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Abstract

Background: Microbial communities in floral nectar have been shown to be characterized by low levels of species diversity,
yet little is known about among-plant population variation in microbial community composition.

Methodology/Principal Findings: We investigated the microbial community structure (yeasts and bacteria) in floral nectar
of ten fragmented populations of the bee-pollinated forest herb Pulmonaria officinalis. We also explored possible
relationships between plant population size and microbial diversity in nectar, and related microbial community composition
to the distance separating plant populations. Culturable bacteria and yeasts occurring in the floral nectar of a total of 100
plant individuals were isolated and identified by partially sequencing the 16S rRNA gene and D1/D2 domains of the 26S
rRNA gene, respectively. A total of 9 and 11 yeast and 28 and 39 bacterial OTUs was found, taking into account a 3%
(OTUg,03) and 1% sequence dissimilarity cut-off (OTUg o). OTU richness at the plant population level (i.e. the number of OTUs
per population) was low for yeasts (mean: 1.7, range: 0—4 OTUsq 91/0.03 Per population), whereas on average 6.9 (range: 2-13)
OTUsg o3 and 7.9 (range 2-16) OTUsq o per population were found for bacteria. Both for yeasts and bacteria, OTU richness
was not significantly related to plant population size. Similarity in community composition among populations was low
(average Jaccard index: 0.14), and did not decline with increasing distance between populations.

Conclusions/Significance: We found low similarity in microbial community structure among populations, suggesting that
the assembly of nectar microbiota is to a large extent context-dependent. Although the precise factors that affect variation
in microbial community structure in floral nectar require further study, our results indicate that both local and regional
processes may contribute to among-population variation in microbial community structure in nectar.
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Introduction are found within the nectar of a single nectary [8,12,13],
suggesting that important filtering mechanisms (e.g. priority effects
and nectar chemistry) determine community composition of
nectar-inhabiting microorganisms in floral nectar [11,14,15].
Bacteria, on the other hand, have been less frequently studied,
and there are only a few studies that have characterized bacterial
communities in floral nectar [16,17]. A recent study, investigating
phylogenetic diversity of culturable bacteria in 27 South African
plant species, revealed that bacteria are common in floral nectar,
but that their phylogenetic diversity is rather restricted, with most
isolates belonging to three major bacterial phyla, including
Actinobacteria, Firmicutes, and Proteobacteria (Alphaproteobacteria, Beta-
proteobacteria and Gammaproteobacteria) [18]. Similar to yeast com-
munities, species richness was also found to be low (18 operational

X - < taxonomic units (OTUs) at a 16S rRNA gene sequence
plants often harbors highly specialized yeast communities. In most dissimilarity cut-off of 3%) (but see [19]).

cases, species richness tends to be low and often only a few species

Floral nectar is a sweet, aqueous secretion containing sugars and
amino acids that is offered by flowering plants to attract
pollinators, mostly insects [1,2]. Traditionally it has been assumed
that nectar properties represent intrinsic plant features that are
stable in time. However, recent studies have indicated that nectar
is often contaminated with microorganisms, most often yeasts and
bacteria, which may change the chemistry and attractiveness of
nectar, potentially affecting pollination success and plant fitness
[3,4]. Although it has already been known since the early 1920°s
that yeasts are common inhabitants of floral nectars [5,6], only
recently the microbial community structure in nectar and its
ecological impact have been explored in more detail [7-12]. These
studies have highlighted that the floral nectar of animal-pollinated
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Given the mounting number of studies that have investigated
microbial community composition in floral nectar [7,9,10,12,18—
22], surprisingly little is known about among-plant population
variation in community composition of these nectar-inhabiting
microorganisms. Although precipitation and microorganisms in
the air can be considered as constant sources of microorganisms in
flowers, yeasts and bacteria are most likely transported to flowers
by pollinating insects or small birds [9,14,15]. It is therefore
reasonable to assume that limitations in their dispersal capacity
may lead to significant spatial turnover of microbial community
composition in floral nectar, especially when plant populations
occur in highly fragmented habitats, surrounded by an inhospi-
table urban or agricultural landscape matrix. Recent research
investigating community organization of nectar-inhabiting micro-
organisms in the hummingbird-pollinated shrub Aimulus aurantia-
cus has indeed shown significant turnover of microbial community
composition, even at a very small scale [14]. However, there is
currently no information available regarding differences in
microbial community structure among plant populations that
occur in discrete habitat fragments within a hostile matrix.

In this paper, we investigated the community structure of
nectar-inhabiting microorganisms in ten fragmented populations
of the bee-pollinated understory forest herb Pulmonaria officinalis
(CGommon lungwort) in northern Belgium. Previous genetic marker
based research on this plant species in the same area has shown
strong genetic differentiation and significant isolation-by-distance
[23]. Because gene flow in this species occurs mainly through
pollen [24], these results indicate that pollen dispersal is mainly
restricted to neighboring populations. Assuming that pollinators
are the main dispersal agents of nectar-inhabiting microorganisms
[7] and given that local populations occur in forest fragments with
pronounced differences in local environmental conditions, it can
be expected that community composition of nectar-inhabiting
microorganisms is more dependent on population characteristics,
such as nectar quality, population size or local plant community
composition, than on geographic isolation. As a result, similarity in
community composition between populations is expected to be
low. To test these general predictions, the presence of culturable
yeasts and bacteria was assessed for each population and microbial
species richness at the plant population level was related to the size
of the plant population. Finally, similarity in microbial community
composition between populations was assessed and related to the
distance between plant populations.

Materials and Methods

Ethics Statement
All necessary permits were obtained for the described field
studies.

Study Species

Pulmonaria officinalis L. is a perennial forest herb that grows in
species-rich mixed and open forests, characterized by relatively
humid, wet and loamy soils. Its distribution range is located in
Mid-East Europe, but fragmented populations reach till Britain
and Denmark. The species is wintergreen and flowers early in the
growth season, from March until the end of April. Flowers exhibit
reciprocal herkogamy and several ancillary polymorphisms [25].
During anthests, the colour of the corolla gradually changes from
red through purple to violet and finally blue, offering a visual sign
to pollinators which flowers are most rich in nectar [26]. Nectar is
secreted at the bottom of the corolla tube, where it accumulates.
Within the study area (northern Belgium, Flanders, Fig. 1), flowers
are visited by generalist insect species, including Bombus terrestris, B.
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pascuorum, B. pratorum and Bombylus major, but only the long-
tongued Anthophora plumipes was shown to serve as an efficient
pollinator [25].

Study Region and Nectar Sampling

This study was conducted in the region around Brakel, where
several P. officinalis populations are known to occur in small, highly
fragmented forest patches [23,27]. Within this region, ten
populations of P. officinalis were randomly selected (Fig. 1). The
distances separating the studied populations varied between 0.74
and 16.73 km (mean: 7.30 km). All populations were located in
small forest fragments embedded within a hostile agricultural and
urban landscape matrix. At the beginning of April 2012, the
number of flowering individuals was counted for each population.
Simultaneously, in each population ten individuals were randomly
selected for nectar sampling, and from each individual five flowers
were harvested, yielding a total of 50 flowers per population.

Within 24 h after harvesting, nectar was extracted using sterile
5-pl microcapillaries. Nectar of flowers from the same plant was
pooled and diluted in 150 pl of sterile distilled HoO [18], yielding
a total of 100 nectar samples. Since floral nectar usually contains
high concentrations of sucrose and other sugars and can also
contain high levels of inorganic ions, nectar dilutions (even in
distilled HyO) are not hypotonic and both bacteria and yeasts have
been shown to remain viable in nectar dilutions in distilled HoO
for several months [18]. Subsequently, fifty microliters was plated
on both trypticase soy agar (T'SA; Oxoid) and yeast extract
peptone dextrose agar (YPDA; Difco), representing a general
growth medium for bacteria and yeasts, respectively. These media
have been used successfully for isolating microorganisms from
nectar previously [10-12,18]. Plates were incubated at 25°C for 10
days. For each plate one colony was picked for each morpholog-
ically distinct colony type, and further subcultivated to obtain pure
cultures [18]. In addition, a preliminary screen of several
morphologically identical colonies from the same plate had
revealed that they all belonged to the same species, illustrating
the suitability of the used approach. The obtained bacterial and
yeast isolates were stored at —80°C in trypticase soy broth (Oxoid)
and yeast extract peptone dextrose broth (Difco) containing 37.5%
glycerol, respectively.

DNA Extraction, PCR Amplification and Sequencing

For each isolate, genomic DNA was extracted from five-day old
cultures grown on either TSA (bacteria) or YPDA (yeasts) using
the phenol-chloroform extraction method [28]. Samples were
amplified in a reaction volume of 20 pl, containing 312.5 uM of
cach dNTP, 1.0 uM of each primer, 1.25 units TaKaRa ExTaq
polymerase, 1 x Ex Taq Buffer (Clontech Laboratories, Palo Alto,
CA, USA), and 5 ng genomic DNA (as measured by a Nanodrop
spectrophotometer). DNA amplification of the D1/D2 domain of
the large subunit rRNA and 16S rRNA gene was performed using
the primer sets NL1-NL4 [29]) and 27F-1492R [30] for yeasts and
bacteria, respectively. When amplification failed using the latter
pair, primers 1387R [31] or 1541R [32] were used as reverse
primer. Before amplification, DNA samples were denatured at
94°C for 2 min. Next, 30 cycles were run consisting of 45 s at
94°C, 45 s at 55°C (for NL1-NL4) or 59°C (for 27F-1492R/
1387R/1541R), and 45 s at 72°C, with a final extension at 72°C.
for 10 min. Sequencing was performed using the reverse primer
used for DNA amplification.

Data Analysis

The obtained sequences were compared with reference
sequences using BLAST software [33] and the Ribosomal
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Figure 1. Geographic distribution of ten populations of the bee-pollinated forest herb Pu/monaria officinalis used in this study
(indicated in red) among several other P. pulmonaria populations in the same study area (northern Belgium).

doi:10.1371/journal.pone.0056917.g001

Database Project (RDP) website [34] (http://rdp.cme.msu.edu/).
Isolates were assigned to the highest taxonomic rank possible
(generally the species level) using the RDP classifier, BLAST
analysis (uncultured/environmental sample sequences excluded),
and based on the nearest neighbors in a phylogenetic tree
containing GenBank sequences from several type strains showing
the highest sequence homology to our sequences. To this end,
both our sequences and the reference sequences were aligned with
Clustal W implemented in MEGAS [35], followed by trimming to
consensus start and end motifs. Phylogenetic trees were calculated
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by the neighbour-joining method [36] implemented in Clustal X
and displayed by TreeView version 1.6.6 [37]. Support of internal
nodes was assessed using bootstrap analysis performed with 1000
replications. For ease of visualization, highly similar sequences
(>99% sequence identity) were restricted to one representative
sequence per OTU. In all cases, presumptive identifications based
on top BLAST hits were confirmed by the nearest neighbor in the
phylogenetic tree containing type strain sequences.

For subsequent analyses, bacterial and yeast OTUs were
assigned using the Mothur v.1.23.1 software program [38].
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Figure 2. Distribution of culturable nectar yeasts and bacteria in floral nectar of ten plant individuals from ten Pu/monaria officinalis

populations.
doi:10.1371/journal.pone.0056917.g002

DNA dissimilarity cut-offs of 1% and 3% were used in these
analyses. For each OTU, the capability to grow in nectar was
verified for a few isolates according [7,18,39]. All isolates tested
were found to tolerate sucrose concentrations of at least 50% (w/
v). In addition, all examined bacterial isolates showed catalase
activity, suggesting that the detected OTUs are physiologically
capable to overcome the presence of toxic hydrogen peroxide in
nectar. Representative sequences for each OTU were deposited in
GenBank (accession numbers KC433478-K(C433527).

In order to assess the overall richness of microbial OTUs in the
whole study region, sample-based rarefaction methods were
applied to species presence-absence [40,41]. Since the nectar of
multiple flowers from a single plant was combined, individual
plants rather than nectar drops were considered as sample units
[12]. In this analysis, OTU occurrence data from all individuals
were analyzed together, irrespective of the population of origin,
yielding a rarefaction curve that assesses overall species richness of
nectar yeasts and bacteria at the landscape scale. Rarefaction
curves were computed using EstimateS version 8.2 [40], with 50
randomizations and sampling without replacement. Analyses were
performed for bacteria and yeasts separately. Additionally, as our
taxa richness data are based on incidence, the expected yeast and
bacterial OTU richness in nectar was also determined using the
nonparametric estimator Chao2 [42]. Rarefaction generates the
expected number of species (OTUs) in a small collection of =
samples drawn at random from the large pool of NV samples [43].
In contrast, richness estimators predict the total richness of a
community from samples [40].

For each population, OTU richness of bacteria and yeasts was
determined by counting the total number of different bacterial and
yeast OTUs. The observed richness was related to the size of the
population using the Pearson product-moment correlation coeffi-
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cient. Population size was log transformed prior to analysis. To
visualize differences in microbial community structure among
populations, we applied non-metric multidimensional scaling
(NMDS) ordination techniques using the program PC-ORD
version 6 [44]. As distance measure, we used the Bray-Curtis
coefficient. This coeflicient is also known as the Serensen or
Czekanowski coefficient and is considered as one of the most
robust measures for this purpose [45]. In addition, pairwise
similarity matrices were created to determine microbial commu-
nity similarity between populations. The Jaccard index was used to
describe the similarity in composition of the bacterial and yeast
nectar communities [46]. For each population, the nearest
distance (bird’s eye view) to any other population was also
determined. A Mantel test was used to test the hypothesis that
community similarity was related to the distance separating
populations. Statistical significance was determined using 9999
randomizations in PopTools [47].

Results

Bacterial and yeast isolates were obtained from both TSA and
YPDA. Following isolation and purification, a total of 37 yeast and
152 bacterial isolates was obtained from nectar samples from 24
and 59 P. officinalis plants respectively, with 18 plants containing
both yeasts and bacteria in their nectar (Fig. 2). For 35 out of the
100 nectar samples, no microbial growth was observed. Yeasts
were recovered from nine out of ten populations, whereas bacteria
were found in all sampled populations (Fig. 2).

Using a 3% sequence dissimilarity cut-off value, nine yeast
OTUs (OTUs g3) were identified, comprising both ascomycetous
and basidiomycetous yeasts (T'able 1). Two additional OTUs were
identified when the dissimilarity cut-off was lowered to 1%
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Figure 3. Neighbour-joining phylogram showing phylogenetic
relationships between different large subunit rRNA gene
sequences from Pulmonaria officinalis nectar-inhabiting yeasts
and reference sequences of the most related type strains
found in GenBank. Bootstrap percentages based on 1000 replications
are shown at the major nodes.

doi:10.1371/journal.pone.0056917.g003

(OTUsq 1), corresponding to 11 different yeast species (Table 1).
These included for example Metschnikowia reukaufii, Candida bombe,
Sporobolomyces  roseus and several Cryptococcus species (Fig. 3).
Rarefaction curves showed that the number of OTUs was
relatively close to saturation (Fig. 4a). However, the nonparametric
richness estimator Chao2 gradually shifted from the observed
species richness, indicating that our sampling only detected a part
of the total estimated yeast species richness. Most likely, the erratic
behavior of the Chao2 estimator was caused by the overall low
yeast abundance. M. reukaufii and C. bombi were recorded as the
most common yeast species, occurring in five and three
populations, respectively. All other yeast OTUs were only
observed in a single population.

Using a 3% cut-off value, a total of 28 bacterial OTUs
(OTUsgg3) was detected (Table 2). By lowering the dissimilarity
cut-off to 1% 11 additional OTUs were found, resulting in a total
of 39 OTUs, (Table 2). As for the yeasts, the rarefaction curves
were relatively close to reach a plateau. However, in contrast with
the yeasts, the Chao 2 estimator gave a predicted OTU richness
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which was close to the number of observed OTUs, resulting in an
estimated richness of the nectar bacterial community of 39
OTUgps and 54 OTUg, (Fig. 4b). The recovered bacteria
belonged to three major phyla, including Actinobacteria (18
OTUsggs; 25 OTUsgy), Firmicutes (4 OTUsggs; 7 OTUsq 1)
and Proteobacteria (Alpha and Gamma subdivisions; 6 OTUsg 35 7
OTUsgg) (Table 2). The most common bacteria were species
from the genera Rhodococcus, Microbacterium and Methylobacterium
which were retrieved in five or more populations (Table 2). Other
OTUs that were identified (>97.5% sequence homology with
GenBank sequence) included members from the genera Arthro-
bacter, Bacillus, Brachybacterium, Brevibacterium, Devosia, Erwinia,
Enhydrobacter, Flexivirga, Gordomia, Janibacter, Luteipulveratus, Micrococ-
cus, Moraxella, Nocardioides, Okibactertum, Plantibacter, Ponticoccus,
Pseudomonas, Rhodanobacter, Saxetbacter, Staphylococcus and Streptomyces
(Table 2; Fig. 5). Although the presence of Micrococcus and
Staphylococcus may suggest possible contamination as these bacteria
may also occur on the skin of humans and animals, we clearly
showed that the detected species were able to resist high sugar
concentrations typically experienced in nectar. In addition,
members of Staphylococcus and the Micrococcaceae family have been
1solated from other nectar sources as well [18,19]. Therefore, we
can reasonably assume that all bacteria obtained in our study can
be considered as true nectar-inhabiting microbes.

The sampled P. officinalis populations differed in size between 98
and >5000 flowering individuals. The number of yeast OTUs
observed per population varied between 0 and 4 (mean: 1.7)
(irrespective of the cut-off value used), and was not significantly
related to population size (r=—0.18, P>0.05) (Fig. 5). The
number of bacterial OTUs observed per population varied
between 2 and 13 OTUsg o3 (mean: 6.9) and 2 and 16 OTUsg
(mean: 7.9), and was also not significantly related to the size of the
plant population (r=—0.03, P>0.05) (Fig. 6). Although the
NMDS analysis showed that some geographic clustering in
microbial community (taking into account both bacteria and
yeasts) was present (Fig. 7), the overall similarity in community
composition was low (average Jaccard index: 0.14). Populations 7,
8 and 9 and populations 2, 4 and 5 formed distinct clusters on the
NMDS graph which to some extent coincided with their
geographic location in the landscape (Fig. 1). However, there
was no significant relationship between community similarity and
geographic distance (rny = —0.22, P=10.09).

Discussion

Microorganisms

In this study a wide variety of nectar-inhabiting microorganisms
was found in the floral nectar of the early-flowering forest herb P.
officinalis. Using a 1% dissimilarity cut-off, a total of eleven
different yeast species was identified, many of which have been
recorded in nectar before, including for example M. reukaufui, C.
bombr, C. victoriae, C. macerans, and S. roseus [8,12]. Although the
number of species retrieved seems not to be unusual compared to
results reported in similar studies [8,12], it is surprising to see that
within a single plant species almost as much yeast species were
found as were reported in previously published datasets, which
mostly covered a large number of plant species. For example,
studying 128 nectar drops from 24 plant species in Spain yielded
216 yeast isolates and a total of 12 different yeast species [12].
Similarly, 11 different yeast species in 42 isolates were found in a
total of 11 tropical plant species from the Yucatan Peninsula,
Mexico [8].

There is less information about the occurrence and distribution
of bacterial species within the floral nectar of individual plants and
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Figure 4. Rarefaction curves (bold, solid line) and the
nonparametric estimator Chao2 (thin solid line) of microbial
OTU richness found in the floral nectar of 100 sampled
individuals of Pulmonaria officinalis. Dotted lines represent 95%
confidence intervals. Rarefaction curves are given for a) yeast and b)
bacterial OTUs (based on a DNA dissimilarity cut-off value of 1%).
doi:10.1371/journal.pone.0056917.g004

species. Recently, 53 bacterial isolates were recovered from 38
nectar samples (53.5% of all investigated nectar drops) from 27
plant species belonging to 13 plant families occurring in South
Africa [18]. This yielded a total of 18 and 24 bacterial OTUs at
the 3% and 1% 16S rRNA gene dissimilarity cut-off, respectively.
In P. officinalis, in 59% of the sampled plants bacterial OTUs were
found. However, the number of bacterial OTUs was about twice
as large as that found in [18], ie. 28 and 39 at 3% and 1%
dissimilarity cut-off, respectively. Similar to the results of [18], all
OTUs recovered belonged to only three bacterial phyla (Actino-
bacteria, and to a lesser extent to Firmicutes and Proteobacteria),
confirming previous findings that microbial communities in nectar
are characterized by low phylogenetic diversity. Using both
catalase activity and sucrose tolerance tests we also showed that
all recovered species can hydrolyze hydrogen peroxide and display
high osmotolerance, and thus are able to overcome some of the
main stressors found in floral nectar. Interestingly, whereas
Proteobacteria were the dominant bacteria in South-African plants,
about 50% of the retrieved OTUs belonged to Actinobacteria in P.
officinalis. The most prevalent genera of this phylum found in this
study included Microbacterium, Rhodococcus and Streptomyces. Species
belonging to these genera are known to thrive in a broad range of
environments, including soils and many plant-associated environ-
ments such as roots and leaves. However, as far as we know, these
bacteria have not been associated with nectar so far.

Species Richness

In 35 individuals no culturable microorganisms were found,
which may suggest that these plants were either not visited by
mnsects [7], that no transfer of microorganisms that can survive and

PLOS ONE | www.plosone.org
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develop in nectar had occurred during flower visits [15], or that
the present microbiota represented only non-culturable microor-
ganisms. The latter, for example, could be assessed using culture-
independent methods such as 454 pyrosequencing. These methods
generally have a higher resolution compared to culture-based
approaches, which are restricted to the isolation of culturable
microorganisms. So far, however, no comparison has been made
between conventional methods and culture-independent methods
for studying nectar microbiota. A major drawback of culture-
independent methods, on the other hand, is the fact that no
isolates are available to investigate or confirm specific features that
allow these microorganisms to survive and grow in nectar
[7,18,38]. We further found that most plants contained only
nectar bacteria (41%), while fewer plants were found containing
both bacteria and yeast (18%) and only a minority containing only
yeasts (6%). These results indicate that at least in this plant species
bacteria may be much more widespread in nectar than yeast
species and contrast with findings of Alvarez-Pérez and Herrera
[48], who recently showed that bacteria and yeasts generally
coexisted in floral nectar of a selection of wild Mediterranean
plants.

The number of yeast species per plant population was low (on
average 1.7 OTUs per population), indicating that only a few yeast
species dominated in a population. Low diversity of yeast species is
in line with previous studies investigating yeast diversity in
individual floral nectar samples [8,10,12]. For example, in two
populations of the winter-blooming herb Helleborus foetidus the
nectar was dominated by a single yeast species (M. reukauffi),
although several different yeast species were observed on the
bodies of visiting insects [15]. The dominance of a particular yeast
species in the floral nectar of plant species has been explained by
filtering mechanisms, such as priority effects, which predict that
early-arriving species have a competitive advantage toward late-
arriving species. Using laboratory experiments, priority effects
appeared to be important in structuring microbial communities in
floral nectar [11]. However, results depended strongly on the
phylogenetic relationships of the yeast strains involved. Priority
effects were particularly strong between closely related species,
whereas effects were less pronounced for phylogenetically distantly
related species. Overall, these results suggest that yeast species can
outcompete other species, and that the first species to colonize and
spread within a plant population can become the dominant yeast
in the population. Nevertheless, in contrast to Herrera et al. [15],
who found yeasts in 72.5% of the investigated /. foetidus nectar
samples, in our study yeasts were found in less than 25% of the P.
officinalis individuals tested, suggesting that other factors such as
chemical nectar composition may also play an important role in
the distribution of nectar yeasts in P. officinalis. Clearly, more
research is needed to investigate whether priority effects really are
the dominant factor determining yeast community organization in
this species, or whether the occurrence of yeast species is affected
by the presence of bacteria, and vice versa [48].

Community Turnover

We found low community similarity and no significant turnover
in microbial community composition among populations. These
results may either suggest that little exchange of microorganisms
between populations occurred or that nectar conditions differed
between populations thereby selecting for different microbial
communities. These results are in line with genetic work that has
shown a strong genetic differentiation between P. officinalis
populations [23]. Alternatively, because the local community of
co-flowering plant species also differed substantially between
populations, this may additionally have affected the species

March 2013 | Volume 8 | Issue 3 | 56917
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Figure 5. Neighbour-joining phylogram showing phylogenetic relationships between 16S rRNA gene sequences from Pulmonaria
officinalis nectar-inhabiting bacteria and reference sequences of the most related type strains found in GenBank. For ease of
visualization, the dataset was limited to one representative sequence (see Table 1 and 2) for each operational taxonomic unit (OTU) found in this
study at a DNA dissimilarity cut-off value of 1%. Bootstrap percentages based on 1000 replications are shown at the major nodes.
doi:10.1371/journal.pone.0056917.g005
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Figure 6. Relationship between population size (number of
flowering ramets) and the number of bacterial and yeast OTUs
(based on a DNA dissimilarity cut-off value of 1%) in the floral
nectar of Pulmonaria officinalis.
doi:10.1371/journal.pone.0056917.g006

composition of microorganisms potentially colonizing P. officinalis
flowers. Since nectar is considered to be initially sterile [7],
pollinators are believed to be the main vectors transferring micro-
organisms from one plant to the other, and between populations
[14,15].

Given that the most common pollinators of P. officinalis in the
study region are generalist pollinators [27] that visit several co-
flowering species, it is reasonable to expect that microbial
community composition in the floral nectar of P. officinalis

Variation in Nectar Microbial Communities

populations reflects to some extent local plant species composition.
Although it is likely that pollinators (most often bumblebees and
bees) can cross smaller distances across agricultural landscapes, it is
unlikely they fly across very large distances further contributing to
the low similarity in species composition. Recent findings of Belisle
et al. [14] have shown that non-random small-scale foraging of
pollinators resulted in non-random distributions of nectar-inhab-
iting yeasts in the hummingbird-pollinated Mimulus aurantiacus, but
it is unlikely that this foraging behavior contributes substantially to
large-scale patterns of community turnover. The observed strong
genetic differentiation between P. officinalis populations and
significant isolation-by-distance [23] support this hypothesis.

Conclusion

Nectar of the bee-pollinated forest herb P. officinalis was
commonly colonized by microorganisms, both bacteria and to a
lesser extent yeasts. However, large variation in community
structure was observed between populations. The inability of
pollinators to cross larger distances across hostile agricultural and
urban landscapes has probably contributed to the observed low
similarity in community composition. However, the importance of
variation in nectar properties between populations or differences
in local species composition of co-flowering plants as drivers of
microbial community composition cannot be ruled out. Especially
in plant species that are pollinated by generalist pollinators that
visit several co-flowering species at the same time, local microbial
community structure cannot be studied independently from the
local plant community. These findings thus suggest that the
assembly of the nectar microbiota is context-dependent. More
research, both experimental and observational studies, is therefore
needed to elucidate the ecological mechanisms explaining
variation in microbial community structure within and among
populations and to disentangle the importance of local and
regional factors.
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Figure 7. NMDS ordination of the total microbial community composition (bacteria and yeasts) in the floral nectar of Pulmonaria
officinalis obtained from sampling flowers from ten individuals in ten populations. Numbers refer to the populations depicted in Fig. 1.

doi:10.1371/journal.pone.0056917.g007
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