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The Gait Deviation Index (GDI) is a multivariate measure of overall gait pathology
based on 15 gait features derived from three-dimensional (3D) kinematic data. GDI
aims at providing a comprehensive, easy to interpret, and clinically meaningful metric
of overall gait function. It has been used as an outcome measure to study gait
in several conditions: cerebral palsy (CP), post-stroke hemiparetic gait, Duchenne
muscular dystrophy, and Parkinson’s disease, among others. Nevertheless, its use in
population with Spinal Cord Injury (SCI) has not been studied yet. The aim of the present
study was to investigate the applicability of the GDI to SCI through the assessment
of the relationship of the GDI with the Walking Index for Spinal Cord Injury (WISCI) II.
3D gait kinematics of 34 patients with incomplete SCI (iSCI) was obtained. Besides,
3D gait kinematics of a sample of 50 healthy volunteers (HV) was also gathered with
Codamotion motion capture system. A total of 302 (iSCI) and 446 (HV) strides were
collected. GDI was calculated for each stride and grouped for each WISCI II level.
HV data were analyzed as an additional set. Normal distribution for each group was
assessed with Kolmogorov-Smirnov tests. Afterward, ANOVA tests were performed
between each pair of WISCI II levels to identify differences among groups (p < 0.05).
The results showed that the GDI was normally distributed across all WISCI II levels in
both iSCI and HV groups. Furthermore, our results showed an increasing relationship
between the GDI values and WISCI II levels in subjects with iSCI, but only discriminative
in WISCI II levels 13, 19, and 20. The index successfully distinguished HV group from
all the individuals with iSCI. Findings of this study indicated that the GDI is not an
appropriate multivariate walking metric to represent the deviation of gait pattern in adult
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population with iSCI from a normal gait profile when it is compared with the levels of
walking impairment described by the WISCI II. Future work should aim at defining and
validating an overall gait index derived from 3D kinematic gait variables appropriate for
SCI, additionally taking into account other walking ability outcome measures.

Keywords: spinal cord injury (SCI), gait impairment, Gait Deviation Index (GDI), three-dimensional (3D) kinematic
gait data, walking index for spinal cord injury (WISCI)

INTRODUCTION

The incidence of spinal cord injury (SCI) worldwide is between
250,000 and 500,000 individuals each year (Quadri et al., 2020). In
Western European countries traumatic SCI incidence is of 16 to
19.4 new cases per million inhabitants per year (Scivoletto et al.,
2017). Walking is usually affected in patients with SCI according
to the lesion level and the resulting different levels of muscle
paralysis, sensory impairment, spasticity, and the lack of trunk
control (Bani et al., 2013). In the field of SCI research, there is an
emphasis on the ability to ambulate as a functional outcome and
as an indicator of quality of life (Jackson et al., 2008), particularly
in individuals with incomplete SCI (iSCI) (Ditunno et al., 2008).

Walking function recovery is tackled through several
therapeutic interventions such as surgery, physiotherapy,
medications, orthotics, and robotics in which precise evaluation
of walking function is mandatory (Scivoletto et al., 2011).
Periodic gait measurements can be used to evaluate the response
to these therapeutical approaches (McGinley et al., 2009),
to assess changes in walking over time, and to discriminate
between normal and altered gait (Baker, 2006). In this regard,
three-dimensional (3D) kinematic gait analysis can provide
useful information to guide rehabilitation interventions to
improve walking function of people with traumatic and non-
traumatic iSCI (Murphy et al., 2019). Nevertheless, isolated
kinematic parameters do not provide a full picture of gait pattern
impairment (Guzik and Drużbicki, 2020), and on the other hand,
it may be difficult to describe objectively the heterogeneity of
the different gait abnormalities present in iSCI and to quantify
the degree by which they deviate from normal gait patterns. The
Gait Deviation Index (GDI) is a multivariate measure of overall
gait pathology based on 15 gait features built upon 3D kinematic
data originally designed from a sample of children with cerebral
palsy (CP) (Schwartz and Rozumalski, 2008). The GDI is a
dimensionless parameter represented as a single score for an
individual gait deviation from a normative reference group,
which aims at providing a comprehensive, easy to interpret, and
clinically meaningful metric of overall gait function.

The usefulness of GDI has been assessed through correlations
with clinically-validated gait scales. Concurrent and face validity
of GDI was firstly carried out by comparison with the Gillette
Functional Assessment Questionnaire walking scale (FAQ)
and topographic classifications of CP in children population
(Schwartz and Rozumalski, 2008). Later, the relationship between
the GDI, Gross Motor Function Measure (GMFM), and
Gross Motor Function Classification System (GMFCS) in a
representative sample of ambulatory children with CP provided
greater validity to the GDI (Molloy et al., 2010). The ability

of the GDI to distinguish between GMFCS levels in children
with CP in the study developed by (Massaad et al., 2014)
concurred with those found by Molloy et al. (2010) and by
Schwartz and Rozumalski (2008) for the FAQ. Furthermore, face
validity of the GDI in adults with CP was demonstrated by
comparing with GMFCS (Maanum et al., 2012), which showed
similar distributional properties as those reported in children
with CP. The GDI was able to distinguish different levels of
gait impairment in adults (Maanum et al., 2012) and children
(Schwartz and Rozumalski, 2008; Molloy et al., 2010; Massaad
et al., 2014) with CP. However, no correlations have been
published between the GDI and other valid walking ability
outcome measures commonly used in clinical settings to assess
gait variability in adult population with SCI.

The Walking Index for Spinal Cord Injury (WISCI) II
is a walking scale specifically developed for iSCI population
composed of 21 levels (Dittuno et al., 2001), in which levels
are ordered by degree of an individual’s walking impairment,
from most impaired to least impaired (Ditunno et al., 2007),
integrating a hierarchical order for the use of ambulatory assistive
devices (AADs), orthoses, and the physical assistance needed
to complete a 10 m walking distance. WISCI II levels differs
from self-selected (SS) WISCI, defined as patient’s preferential
condition to walk in the community or the household, and
maximum WISCI, which is related to the highest level at which
a person can safely walk 10 m (Burns et al., 2011). The WISCI
II is a valid (Morganti et al., 2005; Ditunno et al., 2007), reliable
(Marino et al., 2010; Scivoletto et al., 2014), and responsive (van
Hedel et al., 2006) outcome measure to assess walking ability in
people with SCI. In our best knowledge, there is no scientific
literature which have studied the relationship between the GDI
and the WISCI II in adult population with SCI.

The GDI has been used as an outcome measure to study gait
in several conditions such as: CP (Schwartz and Rozumalski,
2008; Molloy et al., 2010; Cimolin et al., 2011; Sagawa et al.,
2013; Massaad et al., 2014; Wilson et al., 2015; Malt et al., 2016;
Ito et al., 2019; Rasmussen et al., 2019), post-stroke hemiparetic
gait (Correa et al., 2017; Guzik and Drużbicki, 2020), Duchenne
muscular dystrophy (Sienko Thomas et al., 2010), Parkinson’s
disease (Galli et al., 2012; Speciali et al., 2013), arthritis (Broström
et al., 2013; Esbjörnsson et al., 2014; Rosenlund et al., 2016;
Kobsar et al., 2019; Bazarnik-Mucha et al., 2020), lower limb
amputations (Eshraghi et al., 2014; Kark et al., 2016), degenerative
spinal pathologies (Mar et al., 2019; Trivedi et al., 2021; Zhou
et al., 2021), diverse genetic (Ito et al., 2020; Mindler et al., 2020)
and congenital disorders (Eriksson et al., 2015; Garman et al.,
2019), and even the effect of the COVID-19 on physical function
(Ito et al., 2021), among others. A recently published article by
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Hwang et al. (2021) used the GDI as a way to quantify and
characterize gait patterns in ambulatory children and adolescents
with transverse myelitis, whose gait showed moderate kinematic
deviations from normal gait pattern. Nevertheless, to date, no
work has been published regarding the validity of the GDI in
population with SCI.

Joint kinematics and spatiotemporal gait parameters differ
between adult and child population due to the maturation and
aging processes of the gait, associated to the neuromuscular
development and the changes in strength that occur during
adolescence and adulthood (Cupp et al., 1999; Ganley and
Powers, 2005). In this regard, it is necessary to consider the
functional differences of the gait pattern in relation to the mature
stage in people with SCI.

The aim of the present study was to evaluate the relationship
between the GDI and WISCI II levels in adult population with
iSCI. Our hypothesis was that the most altered gait kinematics of
people with iSCI, reflected by GDI values below 100, would be
associated with lower scores of the WISCI II.

MATERIALS AND METHODS

Study Design
An observational retrospective study was conducted on a
database of 3D kinematic gait analysis of adult population
composed by patients with iSCI and healthy volunteers (HV)
gathered between August 2019 and July 2021 at the Biomechanics
and Technical Aids Unit of the National Hospital for Paraplegics
of Toledo (Spain). All the individuals recruited for the study
signed informed consent to participate in the study. According to
the Declaration of Helsinki, all participants were informed about
the purpose and course of the study, and about their rights to
withdraw from the study. The study protocol was reviewed and
approved by the Local Ethics Committee of University Hospital
Complex of Toledo, Spain.

Participants
Patients included in the study met the following inclusion criteria:
(i) subjects aged 16 years or over; (ii) having suffered a SCI
regardless of the etiology (traumatic or non-traumatic), time
since injury onset, and neurological level of injury (NLI); (iii)
classified as C, D, or E by the American Spinal Injury Association
(ASIA) Impairment Scale (AIS) (Kirshblum et al., 2011); (iv)
with the ability of walking 10 m independently with any type
of external assistance required (orthoses, crutches or canes);
(v) with SS WISCI II levels collected; and (vi) capacity to be
informed and give consent to participate in the study. Patients
from the database were excluded of the study if they followed one
of the different conditions: (i) having suffered from rheumatic,
orthopedic, or other neurological disorders outside of SCI that
affected gait; (ii) need for support in parallel bars, walker and/or
physical assistance required of one or two people to walk 10 m
safely; (iii) psychiatric or cognitive conditions that may have
interfered with the performance of the gait analysis.

Based on the medical history reported by HV in the
recruitment process, they were excluded if they experienced

FIGURE 1 | Placement of the 22 active markers of Codamotion motion
capture system on the lower limbs of an individual from HV group.

musculoskeletal or neurological disorders that affected gait. 3D
kinematic data acquired from HV were used to calculate an
average normal value of gait kinematics and hence to calculate
the deviation from normal gait pattern for each patient, in
essence, the GDI.

Experimental Protocol
3D kinematic gait data were obtained with Codamotion motion
capture system (Charnwood Dynamics, Ltd., United Kingdom),
comprised of 22 active markers placed on the lower limbs
(Figure 1), three scanners, and two Kistler force platforms
embedded in a 10-m walkway. Markers were positioned on the
following anatomical references: sacrum (two lateral markers),
anterior superior iliac spines (ASIS), posterior superior iliac
spines (PSIS), lateral surface of the thighs (anterior and posterior
femur markers), lateral femoral condyles, lateral surface of the
legs (anterior and posterior tibia markers), lateral malleoli,
calcaneus (posterior lateral heels), and fifth metatarsal heads.
Marker trajectories were collected at a sampling frequency of
200 Hz. A 3D skeletal model was created for each individual based
on markers placement and anthropometric measures taken for
each subject, which included: weight, height, pelvis width and
depth, knees and ankles width. Subjects were informed to walk
naturally at their SS speed with the minimum external assistance
required -canes, crutches, and/or orthoses-. A valid stride was
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TABLE 1 | Characteristics of individuals recruited for the study.

HV iSCI

N 50 34

Gender (M/F) 19/31 26/8

Age (years) 34.6 (15.2) 34.6 (18.0)

Height (cm) 166.6 (8.7) 169.7 (10.7)

Weight (Kg) 69.6 (15.0) 70.0 (15.2)

BMI (kg/m2) 24.9 (4.0) 24.2 (4.2)

Parameters reported as mean (SD). HV, healthy volunteers; iSCI, incomplete spinal
cord injury; M, male; F, female; SD, standard deviation; BMI, body mass index.

TABLE 2 | Clinical characteristics of individuals with iSCI.

Clinical characteristics iSCI (n = 34)

NLI C1-C7 16

T1-T6 3

T7-L1 11

L2-L5 4

AIS C 4

D 28

E 2

Etiology (T/NT) 19T/15NT

Time since injury (years) 5.7 (7.8)

SS WISCI II level 17.8 (2.4)

Parameters reported as mean (SD). NLI, neurological level of injury; AIS, American
spinal injury association impairment scale; T, traumatic; NT, non-traumatic; SS
WISCI II, self-selected walking index for spinal cord injury II.

TABLE 3 | Descriptive statistics of GDI values (mean and range) within each
WISCI II level.

WISCI II levels n strides Mean (SD) Range

12 (13, 19, 20,HV) 2 57.6 (2.9) 55.5-59.6

13 (12, 15, 16, 18, 19, 20,HV) 6 47.1 (1.8) 45.0-49.2

15 (13, 19, 20,HV) 18 58.6 (7.2) 49.6-70.7

16 (13, 19, 20,HV) 65 63.7 (11.0) 46.6-88.2

18 (13, 19, 20,HV) 12 59.3 (4.4) 49.9-62.6

19 (12, 13, 15, 16, 18, 20,HV) 87 70.2 (8.1) 52.2-95.3

20 (12, 13, 15, 16, 18, 19,HV) 112 80.4 (15.2) 60.0-126.0

HV (12, 13, 15, 16, 18, 19, 20) 446 100.0 (10.0) 73.1-127.9

Groups in parentheses indicate statistically significant differences (p < 0.05).

considered as the one in which each foot was on a different force
platform. Five complete gait cycles or three complete cycles in
those individuals with SCI who were not able to get five valid
cycles were collected, time-normalized and averaged. A total
of 302 and 446 strides were collected for the group with iSCI
and the HV group, respectively. The complete records were
then processed using the software for data analysis ODIN v.2.02
(Codamotion Ltd., United Kingdom) to calculate the mean values
of 3D kinematic parameters for the gait cycle of the right and left
leg, for pelvis, and hip, knee, and ankle joints.

Data Analysis
The GDI is calculated upon the procedure described in Schwartz
and Rozumalski (2008). The index is derived from a set of
nine kinematic curves of a single stride: i) pelvic orientation

and hip angles in the three planes of space (sagittal, frontal
and transversal), (ii) knee flexion and extension, (iii) ankle
dorsiflexion and plantar flexion, and (iv) foot progression angle.

In the original study (Schwartz and Rozumalski, 2008), a
dataset with more than 6,000 strides of patients with CP was
used to calculate a 15-feature basis to account for 98% of the
total variation of the whole dataset and to allow to reconstruct
the kinematic gait curves with a 98% fidelity on average. This
basis allowed to calculate the representation of any kinematic gait
curve, by multiplying the basis with the kinematic curves of a
stride. Afterward, the Euclidean distance between this kinematic
gait curve and the average of a set of healthy control strides
were calculated, so that the deviation of a gait pattern from a
normal gait profile was represented. Lastly, this value was scaled
to improve the interpretability of the index, so that every 10
points of GDI below 100 corresponded to 1 standard deviation
(SD) away from the typical gait kinematics, whereas a score ≥ 100
represented a normal gait profile.

The GDI for our sample population was calculated for each
stride in both groups, subjects with iSCI and HV group, using the
orthonormal basis provided in Schwartz and Rozumalski (2008).
HV group data, used as the reference gait pattern to compute the
gait deviation, were collected following the same procedure used
with the individuals with iSCI. Each 3D kinematic gait analysis
was associated to a SS WISCI II level according to the preferential
condition to walk declared by the participants with iSCI. GDI
data were grouped according to the corresponding WISCI II level
and HV group data were considered as an additional set. Normal
distribution for each group was assessed with Kolmogorov-
Smirnov tests. To facilitate the analysis, a histogram of the GDI
data comprised within each WISCI II level was calculated with a
normal distribution curve fitted to its mean and SD. Afterward,
one-way ANOVA tests were performed between the GDI values
of each pair of WISCI II levels to identify differences among
groups. P-value was set to p < 0.05 for all statistical procedures.
All the data analysis was performed with Matlab R2019a (The
MathWorks, Inc., Natick, MA, United States).

RESULTS

Thirty-four (n = 34) adults with iSCI and fifty (n = 50) HV
met the inclusion criteria (Table 1). Clinical characteristics of
individuals with iSCI are shown in Table 2. The dataset of
iSCI sample included the following WISCI II levels: 12, 13, 15,
16, 18, 19, and 20.

The analysis showed that GDI data were normally distributed
across all WISCI II levels and also in the HV group. Table 3
presents the number of strides, the range, the mean, and the SD
of GDI values comprised in each WISCI II level. Results showed
a trend of increasing average GDI values with decreasing level
of walking impairment in WISCI II levels 13 to 20 and the HV
group, except in level 18, whose average GDI was lower than
the average on level 16. This can be easily seen in Figure 2, that
shows the histograms of the GDI values stratified by WISCI II
levels. Statistically significant differences were found between HV
group and all WISCI II levels. Nevertheless, they were only found
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FIGURE 2 | Histograms of GDI values stratified by WISCI II levels in population with iSCI. The dotted line represents the normal distribution curve fitted to the data
wihtin each WISCI II level. The vertical black line indicates the HV mean.

between WISCI II levels 13, 19, and 20. No statistically significant
differences were found between levels under 18 (inclusive), except
by level 13. Therefore, the increasing relationship between the
GDI values and WISCI II levels was only discriminative in the
highest levels in subjects with iSCI (WISCI II 19: 70.2 ± 8.1;
WISCI II 20: 80.4 ± 15.2), but not in the lower levels, except in
WISCI II level 13 (47.1 ± 1.8).

DISCUSSION

Our results showed an increasing relationship between the GDI
values and WISCI II levels from 13 to 20, and the HV group,
except for level 18. Nevertheless, results of the study showed that
the application of the GDI only distinguished WISCI II levels 13
(gait assisted with a walker), 19 (gait assisted with a cane), and 20
(no assistance required) from all the other WISCI II levels in adult
population with iSCI. The index successfully distinguished all the
individuals with iSCI from HV group. For those with WISCI

II level 20, GDI values were able to discriminate successfully
an impaired gait, even if it did not required any external
assistance, from a normal gait pattern. These results does not
support previous studies in which WISCI II showed a ceiling
effect (Lemay and Nadeau, 2010; Wirz et al., 2010) and a better
sensitivity to change in spinal cord injured subjects with more
impaired gait compared to those with higher levels of walking
function (van Hedel et al., 2006). Regarding ranges of GDI values
below WISCI II level 19, except for level 13, results showed an
overlap between the different levels, which indicates that the GDI
compresses into a small range all WISCI II levels.

Altogether, our results indicate that the GDI was not able
to discriminate the functional diversity of adult population
with iSCI related to walking impairment defined by WISCI II
levels. Therefore, results do not support our hypothesis, built
upon the previous correlation analysis of the GDI with other
clinical scales used in CP (Schwartz and Rozumalski, 2008;
Molloy et al., 2010; Maanum et al., 2012; Massaad et al., 2014).
Although more impaired gait patterns, lower GDI values,
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are associated with lower WISCI II levels, as shown by the
stratification, the differences between all levels are not statistically
significant. Thus, the GDI is not a valid metric to distinguish
the different walking impairment levels defined by WISCI II in
adult population with iSCI. These results may be explained by
several reasons. First, because GDI gait features were originally
obtained from 3D kinematic data of children with CP (Schwartz
and Rozumalski, 2008), GDI could not be an appropriate
index to study gait functionality in adult population with
SCI. Therefore, application of the GDI in other pathologies
different from CP should be done with caution. Second, WISCI
II considers gait impairment in terms of physical assistance,
AADs, and orthoses required to walk 10 m, but without
providing information concerning joint kinematics related to
limb coordination. Thus, other walking ability outcome measures
different from WISCI II are necessary to cover the whole
functional spectrum of walking ability in population with iSCI,
such as categorical and spatiotemporal-related walking and
balance measures (Sinovas-Alonso et al., 2021).

This study brings to light the existing lack of scientific
literature in relation to an overall gait index that covers the
functional diversity of patients with iSCI. This may be due
to the fact that gait patterns in iSCI are very heterogeneous
and variable depending on the level and severity of the lesion,
making it difficult to establish a clear pattern for the set of
functional alterations that a subject with iSCI may present.
Knowledge of the most commonly altered kinematic variables
in iSCI would allow the creation of an overall gait index that
could cover the diversity of functional alterations involved in
iSCI patients’ gait. This multivariate walking metric would allow
a more accurate assessment of the evolution of patients with iSCI
by quantifying the changes and, thus, assessing the quality of
the therapeutic interventions carried out. Therefore, future work
should aim at defining an overall gait index derived from 3D
kinematic gait variables appropriate and specific for population
with iSCI, focusing on its validation with other walking ability
outcome measures.

There are several limitations in our work. The main one is
related to the sample size in group with iSCI, which is reduced
in some WISCI II levels and not homogeneous between the
different levels and neither between iSCI and HV group. This
reduced sample is related to the fact that funding lasted for
one year of data gathering and we were not able to continue
experimentation after July 2021. Sample size was also reduced due
to the health situation associated with the COVID-19 pandemic.
Furthermore, this research has considered gait maturation at the
age of 16 years to ensure that young individuals with iSCI had
reach a stable kinematics (Bleyenheuft and Detrembleur, 2012),
which restricts the sample size of adults with iSCI included in the
study. Another limitation of this study is related to the fact that
during 3D kinematic gait analysis individuals with iSCI walked
with the minimum external assistance required to walk safely. It
means that some of the patients who usually wore orthoses or
used canes to walk more comfortably did not use them since the
context of the measure was to analyze gait with the least external
interferences under medical prescription. It is highly likely that
GDI values have been affected by this fact and, consequently, the

relationship with the SS WISCI II levels, which were sometimes
different from those at the moment of the test. Finally, due to
the retrospective design of the study there is a lack of registration
of other walking ability outcome measures, what has limited the
study to the analysis of the relationship between the GDI and the
WISCI II.

The findings of this study indicated that the GDI is not
an appropriate multivariate walking metric to represent the
deviation of gait pattern in adult population with iSCI from a
normal gait profile when it is compared with the levels of walking
impairment described by the WISCI II. It is necessary to conduct
further research into the development of a new overall gait index
derived from SCI-specific 3D kinematic gait variables, involving
a larger population, and validating it against other walking ability
outcome measures such as categorical and spatiotemporal-related
walking and balance measures.
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