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Abstract

adaptions to high elevations.

sequencing, Southeastern Tibetan drainage patterns

Background: The distribution of the Chinese Glyptosternoid catfish is limited to the rivers of the Tibetan Plateau
and peripheral regions, especially the drainage areas of southeastern Tibet. Therefore, Glyptosternoid fishes are ideal
for reconstructing the geological history of the southeastern Tibet drainage patterns and mitochondrial genetic

Results: Our phylogenetic results support the monophyly of the Sisoridae and the Glyptosternoid fishes. The
reconstructed ancestral geographical distribution suggests that the ancestral Glyptosternoids was widely distributed
throughout the Brahmaputra drainage in the eastern Himalayas and Tibetan area during the Late Miocene

(c. 5.5 Ma). We found that the Glyptosternoid fishes lineage had a higher ratio of nonsynonymous to synonymous
substitutions than those found in non-Glyptosternoids. In addition, wyss was estimated to be 10.73, which is
significantly higher than 1 (p-value 0.0002), in COX1, which indicates positive selection in the common ancestral
branch of Glyptosternoid fishes in China. We also found other signatures of positive selection in the branch of
specialized species. These results imply mitochondrial genetic adaptation to high elevations in the Glyptosternoids.

Conclusions: We reconstructed a possible scenario for the southeastern Tibetan drainage patterns based on the
adaptive geographical distribution of the Chinese Glyptosternoids in this drainage. The Glyptosternoids may have
experienced accelerated evolutionary rates in mitochondrial genes that were driven by positive selection to better
adapt to the high-elevation environment of the Tibetan Plateau.
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Background

The Tibetan Plateau (the “Roof of the World”) is the
highest plateau on earth, with an average elevation of
more than 4000 m. The plateau, which covers more than
2,500,000 km of plateaus and mountains in central Asia
and is surrounded by towering mountain ranges, has
been designated as a global hotspot of biodiversity [1].
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The environment of the Tibetan Plateau is characterized
by hypoxia and low temperatures [2]. Despite its inhos-
pitable environment, various adaptive responses that
may be responsible for highland adaptation have been
identified in several species, including Tibetans [3-7],
yak [8], Tibetan antelope [9], Tibetan wild boar [10],
ground tit [11], Tibetan mastiff [12, 13], and a schi-
zothoracine fish [14]. Among these adaptive processes,
genes exhibiting signs of positive selection and expan-
sion were significantly enriched in hypoxia and energy
metabolism pathways. Mitochondrion plays an essential
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role in ATP synthesis and heat generation, and intense
selection pressures may preferentially affect mitochon-
dria in high-elevation environments. Previous studies
have detected signals of positive selection in the mito-
chondrial genomes of organisms living at high eleva-
tions, including goats [15], Tibetan antelope [16],
Tibetan asses [17], Tibetan horses [18], pikas [19], Chin-
ese snub-nosed monkeys [20], and bar-headed geese
[21]. However, most of these studies have focused on
mammals or birds. Among fish, only the high-elevation
adaptions of the schizothoracine fishes (Cyprinidae) have
been examined [22].

Glyptosternoids refer to catfishes in the family Sisori-
dae subfamily Glyptosterninae tribe Glyptosternina. Cur-
rently, there are around 10 genera and 71 species of
glyptosternoids, which 9 genera and 31 species distrib-
uted in China (http://www.calacademy.org/scientists/
projects/catalog-of-fishes). Chinese Glyptosternoids are
found in the rivers around the Tibetan Plateau and east-
ern Himalayas, e.g., the Yaluzangbujiang (Brahmaputra
River), Irrawaddy, Nujiang (Upper Salween), Lancang-
jiang (Upper Mekong River), Jinshajiang (Upper Yang-
tze), Yuanjiang (Red River), Nanpanjiang (Upper Pearl
River) and the Brahmaputra basin [23]. The Glyptoster-
noids (Siluriformes) represent one of the three broad fish
lineages (including the schizothoracines and Triplo-
physa) commonly found on the Tibetan Plateau. Habitat
is thought to play a crucial role in diversification, and
changes in habitat likely affect the distribution and di-
versification of biota in a particular region [24]. In turn,
the historical biogeography of a lineage reflects aspects
of the history of the region in which the species, or
lineage, is distributed. The collision between India and
Asia caused the uplift of the Tibetan Plateau in the
Late Eocene [25, 26], which affected the fauna (e.g.,
fish [23, 27, 28], frogs [29] and pikas [30]), the cli-
mate [31], and the rivers in this region [32]. Chinese
Glyptosternoids provide an excellent resource with
which to infer the geological and environmental his-
tory of the region. Several studies have investigated
the phylogeny, biogeography and evolution of the
Glyptosternoids [23, 28, 33-35]. Due to the unique
distribution and morphology of the fishes of this
lineage, the relationships between the speciation, evo-
lution and biogeography of these species and the Ti-
betan Plateau has become an area of intense research
[28, 33, 34, 36-38].

Three different explanations have been suggested for
the extant distribution patterns of the Chinese Glyptos-
ternoids. (1) Hora and Silas suggested that the Glyptos-
ternoids originated in the eastern Himalayan area of
Yunnan province, southwestern China, but the exact ori-
gin and route of expansion were not clear [36]. (2) Based
on the fossil records of Bagarius yarrelli, Chu inferred
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that the Glyptosternoids originated in southeastern Tibet
during the late Pliocene [39]. According to Chu, the
Glyptosternum-like species then expanded eastward to
western Sichuan and northern Yunnan after the forma-
tion of the Jinshajiang River. Diversification at the genus
level was proposed to have occurred during the Pleisto-
cene, with species then expanding into the rivers of Yun-
nan and Sichuan during the most recent uplift of the
Himalayan area. (3) Other authors have suggested that
the ancestor of the Glyptosternoids was widely distributed
throughout the Tibetan Plateau in the early Pleistocene
[33, 40] and that the ancestor of the Glyptosternum-like
species maintained this distribution during the initial up-
lift of the Tibetan Plateau. The ancestor of the Euchilogla-
nis-like fish subsequently originated in the eastern
Himalayan area during the second uplift of the Tibetan
Plateau. Euchiloglanis-like species were then isolated to
the Jinsha, Lancang, Nujiang, Yuanjiang, Pearl and Irra-
waddy Rivers by the third uplift of the Tibetan Plateau.
The specialized Glyptosternoids achieved their present
distribution pattern due to the isolation of the rivers.

In this study, we aimed to reconstruct the ancestral
distribution of the Glyptosternoids to test hypotheses
concerning speciation with respect to southeastern Ti-
betan drainage patterns following the uplift of the Ti-
betan Plateau. Molecular clock approaches were used to
infer divergence dates for this molecular phylogeny; to
test whether the speciation, diversification and evolution
of the Chinese Glyptosternoids are associated with the
uplift of the Tibetan Plateau; and to examine high-
elevation adaptive mitochondrial evolution in this
lineage.

Methods

Muscle samples and DNA extraction

The experiments were performed in accordance with the
Ethics Committee of the Institute of Hydrobiology,
Chinese Academy of Sciences. The Ethics Committee
has also given ethics approval for our study. The policies
were enacted according to Chinese Association for La-
boratory Animal Sciences, and coordinated with the In-
stitutional Animal Care and Use Committee (IACUC)
protocols [41, 42]. The field work sample collection has
also been permission according the Key Fund and
NSFC-Yunnan mutual funds of the National Natural Sci-
ence Foundation of China (Grant Nos. 31130049 and
U1036603). Samples, including seventeen glyptosternoid
species (18 individuals, more than half of Chinese glyp-
tosternoids species), four other sisorids and three non-
sisorids, following the system of Chu et al. [43] and
references [44, 45], were collected from a variety of
locations in China (Fig. 1 and Additional file 1: Table
S1). As outgroups, Liobagrus nigricauda (Siluriformes:
Amblycipitidae), Cranoglanis bouderius (Siluriformes:
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Fig. 1 Geographic location of the studied Glyptosternoid fishes using ArcMap 9.1 software (ESRI Inc,, Redlands, CA, USA). Details on the species

J

Cranoglanididae) and Ictalurus punctatus (Ictaluridae)
included, putative close relatives to Sisoridae according
to a recent study [46]. Voucher specimens were depos-
ited at the Institute of Hydrobiology at the Chinese
Academy of Sciences. Total genomic DNA was extracted
from the muscle of a specimen using the OMEGA Gen-
omic DNA Extraction Kit.

Long PCR amplification

The complete mitochondrial genomes were amplified
from the genomic DNA of the Sisoridae fishes using four
overlapping amplification primers by long PCR methods:
L9752 AGTACRAGTGACTTCCAATCACC, H2627 GT
CCTGATCCAACATCGAGG, L295 GTAAAATTCGT
GCCAGCCACC, and H10174 TCTGAGCCGAAATCA
GAGGTC. The PCR reactions were prepared in total
volumes of 50 pL as follows: 5x LongAmp buffer, 10 puL
of each 2.5 mM dNTP, 6 pL of each 0.4 pM primer, 2.0
U LongAmp polymerase, and 20-50 ng of genomic
DNA. The PCR conditions included an initial denatur-
ation step at 94 °C for 30 s followed by 30-35 cycles at
94 °C for 30 s, 61-68 °C for 1 min, and 65 °C for
10 min, with a final extension of 10 min at 65 °C. An-
nealing temperatures were varied within these ranges in

order to optimize the efficiency of different primers and
samples.

Library preparation

Library preparation was conducted using the “With-
Bead” Method [47] with a slight modification: The Long
PCR product was subsequently sheared to approximately
500 bp using a Covaris S2 Focused-ultrasonicator (Cov-
aris, Inc., Woburn, Massachusetts, USA) before library
preparation. The fragment sizes between 250 bp and
500 bp were selected by the gel extract method. After
shearing, overhanging 5- and 3’-ends were repaired by
T4 DNA polymerase, 5'-phosphates were attached using
T4 polynucleotide kinase, and P5 and P7 adapters were
ligated to the ends of the repaired molecules using T4
DNA ligase. The resulting single-strand nicks are com-
pleted using Bst polymerase to allow amplification of the
insert. The library was amplified using ‘off-bead amplifi-
cation’ and tagged by different indexing primers.

Quantifying and pooling library using q-PCR

We used the LightCycler 480 SYBR Green I Master
(Roche, Basel, Switzerland) and qPCR Primers 1.1 and
2.1 according to the Illumina protocol (Illumina, USA).
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We pooled 40 indexed samples in equimolar ratios after
they were quantified.

Sequencing and assembly

We used 600 pL of 16 pM samples for paired-end
300 bp sequencing on a MiSeq sequencer (Illumina, Inc.,
San Diego, CA, USA). Sequence reads were sorted into
each sample by the indices. As a first step, quality con-
trol checks were run on raw sequence data via fastqc
(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc).
The adapter sequences and sites with lower qualities
were trimmed using Cutadapt [48] and the fastq_quali-
ty_filter tool (http://hannonlab.cshl.edu/fastx_toolkit/).
Contigs were assembled de novo for each species using
Trinity [49]. We then mapped all contigs to the mito-
chondrial genomes of their relative species one by one
using LASTZ (available at http://www.bx.psu.edu/mill-
er_lab/). Additional file 1: Table S2 provides the detailed
characteristics of these mitochondrial genomes. The
resulting consensus sequences were compared with se-
quences of ND2, D-Loop, and several other mitochon-
drial fragments generated from the same sample using
independent Sanger sequencing.

Phylogenetic analyses based on mitochondrial genomes
The original mitochondrial genome sequences of 10 spe-
cies of Glyptosternoids were determined in this study,
and the published mitochondrial genome sequences of
15 teleost species from GenBank were used to conduct
phylogenetic analyses. Cranoglanis bouderius, Ictalurus
punctatus and Liobagrus nigricauda were selected as
outgroups. The accession numbers of all the sequences
used in this study are summarized in Additional file 1:
Table S1. Twelve protein-coding genes encoded in the
heavy strand of DNA and two rRNA genes were used
for the analyses. We excluded the ND6 gene because
this gene is encoded on the light strand, and its nucleo-
tide compositions are very different from other genes.
Each gene sequence was automatically aligned using the
MAFFT program [50] and carefully checked by eye. All
ambiguous portions were excluded. After removing the
start and stop codons, 12 protein-coding genes and 2
rRNA genes were concatenated.

We inferred the phylogenetic relationships via the
maximum-likelihood (ML) method [51] and MrBayes
software [52]. For the ML analyses, we used the RAXML
program version 7.2.6 [53] with the general time reversible
model with gamma distribution and a proportion of in-
variable sites (GTR + G + 1) as estimated by Python pro-
grams (i.e., run mraic.py) [54]. Taking into account the
different tempo and mode of the nucleotide substitutions,
the parameters of the nucleotide substitution model and
the branch lengths of the first, second, and third codon
positions and ribosomal RNAs were separately estimated.
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To evaluate the confidence of the internal nodes, the rapid
bootstrap method [53] was applied with 1000 replications.
Using the MrBayes software, four independent chains
were run for 10,000,000 generations with a burn-in length
of 2500 generations and a sampling frequency of 1000
generations. Three of the four chains were heated, and the
analysis was run twice.

Reconstruction of ancestral geographical distribution

To trace the historical biogeography during the evolu-
tion of the Glyptosternoids, the ancestral distribution of
the internal nodes were reconstructed with the
Dispersal-Extinction-Cladogenesis (DEC) model [55]
using the RASP program v. 3.02. [56] based on the ML
tree inferred from the data from 12 mitochondrial
protein-coding genes (Fig. 2) and the distribution pat-
tern (Additional file 1: Table S3) of Sisoridae.

Divergence time estimation

The divergence times of the Chinese Glyptosternoids
were determined using the protein-coding genes with
the Bayesian molecular dating program Beast [57], ac-
cording to the manual for the program. Estimates were
calibrated using two age constraints (C1 and C2; Fig. 3).
The C1 calibration point is based on the fossil record of
Bagarius yarrelli from the Pliocene (5.3-1.8 Ma ago) of
the Siwalik Hills in India [37]. C2 represents an upper
bound of 4 Ma, derived from the capture of the Tsangpo
by the Brahmaputra River, which occurred prior to about
this time [32]. These time estimates were conducted
using the GTR + G + I model. Following a burn-in of the
initial 25 % cycles, divergence times were sampled once
every 1000 generations from 10° Markov Chain Monte
Carlo (MCMC) iterations. Convergence of the chains to
a stationary distribution was checked by visual inspec-
tion using TRACER v1.4 [58]. We repeated this analysis
twice with different MCMC conditions and confirmed
the stability of our estimates.

Substitution rate estimation and selection analyses

To estimate lineage-specific evolutionary rates for each
branch of the Glyptosternoids and their closest relatives,
the CODEML program in the PAML package [59] with
the free-ratio model (model = 1) was run on each of the
12 protein-coding mitochondrial genes. The parameters
dN, dS, dN/dS, N*dN, and S*dS values were obtained for
each branch of the tree (Fig. 2), and genes were dis-
carded if N*dN or S$*dS were less than 1 or dS was
greater than 1, according to a previous study [60].

In molecular evolutionary biology, the natural selec-
tion acting on protein-coding genes is often character-
ized by comparison of synonymous and nonsynonymous
substitution rates [38]. The nonsynonymous over syn-
onymous substitution rates, w = dN/dS, is a widely used
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Cranoglanis bouderius

Ictalurus punctatus

Liobagrus nigricauda
Pseudecheneis sulcata
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100 Glyptothorax trilineatu
Glyptosternum maculatum

Exostoma labiatum
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Sisoridae

Fig. 2 Phylogenetic tree estimated using the MrBayes algorithm. Branch lengths are not to scale in order to highlight the topology of the tree.
The numbers below the nodes represent statistical support. Whole italicized numbers represent bootstrap support from the maximum-likelihood
tree (not shown); decimal numbers that are not italicized represent Bayesian posterior probability
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Euchiloglanis kishinouyei
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Pareuchiloglanis gracilicaudata
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Creteuchiloglanis macropterus 2
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indicator for measuring the direction and magnitude of
selective pressure on amino acid replacements. The w
values <1, =1, and >1 represent purifying selection,
neutral evolution, and positive selection, respectively
[61, 62]. The w ratios of the mitochondrial genomes
were estimated with the CODEML program of PAML
[59] using the concatenated sequence of the 12 protein-
coding genes (excluding ND6). To detect positive selec-
tion in the limited codon sites in particular lineages
across the phylogenetic tree, we applied the branch-site
model [61]. To confirm that the o ratios of the positively

selected sites (wpss) Were significantly higher than 1, we
performed the likelihood ratio test (LRT) with the null
hypothesis that the s value was 1. The candidates of
the positively selected sites were predicted by the Empir-
ical Bayes method [62].

Hydrological and geological events pertinent to this
study

It has long been recognized that paleo-drainages of
major continental East Asian Rivers, draining the south-
eastern Tibet plateau margin, differed markedly from
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Fig. 3 Time tree for the Chinese Sisoridae. The tree topology derived from these fish is generally consistent with the Bayesian inference shown in
Fig. 2 (with the exception of Exostoma labiatum and Glyptosternum maculatum). Branch lengths are proportional to divergence times. The
numbers at the right of the nodes are the estimates of the mean divergence times (in Mya)
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their current drainage patterns [32, 63—-69]. Clark et al.
[32] suggested that these rivers were once tributaries to
a single southward flowing system, which drained into
the South China Sea. Subsequent reorganization into
modern major river drainages was primarily caused by
river capture and reversal events associated with the ini-
tiation of Miocene uplifts in eastern Tibet [32]. Al-
though large-magnitude tectonic shear, prompted by the
In-dian—Asian collision around the eastern Himalayan
syntaxis, river capture and reversal events cannot be
ruled out as an additional factor influencing these large-
scale changes in drainage patterns [32, 66]. As reviewed
by Ruber et al. [27], the evolution of drainage systems in
Asia can be summarized in four stages [32]. (a) Upper
Yangtze, Middle Yangtze, Upper Me-kong, and Upper
Salween rivers drained into the South China Sea through
the paleo Red River. (b) Capture/reversal of the Middle
Yangtze river redirected drainage away from the Red
River and into the East China Sea through the Lower
Yangtze river. (c) Capture of the Upper Yangtze River
into the Lower Yangtze River, and of the Upper Mekong
and Upper Salween rivers into their modern drainage
position. The Tsangpo River was also captured to the
south through the Irrawaddy River. (d) Capture of the
Tsangpo river through the Brahmaputra river into its
modern drainage position.

Results

Phylogenetic reconstruction

Saturation tests [70] that included all taxa found no evi-
dence for saturation in the twelve protein gene tests (ex-
cept ND6) and the RNA gene tests. In each case, the
index of substitution saturation (Iss) was significantly
less than the critical value (Iss.c; see [70]).

The results of the Bayesian and ML nucleotide ana-
lyses produced by MrBayes and RAxML for the 12
protein-coding gene sequence datasets showed a marked
consistency in topological congruence, differing only in
the support values for certain nodes (Fig. 2). Just like the
results based on the concatenation datasets from the 12
mitochondrial protein-coding and 2 rRNA genes (see
Additional file 1: Figs. S1 and S2), the phylogenies indi-
cate monophyly of the Chinese Sisoridae (including
Pseudecheneis, Bagarius, Glyptothorax and Glyptoster-
noids) with very high support values (PP =1.00 and
BP =95, Fig. 2). Likewise, monophyly of glyptosternoids
(including  Glyptosternum, Glaridoglanis, Exostoma,
Euchiloglanis, Pseudexostoma, Oreoglanis, Pareuchiloglanis,
and Creteuchiloglanis) are recovered with great posterior
probability (PP = 1.00 and BP = 100, Fig. 2) The Glyptoster-
noids and non-Glyptosternoids (Bagarius, Glyptothorax)
form a sister group with high support values (Fig. 2).
Exostoma labiatum was placed with other Glyptosternoids
to form a sister group to Glyptosternum maculatum in
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the phylogenetic trees. However, G. maculatum was placed
with other Glyptosternoid fishes to form a sister group to
E. labiatum in the phylogenetic trees (Fig. 3). Specialized
Glyptosternoids diverged into three main lineages:
The first lineage included Euchiloglanis kishinouyei and
Pareuchiloglanis from the Upper Yangtze (P. anteanalis
and P. sinensis); the second included the Creteuchiloglanis
from Nujiang, Pareuchiloglanis gracilicaudata and
Pseudexostoma; and the third lineage included the
Oreoglanis, Pareuchiloglanis longicauda and P. macrotrem.
The latter two lineages form sister groups separate
from the Upper Yangtze lineage. Pareuchiloglanis was not
resolved as monophyletic.

Consistent topologies were found among the MrBayes
phylogenies using only protein-coding genes (Fig. 2) as
well as using concatenating rRNA and the 12 protein-
coding genes by gene region partitioning. We therefore
used the 12 protein gene sequences in our phylogenetic
reconstructions.

Divergence times among the Glyptosternoid fishes

Our newly estimated divergence times based on the
mitochondrial genomes are shown in Fig. 3. Chinese
Sisoridae were found to originate in the Late Miocene
(c. 7.7 Ma), the Glyptosternoids later in the Late Mio-
cene (c. 5.5 Mya), and the specialized Glyptosternoids,
Pareuchiloglanis, Oreoglanis, Creteuchiloglanis and Pseu-
dexostoma, between the Pleistocene and Holocene.
These results also show that explosive speciation of the
specialized Glyptosternoids occurred between the late
Pliocene and the Quaternary (c. 2.8 Ma).

Ancestral reconstruction of the geographical distribution
The optimal distributions at each ancestral node are
given in Fig. 4. The analysis suggests basal lineages for
the Glyptosternoid in the Tsangpo drainages (node 44).
All the ancestors of basal Glyptosternoids lineages
(nodes 42, 43, and 44) were distributed in the Tsangpo
basin and then spread into drainages of the Tibetan Plat-
eau. The reconstruction of the ancestral distribution
ranges in certain deeper nodes is expected to be less ro-
bust due to the higher number of ranges among daugh-
ter lineages, especially for node 41 (Additional file 1:
Table S4).

Accelerated evolution in the lineage of Glyptosternoid
fish

Averaged across all 12 protein-coding genes, the ratio of
nonsynonymous to synonymous substitutions is signifi-
cantly higher in most of the Glyptosternoids lineages
than observed in other non-Glyptosternoid lineages
(Additional file 1: Table S5), suggesting accelerated func-
tion evolution in the Glyptosternoids lineages (Fig. 5). In
addition, the basal species of Glyptosternoids had lower
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B (F) Euchiloglanis kishinouyei
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Fig. 4 Results from the Dispersal-Extinction-Cladogenesis (DEC) analysis using the software RASP (Yu et al. [56]). Nodes of interest are marked by
circles, assigned a unigue number, and shaded according to the divergence process assigned. In this context, circles in gray represent nodes in
which both vicariant and dispersal events were assigned. Note that incomplete lineage sorting and uncertainty regarding the ancestral node
distribution reduce the robustness of the assignment. Letters below circles represent the distribution range with the highest probability; refer to
the text for discussion on the robustness of these inferences

ratios of nonsynonymous to synonymous substitutions
than the specialized species (Fig. 5a).

Positively selected genes in the mitochondrial genome
Using the branch-site model, positively selected sig-
nals were detected in fifteen branches. Among them,
the signals of eight branches (branches 7, 8, 12, 13,
23, 24, 26, and 29) were weak, and AIC preferred the
null hypothesis (wps =1). Accordingly, the likelihood
of positive selection in these eight branches was neg-
ligible. In contrast, AIC preferred the alternative hy-
pothesis (wps = maximum likelihood estimation) for
the other seven branches (branches 1, 10, 16, 21, 22,
25, and 31; Fig. 6 and Additional file 1: Table S3).
Branch 1 represents the common ancestral branch of
the Chinese Glyptosternoids. According to our esti-
mates, wpss wWas 10.73; thus, the wpe value was signifi-
cantly higher than 1 (the p-value was 0.0002).
Positively selected sites occurred in the COX1 gene.
The candidates of the positively selected sites are
shown in Additional file 1: Table S6. In the other six
branches, which represent specialized Glyptosternoids,
positively selected sites occurred in most of the mito-
chondrial protein-coding genes (Additional file 1:
Table S6).

Discussion

Origin and expansion of Chinese Glyptosternoid fishes
and the southeastern Tibetan drainage patterns

The evolutionary time scale of Glyptosternoids diversifi-
cation is still a controversial issue. Our estimates are
much younger than those of Peng [28] and Guo [23],
both of which were based on several gene sequences
(such as cytb) and limited sample sizes, especially with
respect to the strict clock method used by Guo [23].
This work incorporated far more Glyptosternoid sam-
ples, especially Pareuchiloglanis, Oreoglanis and Creteu-
chiloglanis. Thus, the Glyptosternoids most likely
originated in the Late Miocene and radiated during the
Pliocene and Quaternary.

Based on our biogeographic results, we believe that
the third explanation (see section introduction) agrees
best with our phylogeny (Fig. 2). An ancestral Glyptos-
ternoids species was widely distributed throughout the
Brahmaputra drainage in the eastern Himalayas and Ti-
betan area during the Late Miocene (c. 7.7 Ma). The
eastern Himalayas areas included what are now Nepal,
India, Bhutan and China (Tibet and Yunnan). Then, the
Glyptosternoids dispersed into the eastern Tibetan
drainages and species evolved specialized adaptive traits
suited to rapidly flowing water habitats, such as
depressed bodies and heads, smaller gill openings and
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pinniform rugae on the rims of paired fins (such as pec-
toral fins). The teeth of these species also diversified,
and their feeding habits changed (pointed-form teeth:
fish and arthropods; shovel-form teeth: algae; Exostoma-
like teeth: algae and arthropods). A rapid uplift of the Ti-
betan Plateau occurred at approximately 3.6 Ma, and the
Yangtze, Nujiang, Lancang and Yuanjiang Rivers formed
at this time. The specialized species, Pareuchiloglanis,
Creteuchiloglanis, Euchiloglanis, Oreoglanis and Pseu-
dexostoma, originated during this phase. These species
then spread to the downstream portions of the Nujiang,
Lancangjiang, Yaluzangbujiang (Brahmaputra) and Irra-
waddy Rivers to form the current day distribution pat-
tern, yielding a great species diversity. The process of
speciation among Chinese Glyptosternoids resulted from
dispersal and vicariance events associated with the uplift
of the Tibetan area and the newly formed river systems.

The historical biogeography of a lineage reflects as-
pects of the history of the region in which the species,
or lineage, is distributed. We reconstructed a possible
scenario for biogeographic history of the southeastern
Tibet inferred from the geographical distribution of the
Chinese Glyptosternoids across this drainage area. An
exact search with DEC suggested basal lineages for the
Glyptosternoids in the Tsangpo drainages (Fig. 4). The
inferred ancestral areas (based on DEC results) are
shown in Fig. 4. To distinguish between these scenarios,
geological evidence and the likelihood of widespread an-
cestors must be considered. The use of a wide range of
calibrated rates allows us to compare the molecular
divergence times with the available data on geological
events in this area and to test various vicariance/dispersal
hypotheses. Vicariance theorists assume that common dis-
tributional patterns result from shared vicariance events.
The hypothesis of a vicariant event between the formerly
connected Tsangpo and Upper Irrawaddy is also sup-
ported by data from Badidae species [27].

Our results seem to agree with the geological evidence
for the separation of these drainages due to tectonic up-
lift in eastern Tibet. The geological events appear to
have played a primary role in the diversification of Chin-
ese Glyptosternoids. In southeastern Tibet, the order of
the appearance of the specialized species represents the
order in which the rivers became isolated [26]. The riv-
ers were once tributaries of a single southward-flowing
system that drained into the South China Sea [31, 32].
In the early Pliocene, the Tsangpo and Brahmaputra Riv-
ers became isolated from the ancient Red River. Until
the middle Pliocene, the Jinsha River was isolated and
fostered specialized diversification at the genus level;
these fish then expanded into the rivers of Yunnan and
Sichuan during the most recent uplift episode in the
Himalayan area. The modern Red River and Pearl River
became isolated in the late Pliocene. At this time, the
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Glyptosternoids spread into the Nujiang and Lancang
Rivers. In the Pleistocene, the Lancangjiang River was
isolated following the vicariance between the modern
Red River and Pearl River. In the Holocene, the Nujiang
River separated from the Irrawaddy River. These results
agree with [32]. River capture and reversal occurred dur-
ing the rapid uplift of the Tibetan Plateau [32]. The ori-
gin and expansion of Chinese Glyptosternoid fishes were
affected not only by the three cycles of uplift and two
large-scale peneplanation events of the Qinhai-Tibetan
Plateau but also the river capture and reversal events in
eastern Tibet in the Miocene due to the uplift of the
Qinghai-Tibetan Plateau. Both factors have influenced
the modern drainage patterns in eastern Tibet.

Mitochondrial adaptive genetic basis for high-elevation
living

Adaptive evolution may preferentially occur at the mo-
lecular level and may be expressed as an increased ratio
of nonsynonymous substitutions to synonymous substi-
tutions [71]. Our study adds to the growing body of evi-
dence for adaptive evolution in the mitochondrial
genome of high-elevation species. Similar to previous
studies of major adaptations to high-elevation habitats of
different endothermic animals based on genomic data
[8, 9, 11], the Glyptosternoid fish lineage exhibits accel-
erated evolution in the mitochondrial genome relative to
other non-Glyptosternoid fish lineages. A consequence
of the fact that species living in similar ecological envi-
ronments can be shaped by convergent evolution to
form physiological or morphological similarities [72]. In
particular, the specialized Glyptosternoid fishes have
higher nonsynonymous to synonymous substitutions
than the basal species, suggesting the specialized species
developed accelerated evolutionary rates in order to
adapt to the high-elevation environment. Thus, the
mitochondrial genes of Glyptosternoid fishes may have
experienced adaptively accelerated evolutionary rates to
better adapt to the extreme environments of the Tibetan
Plateau because accelerated evolution is usually driven
by positive selection.

We identified signatures of positive selection in the
branch of the Chinese Glyptosternoid fish, and these sig-
natures may indicate adaptation to physiological hypoxia
and cold stress. Branch 1 (Fig. 6) represents the common
ancestral branch of the Glyptosternoid fishes in China.
According to our estimates, w,e was 10.73, ie., signifi-
cantly higher than 1 (p-value 0.0002), for the gene
COX1 under positive selection. These findings are simi-
lar to previous studies on native high-elevation animals
that found that the COX1 gene experienced positive se-
lection in Tibetan antelope [16] and plateau pikas [19].
In cold environments, a less efficient OXPHOS is pre-
ferred because it results in maximum heat generation
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and minimum ATP and ROS production [73]. Mitochon-
dria produce increased quantities of NO under hypoxia.
Cytochrome ¢ oxidase has been identified as the mitochon-
drial enzyme that reduces NO? to NO, which induces
expression of nuclear hypoxic genes, possibly via a pathway
that involves protein nitration [74]. Therefore, the modifi-
cation of the structure and/or activity of cytochrome ¢
oxidase or complex IV of the respiratory chain may
contribute to hypoxia adaptation. Furthermore, because
oxygen is the ultimate electron acceptor, which results in
the production of H,O in a process catalyzed by cyto-
chrome ¢ oxidase, modifications of the cytochrome c
oxidase activities are expected to facilitate coping with a
reduced oxygen supply. These modifications would affect
mitochondrial NO production and, consequently, hypoxic
signaling. Considering the reconstructed ancestral geo-
graphical distribution areas, this positive selection likely
occurred during the process of high-elevation adaptation.

The other branches’ candidates for positively se-
lected sites were predicted by the Empirical Bayes
method [62] and are shown in Additional file 1: Table
S6. Branch 21, branches 16 and 22, branch 25, branch
10 and branch 31 appear to have been distributed in
the Brahmaputra/Tsangpo, Upper Yangtze, Pearl, Irra-
waddy and Salween Rivers, respectively. Branch 21,
which includes Pareuchiloglanis kamengensis, is found
in the Brahmaputra/Tsangpo drainages and experi-
enced positive selection. In this branch, the propor-
tion of positively selected sites was 0.97 %, which
corresponds to 35 codon sites in different genes.
These codon sites are composed of Complex I, Com-
plex III, Complex IV and Complex V. Branches 10,
16, 22, and 25, which were distributed in Irrawaddy,
Salween, Upper Yangtze, and Pearl Rivers, were also
under positive selection and correspond with many
codon sites. However, these codon sites do not con-
tain the genes associated with Complex V. Polypep-
tides are all subunits of the oxidative phosphorylation
(OXPHOS) enzyme complexes. In aerobic organisms,
OXPHOS supplies most of the ATP needed for cell
metabolism. During this process, electrons from
NADH or FADH2 are transferred to O, via a series
of electron carriers, which pump protons through the
inner mitochondrial membrane, generating a proton
gradient that drives ATP synthesis via ATP synthase
(Complex V). Complex V consists of two main struc-
tural domains: an intrinsic membrane domain (FO0)
and an extrinsic globular domain (F1), linked by a
central and a peripheral stalk [75]. The mammalian
mitochondrial ATP synthase comprises at least 16
subunit types [76], among which the mitochondrial-
encoded ATP6 and ATP8 are essential subunits [77].
In branch 21 (Pareuchiloglanis kamengensis), there
are one and three positively selected candidate sites
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corresponding to ATP 6 and ATP 8, respectively
(Additional file 1: Table S6).

Taking into account the reconstructed ancestral states of
the geographical distribution (Fig. 4) and positively selected
codon sites (Fig. 6), we conclude that the common ances-
tral branch of the Glyptosternoid fishes was distributed
across the Qinghai-Tibet Plateau in China and adapted to
physiological hypoxia and cold stress through transforming
the codon sites in COX1. These findings are similar to
those suggested for the Tibetan antelope [16] and plateau
pika [19] but differ from findings reported for artiodactyls,
perissodactyls, snub-nosed monkeys and humans living in
high-elevation environments [2, 3, 18, 20]. Different
adaptive strategies have likely been developed by different
lineages. Following the dispersion of the Glyptosternoid
fish into the drainages surrounding southeastern Tibet,
the changes to additional codon sites corresponded to
other mitochondrial genes associated with Complex I,
Complex III, Complex IV and Complex V.

Conclusions

We reconstructed a possible scenario for the southeast-
ern Tibetan drainage patterns based on the adaptive
geographical distribution of the Chinese Glyptosternoids
in this drainage. In addition, the Glyptosternoid fishes
lineage had a higher ratio of nonsynonymous to synonym-
ous substitutions than those found in non-Glyptosternoids.
They may have experienced accelerated evolutionary rates
in mitochondrial genes that were driven by positive selec-
tion to better adapt to the high-elevation environment of
the Tibetan Plateau.

Availability of supporting data

The data set supporting the results of this article is available
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KP872697 and provided as supplementary data.
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