du corps. Sciences 1911, 942–947.

9. Morère, J.-F.; Mornex, F.; Soulières, D. Thérapeutique du Cancer; Springer: Paris, France, 2011.
10. Trotti, A.; Colevas, A.D.; Setser, A.; Rusch, V.; Jaques, D.; Budach, V.; Langer, C.; Murphy, B.; Cumberlin, R.;

Coleman, C.N.; et al. CTCAE v3.0: Development of a comprehensive grading system for the adverse effects
of cancer treatment. Semin. Radiat. Oncol. 2003, 13, 176–181. [CrossRef]

11. Cox, J.D.; Stetz, J.; Pajak, T.F. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the
European Organization for Research and Treatment of Cancer (EORTC). Int. J. Radiat. Oncol. Biol. Phys. 1995,
31, 1341–1346. [CrossRef]

12. Kellerer, A.M.; Rossi, H.H. The theory of dual radiation action. Curr. Top. Radiat. Res. 1972, 8, 85–158.
13. Chadwick, K.H.; Leenhouts, H.P. A molecular theory of cell survival. Phys. Med. Biol. 1973, 13, 78–87.

[CrossRef]
14. Bodgi, L.; Canet, A.; Pujo-Menjouet, L.; Lesne, A.; Victor, J.M.; Foray, N. Mathematical models of radiation

action on living cells: From the target theory to the modern approaches. A historical and critical review. J.
Theor. Biol. 2016, 394, 93–101. [CrossRef] [PubMed]

15. Britel, M.; Bourguignon, M.; Foray, N. Radiosensitivity: A term with various meanings at the origin of
numerous confusions. A semantic analysis. Int. J. Radiat. Oncol. Biol. 2018, 94, 503–512. [CrossRef] [PubMed]

16. Frieben, A. Cancroid des rechten Handrückens. Deutsche Med. Wochenschr. 1902, 28, 335.
17. Gunderman, R.B.; Gonda, A.S. Radium girls. Radiology 2015, 274, 314–318. [CrossRef] [PubMed]
18. Preston, D.L.; Shimizu, Y.; Pierce, D.A.; Suyama, A.; Mabuchi, K. Studies of mortality of atomic bomb

survivors. Report 13: Solid cancer and noncancer disease mortality: 1950–1997. 2003. Radiat. Res. 2012, 178,
AV146–AV172. [CrossRef]

19. Preston, D.L.; Shimizu, Y.; Pierce, D.A.; Suyama, A.; Mabuchi, K. Studies of mortality of atomic bomb
survivors. Report 13: Solid cancer and noncancer disease mortality: 1950–1997. Radiat. Res. 2003, 160,
381–407. [CrossRef]

http://dx.doi.org/10.1615/CritRevOncog.2018026308
http://www.ncbi.nlm.nih.gov/pubmed/29953368
http://dx.doi.org/10.1016/j.mrrev.2016.09.001
http://www.ncbi.nlm.nih.gov/pubmed/27919342
http://dx.doi.org/10.1159/000442442
http://www.ncbi.nlm.nih.gov/pubmed/26571215
http://dx.doi.org/10.1007/s10654-017-0303-6
http://www.ncbi.nlm.nih.gov/pubmed/28929329
http://dx.doi.org/10.1016/S1053-4296(03)00031-6
http://dx.doi.org/10.1016/0360-3016(95)00060-C
http://dx.doi.org/10.1088/0031-9155/18/1/007
http://dx.doi.org/10.1016/j.jtbi.2016.01.018
http://www.ncbi.nlm.nih.gov/pubmed/26807808
http://dx.doi.org/10.1080/09553002.2018.1450535
http://www.ncbi.nlm.nih.gov/pubmed/29533136
http://dx.doi.org/10.1148/radiol.14141352
http://www.ncbi.nlm.nih.gov/pubmed/25625740
http://dx.doi.org/10.1667/RRAV12.1
http://dx.doi.org/10.1667/RR3049


Cancers 2019, 11, 905 14 of 17

20. Ozasa, K.; Shimizu, Y.; Suyama, A.; Kasagi, F.; Soda, M.; Grant, E.J.; Sakata, R.; Sugiyama, H.; Kodama, K.
Studies of the mortality of atomic bomb survivors, Report 14, 1950-2003: An overview of cancer and
noncancer diseases. Radiat. Res. 2012, 177, 229–243. [CrossRef]

21. Lee, W.C. Excess relative risk as an effect measure in case-control studies of rare diseases. PLoS ONE 2014, 10,
e0121141. [CrossRef]

22. Calabrese, E.J.; Shamoun, D.Y.; Hanekamp, J.C. The Integration of LNT and Hormesis for Cancer Risk
Assessment Optimizes Public Health Protection. Health Phys. 2016, 110, 256–259. [CrossRef]

23. Tubiana, M. Dose-effect relationship and estimation of the carcinogenic effects of low doses of ionizing
radiation: The joint report of the Academie des Sciences (Paris) and of the Academie Nationale de Medecine.
Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 317–319. [CrossRef] [PubMed]

24. Boice, J.D., Jr. The linear nonthreshold (LNT) model as used in radiation protection: An NCRP update. Int. J.
Radiat. Oncol. Biol. 2017, 93, 1079–1092. [CrossRef] [PubMed]

25. Baria, K.; Warren, C.; Roberts, S.A.; West, C.M.; Scott, D. Chromosomal radiosensitivity as a marker of
predisposition to common cancers? Br. J. Cancer 2001, 84, 892–896. [CrossRef] [PubMed]

26. Compton, P.J.; Hooper, K.; Smith, M.T. Human somatic mutation assays as biomarkers of carcinogenesis.
Environ. Health Perspect. 1991, 94, 135–141. [CrossRef] [PubMed]

27. ICRP. ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and
organs-threshold doses for tissue reactions in a radiation protection context. Publication 118. Ann. ICRP
2012, 41, 1–322. [CrossRef] [PubMed]

28. Rollins, W. Notes on x-light. The effect of x-light on the crystalline lens. Boston Med. Surg. J. 1903, 148,
364–365. [CrossRef]

29. Desjardins, A.U. Action of roentgen rays and radium on the heart and lungs. Am. J. Roentgenol. 1932, 27,
149–176.

30. Kong, C.M.; Lee, X.W.; Wang, X. Telomere shortening in human diseases. FEBS J. 2013, 280, 3180–3193.
[CrossRef]

31. Brooks, A.L.; Hoel, D.G.; Preston, R.J. The role of dose rate in radiation cancer risk: Evaluating the effect of
dose rate at the molecular, cellular and tissue levels using key events in critical pathways following exposure
to low LET radiation. Int. J. Radiat. Oncol. Biol. 2016, 92, 405–426. [CrossRef]

32. Vogin, G.; Bastogne, T.; Bodgi, L.; Gillet-Daubin, J.; Canet, A.; Pereira, S.; Foray, N. The Phosphorylated ATM
Immunofluorescence Assay: A High-performance Radiosensitivity Assay to Predict Postradiation Therapy
Overreactions. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 690–693. [CrossRef]

33. Varela, I.; Pereira, S.; Ugalde, A.P.; Navarro, C.L.; Suarez, M.F.; Cau, P.; Cadinanos, J.; Osorio, F.G.; Foray, N.;
Cobo, J.; et al. Combined treatment with statins and aminobisphosphonates extends longevity in a mouse
model of human premature aging. Nat. Med. 2008, 14, 767–772. [CrossRef] [PubMed]

34. Ferlazzo, M.L.; Sonzogni, L.; Granzotto, A.; Bodgi, L.; Lartin, O.; Devic, C.; Vogin, G.; Pereira, S.; Foray, N.
Mutations of the Huntington’s Disease Protein Impact on the ATM-Dependent Signaling and Repair Pathways
of the Radiation-Induced DNA Double-Strand Breaks: Corrective Effect of Statins and Bisphosphonates.
Mol. Neurobiol. 2014, 49, 1200–1211. [CrossRef] [PubMed]

35. Granzotto, A.; Benadjaoud, M.A.; Vogin, G.; Devic, C.; Ferlazzo, M.L.; Bodgi, L.; Pereira, S.; Sonzogni, L.;
Forcheron, F.; Viau, M.; et al. Influence of Nucleoshuttling of the ATM Protein in the Healthy Tissues
Response to Radiation Therapy: Toward a Molecular Classification of Human Radiosensitivity. Int. J. Radiat.
Oncol. Biol. Phys. 2016, 94, 450–460. [CrossRef] [PubMed]

36. Health Public Agency. Human Radiosensitivity; Report RCE 21; Public Health England: London, UK, 2013.
37. Fertil, B.; Malaise, E.P. Inherent cellular radiosensitivity as a basic concept for human tumor radiotherapy.

Int. J. Radiat. Oncol. Biol. Phys. 1981, 7, 621–629. [CrossRef]
38. Arlett, C.F.; Harcourt, S.A. Survey of radiosensitivity in a variety of human cell strains. Cancer Res. 1980, 40,

926–932. [PubMed]
39. Deschavanne, P.J.; Fertil, B. A review of human cell radiosensitivity in vitro. Int. J. Radiat. Oncol. Biol. Phys.

1996, 34, 251–266. [CrossRef]
40. Joubert, A.; Zimmerman, K.M.; Bencokova, Z.; Gastaldo, J.; Rénier, W.; Chavaudra, N.; Favaudon, V.;

Arlett, C.; Foray, N. DNA double-strand break repair defects in syndromes associated with acute radiation
response: At least two different assays to predict intrinsic radiosensitivity? Int. J. Radiat. Oncol. Biol. 2008,
84, 1–19. [CrossRef]

http://dx.doi.org/10.1667/RR2629.1
http://dx.doi.org/10.1371/journal.pone.0121141
http://dx.doi.org/10.1097/HP.0000000000000382
http://dx.doi.org/10.1016/j.ijrobp.2005.06.013
http://www.ncbi.nlm.nih.gov/pubmed/16168825
http://dx.doi.org/10.1080/09553002.2017.1328750
http://www.ncbi.nlm.nih.gov/pubmed/28532210
http://dx.doi.org/10.1054/bjoc.2000.1701
http://www.ncbi.nlm.nih.gov/pubmed/11286467
http://dx.doi.org/10.1289/ehp.94-1567966
http://www.ncbi.nlm.nih.gov/pubmed/1954924
http://dx.doi.org/10.1016/j.icrp.2012.02.001
http://www.ncbi.nlm.nih.gov/pubmed/22925378
http://dx.doi.org/10.1056/NEJM190304021481404
http://dx.doi.org/10.1111/febs.12326
http://dx.doi.org/10.1080/09553002.2016.1186301
http://dx.doi.org/10.1016/j.ijrobp.2018.03.047
http://dx.doi.org/10.1038/nm1786
http://www.ncbi.nlm.nih.gov/pubmed/18587406
http://dx.doi.org/10.1007/s12035-013-8591-7
http://www.ncbi.nlm.nih.gov/pubmed/24277524
http://dx.doi.org/10.1016/j.ijrobp.2015.11.013
http://www.ncbi.nlm.nih.gov/pubmed/26867874
http://dx.doi.org/10.1016/0360-3016(81)90377-1
http://www.ncbi.nlm.nih.gov/pubmed/7471106
http://dx.doi.org/10.1016/0360-3016(95)02029-2
http://dx.doi.org/10.1080/09553000701797039


Cancers 2019, 11, 905 15 of 17

41. Badie, C.; Iliakis, G.; Foray, N.; Alsbeih, G.; Pantellias, G.E.; Okayasu, R.; Cheong, N.; Russell, N.S.; Begg, A.C.;
Arlett, C.F.; et al. Defective repair of DNA double-strand breaks and chromosome damage in fibroblasts
from a radiosensitive leukemia patient. Cancer Res. 1995, 55, 1232–1234.

42. Taalman, R.D.; Jaspers, N.G.; Scheres, J.M.; de Wit, J.; Hustinx, T.W. Hypersensitivity to ionizing radiation,
in vitro, in a new chromosomal breakage disorder, the Nijmegen Breakage Syndrome. Mutat. Res. 1983, 112,
23–32. [CrossRef]

43. Foray, N.; Randrianarison, V.; Marot, D.; Perricaudet, M.; Lenoir, G.; Feunteun, J. Gamma-rays-induced
death of human cells carrying mutations of BRCA1 or BRCA2. Oncogene 1999, 18, 7334–7342. [CrossRef]

44. Bencokova, Z.; Devic, C.; Ferlazzo, M.L.; Granzotto, A.; Sonzogni, L.; Burlet, S.F.; Viau, M.; Bodgi, L.;
Bachelet, J.T.; Combemale, P.; et al. Radiobiological characterization of neurofibromatosis type I: The
neurofibromin protein impacts on the ATM-dependent DNA damage repair and signaling pathway. Mol.
Neurobiol. 2018, in press.

45. Ferlazzo, M.L.; Bach-Tobdji, M.K.E.; Djerad, A.; Sonzogni, L.; Burlet, S.F.; Devic, C.; Granzotto, A.;
Bodgi, L.; Djeffal-Kerrar, A.; Foray, N. Radiobiological characterization of tuberous sclerosis: A delay in
the nucleo-shuttling of ATM may be responsible for radiosensitivity. Mol. Neurobiol. 2017, 55, 4973–4983.
[CrossRef] [PubMed]

46. Huo, Y.K.; Wang, Z.; Hong, J.H.; Chessa, L.; McBride, W.H.; Perlman, S.L.; Gatti, R.A. Radiosensitivity
of ataxia-telangiectasia, X-linked agammaglobulinemia, and related syndromes using a modified colony
survival assay. Cancer Res. 1994, 54, 2544–2547. [PubMed]

47. Nove, J.; Tarone, R.E.; Little, J.B.; Robbins, J.H. Radiation sensitivity of fibroblast strains from patients with
Usher’s syndrome, Duchenne muscular dystrophy, and Huntington’s disease. Mutat. Res. 1987, 184, 29–38.
[CrossRef]

48. Ferlazzo, M.L.; Bourguignon, M.; Foray, N. Functional Assays for Individual Radiosensitivity: A Critical
Review. Semin. Radiat. Oncol. 2017, 27, 310–315. [CrossRef] [PubMed]

49. Pereira, S.; Bodgi, L.; Duclos, M.; Canet, A.; Ferlazzo, M.L.; Devic, C.; Granzotto, A.; Deneuve, S.; Vogin, G.;
Foray, N. The time is coming to compare radiosensitivity predictive assays by their scientific relevance and
statistical performances. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 491–492. [CrossRef] [PubMed]

50. Cornforth, M.N.; Bedford, J.S. A quantitative comparison of potentially lethal damage repair and the rejoining
of interphase chromosome breaks in low passage normal human fibroblasts. Radiat. Res. 1987, 111, 385–405.
[CrossRef] [PubMed]

51. Rosenstein, B.S.; West, C.M.; Bentzen, S.M.; Alsner, J.; Andreassen, C.N.; Azria, D.; Barnett, G.C.; Baumann, M.;
Burnet, N.; Chang-Claude, J.; et al. Radiogenomics: Radiobiology enters the era of big data and team science.
Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 709–713. [CrossRef]

52. Taylor, A.M.; Harnden, D.G.; Arlett, C.F.; Harcourt, S.A.; Lehmann, A.R.; Stevens, S.; Bridges, B.A. Ataxia
telangiectasia: A human mutation with abnormal radiation sensitivity. Nature 1975, 258, 427–429. [CrossRef]

53. Foray, N.; Marot, D.; Gabriel, A.; Randrianarison, V.; Carr, A.M.; Perricaudet, M.; Ashworth, A.; Jeggo, P. A
subset of ATM- and ATR-dependent phosphorylation events requires the BRCA1 protein. EMBO J. 2003, 22,
2860–2871. [CrossRef]

54. Bakkenist, C.J.; Kastan, M.B. DNA damage activates ATM through intermolecular autophosphorylation and
dimer dissociation. Nature 2003, 421, 499–506. [CrossRef] [PubMed]

55. Oka, A.; Takashima, S. Expression of the ataxia-telangiectasia gene (ATM) product in human cerebellar
neurons during development. Neurosci. Lett. 1998, 252, 195–198. [CrossRef]

56. Lim, D.S.; Kirsch, D.G.; Canman, C.E.; Ahn, J.H.; Ziv, Y.; Newman, L.S.; Darnell, R.B.; Shiloh, Y.; Kastan, M.B.
ATM binds to beta-adaptin in cytoplasmic vesicles. Proc. Natl. Acad. Sci. USA 1998, 95, 10146–10151.
[CrossRef] [PubMed]

57. Alexander, A.; Cai, S.L.; Kim, J.; Nanez, A.; Sahin, M.; MacLean, K.H.; Inoki, K.; Guan, K.L.; Shen, J.;
Person, M.D.; et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc.
Natl. Acad. Sci. USA 2010, 107, 4153–4158. [CrossRef] [PubMed]

58. Barlow, C.; Ribaut-Barassin, C.; Zwingman, T.A.; Pope, A.J.; Brown, K.D.; Owens, J.W.; Larson, D.;
Harrington, E.A.; Haeberle, A.M.; Mariani, J.; et al. ATM is a cytoplasmic protein in mouse brain required to
prevent lysosomal accumulation. Proc. Natl. Acad. Sci. USA 2000, 97, 871–876. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/0167-8817(83)90021-4
http://dx.doi.org/10.1038/sj.onc.1203165
http://dx.doi.org/10.1007/s12035-017-0648-6
http://www.ncbi.nlm.nih.gov/pubmed/28786016
http://www.ncbi.nlm.nih.gov/pubmed/8168076
http://dx.doi.org/10.1016/0167-8817(87)90033-2
http://dx.doi.org/10.1016/j.semradonc.2017.04.003
http://www.ncbi.nlm.nih.gov/pubmed/28865513
http://dx.doi.org/10.1016/j.ijrobp.2018.02.020
http://www.ncbi.nlm.nih.gov/pubmed/29726366
http://dx.doi.org/10.2307/3576926
http://www.ncbi.nlm.nih.gov/pubmed/3659275
http://dx.doi.org/10.1016/j.ijrobp.2014.03.009
http://dx.doi.org/10.1038/258427a0
http://dx.doi.org/10.1093/emboj/cdg274
http://dx.doi.org/10.1038/nature01368
http://www.ncbi.nlm.nih.gov/pubmed/12556884
http://dx.doi.org/10.1016/S0304-3940(98)00576-X
http://dx.doi.org/10.1073/pnas.95.17.10146
http://www.ncbi.nlm.nih.gov/pubmed/9707615
http://dx.doi.org/10.1073/pnas.0913860107
http://www.ncbi.nlm.nih.gov/pubmed/20160076
http://dx.doi.org/10.1073/pnas.97.2.871
http://www.ncbi.nlm.nih.gov/pubmed/10639172


Cancers 2019, 11, 905 16 of 17

59. Boehrs, J.K.; He, J.; Halaby, M.J.; Yang, D.Q. Constitutive expression and cytoplasmic compartmentalization
of ATM protein in differentiated human neuron-like SH-SY5Y cells. J. Neurochem. 2007, 100, 337–345.
[CrossRef] [PubMed]

60. Hinz, M.; Stilmann, M.; Arslan, S.C.; Khanna, K.K.; Dittmar, G.; Scheidereit, C. A cytoplasmic
ATM-TRAF6-cIAP1 module links nuclear DNA damage signaling to ubiquitin-mediated NF-kappaB
activation. Mol. Cell 2010, 40, 63–74. [CrossRef] [PubMed]

61. Li, J.; Han, Y.R.; Plummer, M.R.; Herrup, K. Cytoplasmic ATM in neurons modulates synaptic function. Curr.
Biol. 2009, 19, 2091–2096. [CrossRef]

62. Yang, D.Q.; Halaby, M.J.; Li, Y.; Hibma, J.C.; Burn, P. Cytoplasmic ATM protein kinase: An emerging
therapeutic target for diabetes, cancer and neuronal degeneration. Drug Discov. Today 2011, 16, 332–338.
[CrossRef]

63. Rothkamm, K.; Lobrich, M. Evidence for a lack of DNA double-strand break repair in human cells exposed
to very low x-ray doses. Proc. Natl. Acad. Sci. USA 2003, 100, 5057–5062. [CrossRef]

64. Stiff, T.; O’Driscoll, M.; Rief, N.; Iwabuchi, K.; Lobrich, M.; Jeggo, P.A. ATM and DNA-PK function
redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 2004, 64, 2390–2396.
[CrossRef] [PubMed]

65. Burdak-Rothkamm, S.; Short, S.C.; Folkard, M.; Rothkamm, K.; Prise, K.M. ATR-dependent radiation-induced
gamma H2AX foci in bystander primary human astrocytes and glioma cells. Oncogene 2007, 26, 993–1002.
[CrossRef] [PubMed]

66. O’Driscoll, M.; Ruiz-Perez, V.L.; Woods, C.G.; Jeggo, P.A.; Goodship, J.A. A splicing mutation affecting
expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat. Genet.
2003, 33, 497–501. [CrossRef] [PubMed]

67. O’Driscoll, M.; Gennery, A.R.; Seidel, J.; Concannon, P.; Jeggo, P.A. An overview of three new disorders
associated with genetic instability: LIG4 syndrome, RS-SCID and ATR-Seckel syndrome. DNA Repair 2004,
3, 1227–1235. [CrossRef] [PubMed]

68. van der Burg, M.; Ijspeert, H.; Verkaik, N.S.; Turul, T.; Wiegant, W.W.; Morotomi-Yano, K.; Mari, P.O.;
Tezcan, I.; Chen, D.J.; Zdzienicka, M.Z.; et al. A DNA-PKcs mutation in a radiosensitive T-B- SCID patient
inhibits Artemis activation and nonhomologous end-joining. J. Clin. Invest. 2009, 119, 91–98. [CrossRef]

69. Chavaudra, N.; Bourhis, J.; Foray, N. Quantified relationship between cellular radiosensitivity, DNA repair
defects and chromatin relaxation: A study of 19 human tumour cell lines from different origin. Radiother.
Oncol. 2004, 73, 373–382. [CrossRef]

70. Markova, E.; Schultz, N.; Belyaev, I.Y. Kinetics and dose-response of residual 53BP1/gamma-H2AX foci:
Co-localization, relationship with DSB repair and clonogenic survival. Int. J. Radiat. Oncol. Biol. 2007, 83,
319–329. [CrossRef]

71. Bodgi, L.; Foray, N. The nucleo-shuttling of the ATM protein as a basis for a novel theory of radiation
response: Resolution of the linear-quadratic model. Int. J. Radiat. Oncol. Biol. 2016, 92, 117–131. [CrossRef]

72. Guo, Z.; Kozlov, S.; Lavin, M.F.; Person, M.D.; Paull, T.T. ATM activation by oxidative stress. Science 2010,
330, 517–521. [CrossRef]

73. Paull, T.T. Mechanisms of ATM Activation. Ann. Rev. Biochem. 2015, 84, 711–734. [CrossRef]
74. Maalouf, M.; Granzotto, A.; Devic, C.; Bodgi, L.; Ferlazzo, M.; Peaucelle, C.; Bajard, M.; Giraud, J.Y.; Balosso, J.;

Herault, J.; et al. Influence of Linear Energy Transfer on the Nucleo-shuttling of the ATM Protein: A Novel
Biological Interpretation Relevant for Particles and Radiation. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103,
709–718. [CrossRef] [PubMed]

75. Petersen, L.F.; Klimowicz, A.C.; Otsuka, S.; Elegbede, A.A.; Petrillo, S.K.; Williamson, T.; Williamson, C.T.;
Konno, M.; Lees-Miller, S.P.; Hao, D.; et al. Loss of tumour-specific ATM protein expression is an independent
prognostic factor in early resected NSCLC. Oncotarget 2017, 8, 38326–38336. [CrossRef]

76. Belkacemi, Y.; Colson-Durand, L.; Granzotto, A.; Husheng, S.; To, N.H.; Majdoul, S.; Guet, S.; Herve, M.L.;
Fonteneau, G.; Diana, C.; et al. The Henri Mondor Procedure of Morbidity and Mortality Review Meetings:
Prospective Registration of Clinical, Dosimetric, and Individual Radiosensitivity Data of Patients With Severe
Radiation Toxicity. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, 629–636. [CrossRef] [PubMed]

http://dx.doi.org/10.1111/j.1471-4159.2006.04254.x
http://www.ncbi.nlm.nih.gov/pubmed/17241156
http://dx.doi.org/10.1016/j.molcel.2010.09.008
http://www.ncbi.nlm.nih.gov/pubmed/20932475
http://dx.doi.org/10.1016/j.cub.2009.10.039
http://dx.doi.org/10.1016/j.drudis.2011.02.001
http://dx.doi.org/10.1073/pnas.0830918100
http://dx.doi.org/10.1158/0008-5472.CAN-03-3207
http://www.ncbi.nlm.nih.gov/pubmed/15059890
http://dx.doi.org/10.1038/sj.onc.1209863
http://www.ncbi.nlm.nih.gov/pubmed/16909103
http://dx.doi.org/10.1038/ng1129
http://www.ncbi.nlm.nih.gov/pubmed/12640452
http://dx.doi.org/10.1016/j.dnarep.2004.03.025
http://www.ncbi.nlm.nih.gov/pubmed/15279811
http://dx.doi.org/10.1172/JCI37141
http://dx.doi.org/10.1016/j.radonc.2004.07.016
http://dx.doi.org/10.1080/09553000601170469
http://dx.doi.org/10.3109/09553002.2016.1135260
http://dx.doi.org/10.1126/science.1192912
http://dx.doi.org/10.1146/annurev-biochem-060614-034335
http://dx.doi.org/10.1016/j.ijrobp.2018.10.011
http://www.ncbi.nlm.nih.gov/pubmed/30342967
http://dx.doi.org/10.18632/oncotarget.16215
http://dx.doi.org/10.1016/j.ijrobp.2016.05.027
http://www.ncbi.nlm.nih.gov/pubmed/27681759


Cancers 2019, 11, 905 17 of 17

77. Pereira, S.; Bodgi, L.; Duclos, M.; Canet, A.; Ferlazzo, M.L.; Devic, C.; Granzotto, A.; Deneuve, S.; Vogin, G.;
Foray, N. Fast and binary assay for predicting radiosensitivity based on the nucleoshuttling of ATM protein:
Development, validation and performances. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 353–360. [CrossRef]
[PubMed]

78. Bodgi, L.; Foray, N. Effets biologiques des radiations ionisantes. Une théorie basée sur le transit cyto-nucléaire de la
protéine ATM. Applications à la radiothérapie; Editions Universitaires Européennes: Sarrebruck, Germany, 2016.

79. Bodgi, L.; Granzotto, A.; Devic, C.; Vogin, G.; Lesne, A.; Bottollier-Depois, J.F.; Victor, J.M.; Maalouf, M.;
Fares, G.; Foray, N. A single formula to describe radiation-induced protein relocalization: Towards a
mathematical definition of individual radiosensitivity. J. Theor. Biol. 2013, 333, 135–145. [CrossRef] [PubMed]

80. Ferlazzo, M.L.; Foray, N. Huntington Disease: A Disease of DNA Methylation or DNA Breaks? Am. J. Pathol.
2016, 186, 1750–1753. [CrossRef]

81. Lambin, P.; Marples, B.; Fertil, B.; Malaise, E.P.; Joiner, M.C. Hypersensitivity of a human tumour cell line to
very low radiation doses. Int. J. Radiat. Oncol. Biol. 1993, 63, 639–650. [CrossRef]

82. Marples, B.; Joiner, M.C. The response of Chinese hamster V79 cells to low radiation doses: Evidence of
enhanced sensitivity of the whole cell population. Radiat. Res. 1993, 133, 41–51. [CrossRef]

83. Joiner, M.C.; Marples, B.; Lambin, P.; Short, S.C.; Turesson, I. Low-dose hypersensitivity: Current status and
possible mechanisms. Int. J. Radiat. Oncol. Biol. Phys. 2001, 49, 379–389. [CrossRef]

84. Thomas, C.; Martin, J.; Devic, C.; Diserbo, M.; Thariat, J.; Foray, N. Impact of dose-rate on the low-dose
hyper-radiosensitivity and induced radioresistance (HRS/IRR) response. Int. J. Radiat. Oncol. Biol. 2013, 89,
813–822. [CrossRef]

85. Xue, L.; Yu, D.; Furusawa, Y.; Cao, J.; Okayasu, R.; Fan, S. ATM-dependent hyper-radiosensitivity in
mammalian cells irradiated by heavy ions. Int. J. Radiat. Oncol. Biol. Phys. 2009, 75, 235–243. [CrossRef]
[PubMed]

86. Joiner, M.C.; Lambin, P.; Marples, B. Adaptive response and induced resistance. Comptes Rendus de l’Académie
des Sciences Series III Sciences de la Vie 1999, 322, 167–175. [CrossRef]

87. Calabrese, E.J.; Bachmann, K.A.; Bailer, A.J.; Bolger, P.M.; Borak, J.; Cai, L.; Cedergreen, N.; Cherian, M.G.;
Chiueh, C.C.; Clarkson, T.W.; et al. Biological stress response terminology: Integrating the concepts of
adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol. Appl.
Pharmacol. 2007, 222, 122–128. [CrossRef] [PubMed]

88. Feinendegen, L. Quantification of adaptive protection following low-dose irradiation. Health Phys. 2016, 110,
276–280. [CrossRef] [PubMed]

89. Joiner, M.C.; Lambin, P.; Malaise, E.P.; Robson, T.; Arrand, J.E.; Skov, K.A.; Marples, B. Hypersensitivity
to very-low single radiation doses: Its relationship to the adaptive response and induced radioresistance.
Mutat. Res. 1996, 358, 171–183. [CrossRef]

90. Ryan, L.A.; Seymour, C.B.; Joiner, M.C.; Mothersill, C.E. Radiation-induced adaptive response is not seen in
cell lines showing a bystander effect but is seen in lines showing HRS/IRR response. Int. J. Radiat. Oncol. Biol.
2009, 85, 87–95. [CrossRef] [PubMed]

91. Marples, B.; Joiner, M.C. The elimination of low-dose hypersensitivity in Chinese hamster V79-379A cells by
pretreatment with X rays or hydrogen peroxide. Radiat. Res. 1995, 141, 160–169. [CrossRef]

92. Devic, C.; Ferlazzo, M.L.; Foray, N. Influence of Individual Radiosensitivity on the Adaptive Response
Phenomenon: Toward a Mechanistic Explanation Based on the Nucleo-Shuttling of ATM Protein. Dose
Response 2018, 16, 1–11. [CrossRef]

93. Weiss, J.F.; Landauer, M.R. History and development of radiation-protective agents. Int. J. Radiat. Oncol. Biol.
2009, 85, 539–573. [CrossRef]

94. Galiullina, L.F.; Aganova, O.V.; Latfullin, I.A.; Musabirova, G.S.; Aganov, A.V.; Klochkov, V.V. Interaction of
different statins with model membranes by NMR data. Biochim. Biophys. Acta Biomembr. 2017, 1859, 295–300.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ijrobp.2017.10.029
http://www.ncbi.nlm.nih.gov/pubmed/29353653
http://dx.doi.org/10.1016/j.jtbi.2013.05.020
http://www.ncbi.nlm.nih.gov/pubmed/23735818
http://dx.doi.org/10.1016/j.ajpath.2016.05.001
http://dx.doi.org/10.1080/09553009314450831
http://dx.doi.org/10.2307/3578255
http://dx.doi.org/10.1016/S0360-3016(00)01471-1
http://dx.doi.org/10.3109/09553002.2013.800248
http://dx.doi.org/10.1016/j.ijrobp.2009.04.088
http://www.ncbi.nlm.nih.gov/pubmed/19695441
http://dx.doi.org/10.1016/S0764-4469(99)80040-7
http://dx.doi.org/10.1016/j.taap.2007.02.015
http://www.ncbi.nlm.nih.gov/pubmed/17459441
http://dx.doi.org/10.1097/HP.0000000000000431
http://www.ncbi.nlm.nih.gov/pubmed/26808882
http://dx.doi.org/10.1016/S0027-5107(96)00118-2
http://dx.doi.org/10.1080/09553000802635062
http://www.ncbi.nlm.nih.gov/pubmed/19205987
http://dx.doi.org/10.2307/3579043
http://dx.doi.org/10.1177/1559325818789836
http://dx.doi.org/10.1080/09553000902985144
http://dx.doi.org/10.1016/j.bbamem.2016.12.006
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	A Survey of Human Radiosensitivity 
	The Different Clinical Features of Radiosensitivity 
	The Major Approaches to Predict Radiosensitivity and Their Limits 

	ATM, a Nucleocytoplasmic Protein Upstream of the Molecular Response to Radiation 
	ATM, a Nucleocytoplasmic Protein Early Activated after Irradiation 
	ATM and the Other Serine/Threonine Kinases Involved in the DNA Damage Recognition 
	A Crucial Observation Raising Basic Questions about the Role of ATM 

	The RIANS Model: A Solid Basis for Predicting Radiosensitivity 
	Major Principles of the RIANS Model 
	A Reliable Prediction of Individual Radiosensitivity 
	Three Groups of Human Radiosensitivity 
	Radiosensitivity Caused by Mutated Cytoplasmic Proteins 

	A Unified Model to Describe the Response to High- and Low-Dose of Radiation? 
	A New Biological Interpretation of the LQ Model 
	A Relevant Explanation for the Hyper-Radiosensitivity of the Low Dose Phenomenon? 
	A Relevant Explanation for the Adaptive Response? 
	Statins and Bisphosphonates: A New Approach of Radiological Protection? 

	Other Applications of the RIANS Model 
	Conclusions 
	References

