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Elevated extrachromosomal circular DNA (eccDNA) has been reported to accelerate tumor pathogenesis. Although the eccDNA
profiles of other tumors have been established, the landscape of the eccDNA of acute myeloid leukemia (AML) has not been
revealed. Our study first depicted the eccDNA profile of normal hematopoiesis and AML evolution by exploiting the ATAC-seq and
RNA-seq data from nine healthy donors and 12 AML patients, which contained a total of 137 cell samples and 96 RNA-seq samples
(including 16 blood cell types of the normal hematopoietic and AML hierarchies). We found the number of eccDNAs generally
increased with the evolution of normal hematopoiesis and AML. The ecDNAs and ring chromosomes were found to reappear both
in normal hematopoiesis and AML cells. Furthermore, we compared the eccDNAs of AML with normal cells. There were almost 300
AML-specific genes, including the known oncogenes NRAS, MCL1, EVI1, GATA2, WT1, and PAK1. And the ecDNA (chr11: 58668376-
58826008) occurred in five out of 17 AML evolution-related cells, which was associated with the high expression of the GLYATL1
gene and the high expressed GLYATL1 was a poor prognostic factor. In conclusion, the eccDNA profiles of normal hematopoiesis
and AML evolution were depicted and the recurrent eccDNAs we revealed might be utilized in the treatment of AML as biomarkers.
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INTRODUCTION
Extrachromosomal circular DNA (eccDNA) was currently reported
to generate in the process of DNA damage and the corresponding
DNA repair [1, 2]. According to their different sizes and copy
numbers, they can be divided into microDNA (<1 Mb) and ecDNA/
ring chromosome (>1Mb) [3–6]. The difference between ecDNA
and ring chromosomes is ecDNA lacks centromeres and telomeres
[7]. While the ring chromosome contains the centromeres and
telomeres and is visible under the microscope [8]. Growing
evidence identified that ecDNAs play a role in oncogenic
functions, including oncogene amplification, tumor heterogeneity,
oncogene transcription, drug resistance, and genomic rearrange-
ment [9]. Several studies also verified oncogene amplification
associated with eccDNA was rare in normal tissues but affluent in
cancers. Nevertheless, ecDNA has been demonstrated to be
associated with unfavorable prognosis in glioblastoma, sarcoma,
esophageal carcinoma and so on [10]. Besides, the landscapes of
eccDNA in neuroblastoma and glioblastoma were described
[11, 12]. A previous study indicated that eccDNA amplification
did not occur in blood or normal tissue [10]. Some other studies
have confirmed that double minutes (DMs, a kind of ecDNA) in
acute myeloid leukemia (AML) and myelodysplastic syndromes
(MDS) are associated with micronuclei, MYC or MLL amplification,

complex karyotype, monosomal karyotype, TP53 deletion, and
TP53 mutations [13, 14]. Though there are some progress in the
study of eccDNA in hematological malignancies, the landscape of
eccDNA of AML and normal hematopoiesis have not yet to be fully
clarified. Kumar et al. proved Assay for Transposase Accessible
Chromatin with high-throughput sequencing (ATAC-seq) is a
feasible and sensitive method to detect eccDNA in tumors, even
for AML at the pre-amplification stage [15]. This provides us with a
new perspective to explore the eccDNA profile in the evolution of
AML and normal hematopoiesis.
This study analyzed the ATAC-seq data from all cells in normal

hematopoietic and leukemia evolution to reveal the eccDNA
landscape of normal hematopoiesis and AML.

RESULTS
The recurrent eccDNA across all cell types of hematopoiesis
evolution
The eccDNAs of 13 cell types of normal hematopoiesis
evolution were shown in Fig. 1. On the whole, the average
number of eccDNAs gradually increased as primitive cells
differentiate into the terminal cells. Especially for microDNAs,
the number of them was directly proportional to the degree of
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cell differentiation (Fig. 1A). The landscape of eccDNAs in
normal hematopoiesis directly represented the recurrent
eccDNAs. Three type eccDNAs (microDNAs/ecDNAs/ring chro-
mosomes) were analyzed and ordered respectively. The
Oncoplot showed the percentage of cells containing microDNA
chr3:5606877−5606958 (or tandem gene duplication) in all cells
was 49%, which indicated the microDNA chr3:5606877
−5606958 was the most recurrent microDNA in normal
hematopoiesis. All eccDNAs were ordered according to

occurrence proportion (Fig. 1B). Subsequently, we analyzed all
eccDNAs in Fig. 1B to explore which cell types were mainly
enriched in. The microDNA chr1:121484057− 121485434 (or
tandem gene duplication) was enriched in myeloid cells
(P= 0.039, Fig. 1C, Fisher’s exact test). The microDNA
chr9:76860921− 76860989 mainly occurred in the NK cells
(P= 0.025, Fig. 1D, Fisher’s exact test). And the ecDNA
chr12:34372607− 127650987 tended to happen in CLP and
Ery cells (both P < 0.05, Fig. 1E, Fisher’s exact test).
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Fig. 1 The recurrent eccDNAs across all cell types of normal hematopoiesis. A The barplot shows the average number of eccDNA in 13 cell
types of hematopoiesis. The X-axis represents the cell type; Y-axis represents the average number of eccDNA (the eccDNA types are shown in
different colors). B Oncoplot displays the eccDNA landscape of normal hematopoiesis. EccDNA on the left denotes “chromosome:
chromosome start point−chromosome end point of breakage”, e.g., “chr3:5606877− 5606958”. The eccDNAs are recurrent in different cell
types and three type eccDNAs (microDNA/ecDNA/ring chromosome) were analyzed and ordered, respectively. The right bar represents the
proportion of cells containing some kind of eccDNA in all normal cells. The samples at the bottom indicate according to the annotation bar
(linkage and cell types). For example, the first line of the oncoplot shows the proportion of cells containing chr3:5606877− 5606958 is 49%.
C The barplot demonstrates microDNA (chr1:121484057− 121485434) is enriched in myeloid cells (P= 0.039, Fisher’s exact test). D The
microDNA (chr9:76860921− 76860989) is enriched in NK cells (P= 0.025, Fisher’s exact test). E The ecDNA (chr12:34372607− 127650987) is
enriched in CLP (P= 0.020, Fisher’s exact test) and Ery cells (P= 0.020, Fisher’s exact test). In figure1C-E, the x-axis represents the different cells,
the y-axis represents the odds ratio (OR).
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The landscape of microDNAs across all cell types of normal
hematopoiesis
To reveal the landscape of microDNAs in different normal blood
cells, we proved the distribution of microDNAs of the stem,
myeloid, and lymphoid cells by chromosome ideogram plot (Fig.
2A). By intersecting the microDNAs in the stem, myeloid, and
lymphoid cells, we found that there were six overlapping
microDNAs, which were far fewer than the special microDNAs in
the myeloid and lymphoid cells, respectively. However, the
overlapping part occupied a large proportion of microDNA in
the stem cells. This indicated that a large part of the microDNA in
the stem cells was recurrent in the lymphoid and myeloid cells,
while most microDNAs in the lymphoid and myeloid cells were
not similar to those in stem cells (Fig. 2B–D). Furthermore, the
frequency distribution graph indicated that more than 80%
microDNAs only occurred once (Fig. 2E). And the microDNAs of
the stem cells had relatively long length than other two cell types’.
Based on their genomic origin and genetic content, we studied
the microDNA distribution over different genomic features. At
gene level, ~50% microDNAs were enriched in the promoter,
downstream, and gene body. And most microDNAs were enriched
in intron and intergenic regions at exon/intron/intergenic level. At
exon level, the microDNAs mainly distributed in 5′ UTR (Fig. 2F).

The landscape of ecDNAs and ring chromosomes across all cell
types in normal hematopoiesis
We also explored the landscape of ecDNAs and ring chromosomes
and their functions. Of particular interest in these results was that

the distribution frequency of ecDNA and ring chromosome was
high in chromosome 2 and chromosome 12, especially in myeloid
and lymphoid cells. Figure 3B illustrated the same result (Fig. 3A,
B). Furthermore, the Venn diagram demonstrated overlapping
ecDNAs and ring chromosomes of three cell types (The ratios of
the overlapping ecDNAs and ring chromosomes in the stem cells,
myeloid, and lymphoid cells were 76.9% (20/26), 27.8% (20/72),
and 15.6% (20/128), respectively). The special ecDNAs and ring
chromosomes in the stem cells, myeloid, and lymphoid cells,
respectively accounted for 11.5% (3/26), 19.2% (21/72), and 57.8%
(74/128). And Fig. 3D, E showed the same results (Fig. 3C–E).
Besides, we also probe the average gene count of ecDNAs and
ring chromosomes of the stem, myeloid, and lymphoid cells. The
lymphoid cell samples had the largest number of genes, while the
stem cell samples had the least count (Fig. 3F). This may be due to
the stem cells having the least ecDNA and ring chromosome (Fig.
3E). To further investigate the genes distribution in different cells,
we analyzed the average number of genes in B cell, CD4+ T cell,
CD8+ T cell, CLP, Ery, MEP, Mono, and NK cell. There were more
than 200 genes on ecDNA and ring chromosome of B cell, CD8+ T
cell, Ery, and MEP (Fig. 3G).

The recurrent eccDNAs across HSC, pHSC, LSC, and blast of
AML evolution
We continued to discover the landscape of eccDNAs in AML
evolution. The average number of microDNAs (or tandem gene
duplications) and ecDNAs gradually increased as primitive cells
differentiate into the terminal cells except for LSC. And the
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number of ring chromosomes didn’t change much in four cell
types (Fig. 4A). Oncoplot proved that cells with microDNA
chr3:5606877− 5606958 (or tandem gene duplication) accounted
for 71%. All eccDNAs were ordered by proportion (Fig. 4B).
Subsequently, all eccDNAs were used to conduct enrichment
analysis. The microDNA chr10:42531279−42531970 (or tandem
gene duplication) was enriched in pHSC (P= 0.004, Fig. 4C). We
also analyzed the microDNA chr10:42531279− 42531970 (or
tandem gene duplications), which occurred in three blast cells,
two pHSCs, one CLP and HSC (Fig. 4D).

The landscape of microDNA across pHSC, LSC, and blast of
AML evolution
We next dug the landscape of microDNA across HSC, pHSC, LSC,
and blast in AML evolution. The distribution of microDNA across
pHSC, LSC, and blast was shown in Fig. 5A. Furthermore, the
Venn diagram and barplot confirmed that there were only four
overlapping microDNA in pHSC, LSC, and blast, which demon-
strated the high heterogeneity of microDNAs in three cell types
(Fig. 5B, C). And the overlapping microDNA only accounted for a
small part in all cell types (Fig. 5D). Then, we analyzed the
occurrence frequency of microDNA in three cell types, and most
microDNA tended to occur once (Fig. 5E). The length distribu-
tion of identified microDNA in pHSC, LSC, and the blast was
showed in Fig. 5F. The microDNAs in pHSC and blast had a
longer length. The peak distribution over different genomic
features was also identified. At gene level, ~50% of microDNAs
were mianly enriched in promoter, downstream, and gene
body. At exon/intron/intergenic level, most microDNAs were

enriched in intron and intergenic regions. At exon level,
microDNAs of pHSC were mainly enriched in 5′ UTR and CDS,
microDNAs of LSC were mainly enriched in CDS. While
microDNAs of the blast were mainly enriched in 3′ UTR and
other exons (Fig. 5G).

The landscape of ecDNAs and ring chromosomes across pHSC,
LSC, and blast of AML evolution
The landscape of ecDNAs and ring chromosomes across pHSC,
LSC, and blast of AML evolution was also investigated. The
distribution of ecDNAs and ring chromosomes across pHSC,
LSC, and blast was shown in Fig. 6A. Venn diagram and barplot
manifested the number of overlapping ecDNAs and ring
chromosomes in three cell types were nine, which occupied a
large part of the ecDNAs and ring chromosomes of various
cells, especially in LSC (Fig. 6B–D). Most ecDNAs and ring
chromosomes were 10^17.5 bp in length (Fig. 6E). Moreover,
we revealed the peak distribution over different genomic
features. For all three cell types, at gene level, more than 75%
of the ecDNAs and ring chromosomes were enriched in
promoters. At exon/intron/intergenic level, ~80% of the
ecDNAs and ring chromosomes were mainly enriched in exon.
Then we analyzed the ecDNAs and ring chromosomes at the
exon level and most of them were enriched in 5′ UTR (Fig. 6F).
We further found that more than 8000 genes in blast cell, more
than 4000 genes in LSC, and more than 8000 genes in pHSC
(Fig. 6G). In Fig. 6H, there are ~300 blast-specific genes. The
number of blast-specific genes was much higher than that in
LSC and pHSC.
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The recurrent and specific eccDNAs in AML and normal cells
To reveal the difference between eccDNAs in AML and normal
cells, we found the number of genes on eccDNAs of AML was
close to 300. The number was far more than normal cells (Fig. 7A).
Heatmap showed the hierarchical clustering analysis of the

different expressed AML-specific and normal-specific genes. The
result demonstrated that AML-specific genes significantly differ-
entiate the normal groups, and AML samples clustered tightly with
each other. (Fig. 7B). Moreover, GO enrichment identified that
differentially expressed genes on eccDNAs of AML were enriched

Blast(n=12)

LSC(n=5)

pHSC(n=8)

HSC(n=4)

0.0 2.5 5.0 7.5 10.0

eccDNA per sample

eccDNA Type DMs ecDNA MicroDNA

Blast

pHSC

LSC

0

5

10

15

od
ds

 ra
tio

chr10:42531279−42531970

0

1

2

3

pHSC Blast CLP HSC

O
cc

ur
re

nc
e 

co
un

t

0

6

ecDNA
chr6:29802770−29981294
chrY:13680950−13855489

chr2:133038625−230045630
chr7:64498424−65337975

chr12:34372607−127650987
chr6:26305787−28565203

MicroDNA
chr7:47708718−47709532

chr1:121484057−121485434
chr20:2216983−2217104

chr1:121484738−121485435
chr10:132099136−132099976

chr10:42531279−42531970
chr3:5606877−5606958

62%

10%
14%
19%
24%
24%
38%
95%
5%
5%
10%
19%
19%
43%
71%

0 20

Cell type

Missense Mutation 

Multi_Hit

eccDNA type
Cell type

Blast

LSC

pHSC

Altered in 21 (100%) of 21 samples

A C

B D

Fig. 4 The recurrent eccDNA across four cell types of leukemia evolution. A The barplot revealed the average number of eccDNA in four cell
types (including HSC, pHSC, LSC, and Blast) of leukemia evolution. The X-axis represents the cell type; Y-axis represents the average number of
eccDNA (the eccDNA types are shown in different colors). B Oncoplot depicted the eccDNA landscape of leukemia evolution. The eccDNAs on
the left were ordered according to the proportion of cells with that eccDNA in all cells. The samples at the bottom indicate according to the
annotation bar (linkage and cell types). The sidebar plot represents the proportion of cells with eccDNA. C The barplot demonstrated
micoDNA (chr10:42531279− 42531970) was enriched in pHSC (P= 0.004). D The occurrence count of micoDNA (chr10:42531279− 42531970)
in all cells of normal hematopoiesis and leukemia evolution. The micoDNA (chr10:42531279− 42531970) only occurred in HSC, CLP, pHSC, and
blast. The X-axis represents the cell type; Y-axis represents the occurrence count of the micoDNA (chr10:42531279− 42531970) in a
different cell.

T. Zeng et al.

5

Cell Death Discovery           (2022) 8:400 



in cell wall disruption in another organism, macromolecule
methylation, regulation of ERBB signaling pathway, and regulation
of actin cytoskeleton organization (Fig. 7C). The AML-related
genes including NRAS (1p13.2), MCL1 (1q21.2), EVI1 (3q26.2),
GATA2 (3q21.3), WT1 (11p13), and PAK1 (11q14.1) were amplified
in the eccDNAs of AML evolution compared with normal
hematopoietic cells. The frequency of gene distribution of AML
and normal cells displayed that REL was the most recurrent gene
in eccDNAs of AML and normal cells. AML cells containing the
eccDNA chr11: 58668376-58826008 highly expressed the GLYATL1
gene, while the frequency of occurrence in normal cells was very
low (Fig. 7D). Figure 7E depicted different lengths of eccDNA
containing GLYATL1. We defined shorter eccDNA containing
GLYATL1 as GLYATL1+ 1 and longer eccDNA containing GLYATL1
as GLYATL1+ 2. GLYATL1- represented eccDNA which doesn’t
contain GLYATL1. Furthermore, GLYATL1+ 1 expressed the high-
est GLYATL1, while the expression of GLYATL1 on GLYATL1- and
GLYATL1+ 2 was low (While the P value was not significant,
Fig. 7F). Then, survival analysis demonstrated that AML patients
with the higher expression of GLYATL1 had shorter OS (P= 0.028,
Fig. 7G). We further analyzed the genes on eccDNA which were
actually expressed and reported the pathways of those expressed
genes. These actually expressed genes of eccDNA in normal

hematopoietic cells and AML cells are shown in Supplementary
Tables 2, 3, respectively. The GO enrichment showed the pathways
of genes on eccDNAs of normal hematopoiesis and AML
(Supplementary Figures).

DISCUSSION
We have gained a wealth of knowledge about tumor-related
eccDNAs, especially the landscape of eccDNAs of glioblastoma
[16]. However, there were few integral studies on the eccDNA
profile of AML. Our study confirmed that eccDNA is indeed
present in normal blood and AML. Furthermore, these eccDNAs
might play an important role in AML evolution and normal
hematopoiesis.
The previous study has proved that eccDNAs are common in

normal hematopoietic cells [17]. In our study, there were recurrent
eccDNAs in differently differentiated normal hematopoietic cells.
The recurrent eccDNAs occupied a small percentage in myeloid
and lymphoid cells, while accounting for a large proportion in
stem cells. This might indicate that recurrent eccDNAs, especially
recurrent microDNAs, decreased as the differentiation of blood
stem cells and played an important role in this process. In
addition, the recurrent ecDNAs and ring chromosomes were
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manifested to account for a large proportion of all eccDNAs in
normal hematopoietic cells, which proved ecDNAs and ring
chromosomes might have played a greater role in the evolution
than microDNAs. Then our study indicated the more differentiated
cells had a greater amount of eccDNA, especially the microDNAs.
And microDNAs of normal hematopoiesis were mainly enriched in
the 5’ UTR, which was consistent with previous findings [6].
However, we found the recurrent microDNAs of pHSC, LSC and
blast were very rare and more than 75% of the microDNAs only
occurred once. We tended to believe that the microDNAs were
not the driver eccDNAs to promote the progression of AML. Our
results proved the eccDNAs were common in normal hemato-
poietic cells and they were essential in normal hematopoiesis.
In AML evolution, the eccDNAs also increased with the

evolution from HSC to blast, except for LSC. A recent study
revealed that AML patients with double minutes (DMs, a kind of
ecDNA) presented an extremely poor prognosis [14]. Approxi-
mately 30% of the ecDNA were paired with DMs [18]. Therefore,
the increased ecDNAs, such as DMs might accelerate the
progression of AML. We also disclosed more than 75% of the
ecDNAs and ring chromosomes were enriched in promoter, exon,
and 5′UTR. There was a study indicating the promoter eccDNAs
can be re-inserted into other types of eccDNAs to generate larger
eccDNAs called function-enhanced eccDNAs. These factors could
be served as the genetic basis for the functional and numerical
diversity of eccDNAs, and contribute to their structural diversity
[19]. GO enrichment displayed that AML-specific genes were
mainly enriched in keratinization, which is associated with a poor
prognosis in lung squamous cell carcinoma [20]. We further

compared the eccDNAs of AML with normal hematopoietic cells.
Of particular interest in this context is the number of AML-specific
genes is far more than the normal cell-specific genes. Among
them, AML-specific genes NRAS, MCL1, EVI1, GATA2,WT1, and PAK1
could promote the development and invasion of AML [21–26].
Besides, we also found that glycine-N-acyltransferase like 1
(GLYATL1), occurred in five AML evolution-related cells. GLYATL1
only highly expressed in AML cells and AML patients with the high
expression of GLYATL1 had a shorter OS. GLYATL1 was also
reported to overexpress in primary prostate cancer [27]. The
previous study showed that eccDNA amplification frequently
occurred in many cancer types but wasn’t reported in hemato-
logical malignancies [10]. Therefore, we speculated that these
genes in eccDNA of AML might accelerate the AML progression
through the effects of poor prognostic factors, including complex
karyotypes, monosomal karyotypes, TP53 deletion, and TP53
mutations. These studies also reported DMs in myeloid neoplasms
commonly harbored MYC, KMT2A, or MLL gene amplification
[13, 14]. Whether the oncogene amplifications of eccDNAs
occurred in myeloid tumors still needs further exploration.
In conclusion, the eccDNAs generally increased with the

evolution of normal hematopoiesis and AML. There were some
recurrent eccDNAs both in normal hematopoiesis and AML
cells, especially ecDNAs and ring chromosomes. Whether it’s
the intra-group comparison in AML cells or the comparison
between AML and normal hematopoietic groups, we found that
AML blast-specific genes and AML-specific genes were much
more than in other groups. Combined with the previous studies,
the accumulation of eccDNAs and the oncogenes (NRAS, MCL1,

Fig. 6 ecDNA and ring chromosome in pHSC, LSC, and blast. A The distribution of ecDNA and ring chromosome across pHSC, LSC, and blast.
B Venn diagram of overlapping ecDNA and ring chromosome. C The barplot showed the ecDNA and ring chromosome number in the overlap
of different cells. D The frequency of overlapping ecDNA and ring chromosome in pHSC, LSC, and blast, respectively. E The length distribution
of ecDNA and ring chromosome in pHSC, LSC, and blast. F Peak distribution over different genomic features. G The average number of genes
on ecDNA and ring chromosome in pHSC, LSC, and blast. H The number of blast-specific genes on eccDNA far more than pHSC and LSC.
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EVI1, GATA2, WT1, PAK1, and GLYATL1) in the eccDNAs of AML
evolution might contribute to AML progression. Moreover, we
speculated that the high expression of AML-specific oncogenes
in eccDNA might be associated with some inferior prognostic
effects to promote AML progression. GLYATL1 might be a
prognostic biomarker in AML. However, our algorithm cannot
distinguish between extrachromosomal circles and chromoso-
mal segmental tandem duplications unless the circles are
experimentally purified prior to library preparation to remove
the linear DNA, and most tandem duplications tend to be short
segments. So we refer to these eccDNA as microDNA or tandem

duplications. It’s necessary to provide more evidence and
information for further research.

METHOD
Patients and samples
In this study, ATAC-seq data from cells isolated from 9 healthy human
donors (Donor5852, Donor6792, Donor7256, Donor7653, Donor1022,
Donor4983, Donor2596, Donor5483, and Donor6926) and 12 patients with
AML (SU654, SU353, SU444, SU209, SU575, SU070, SU351, SU583, SU501,
SU484, SU496, and SU048). A total of 137 cell samples contained 16 blood
cell types of the normal hematopoietic and AML hierarchies. Thirteen cell

} 
} 

Fig. 7 The comparison of eccDNA in AML cells (containing pHSC, LSC, and blast) and normal cells (including B cell, CD4+ T cell, CD8+ T
cell, CLP, Ery, MEP, Mono, and NK cell). A The number of peculiar genes on eccDNA of AML cells is far more than normal cells. B Heatmap
showed the cluster analysis of the different expressed AML-specific and normal-specific genes. The horizontal axis represents different genes,
and the vertical axis represents AML or normal hematopoiesis. C GO enrichment of differential expressed genes on eccDNA of AML. D The rate
of eccDNA in AML and normal cells. E Different lengths of eccDNA containing GLYATL1. GLYATL1+ 1 represented shorter eccDNA that contain
GLYATL1, GLYATL1+ 2 represented longer eccDNA that contain GLYATL1. GLYATL1- represented eccDNA that doesn’t contain GLYATL1. F The
GLYATL1+ 1 expressed higher GLYATL1, and the expression of GLYATL1 in the GLYATL1+ 2 was almost the same as that of GLYATL1- (The P
value was not significant). G The high expression of GLYATL1 predicted shorter OS (P= 0.028).
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types were normal hematopoietic cells, including hematopoietic stem cell
(HSC), multipotent progenitor (MPP), lymphoid-primed multipotent
progenitor (LMPP), common myeloid progenitor (CMP), granulocyte-
macrophage progenitor (GMP), megakaryocyte-erythroid progenitor
(MEP), monocyte (Mono), erythroid (Ery), common lymphoid progenitor
(CLP), CD4+ T cell (CD4), CD8+ T cell (CD8), B cell (B), and natural killer (NK)
cell. The LMPP, CD4, CD8, B, and NK cells belong to lymphoid cells. The
CMP, GMP, MEP, Mono, and Ery cells are part of myeloid cells. The
remaining three cell types of AML evolution are preleukemic HSC (pHSC),
leukemia stem cell (LSC), and leukemia blast cell (blast). These samples
were exploited to ATAC-seq. And the paired expression data of 96 samples
from RNA-seq was enrolled in our study. All original ATAC-seq and RNA-seq
data were available under GEO accession GSE74912. Above AML samples
were from the article of Corces et al. and obtained from patients at
Stanford Medical Center with informed consent and agreement from
institutional review board (IRB)-approved protocols (Stanford IRB, 18329
and 6453) [28]. Other 106 AML patients for survival analysis from The
Cancer Genome Atlas (TCGA) database (https://cancergenome.nih.gov).

Fast-ATAC sequencing
All cell samples were separated by flow cytometry analysis and cell sorting
(FACS). ATAC-seq data in our study was derived from the fast-ATAC
sequencing, which is an optimized protocol for blood cells and requires
just 5000 cells. Five thousand cells were pelleted by centrifugation at
500×g RCF for 5 min at 4 °C and removed all supernatant. Then added 50 ul
transposase mixture (25 μl of 2× TD buffer, 2.5 μl of TDE1, 0.5 μl of 1%
digitonin, and 22 μl of nuclease-free water) (FC-121-1030, Illumina; G9441,
Promega) in the cells and mixed well. Transposition reactions were
incubated at 37 °C for 30min with agitation at 300 rpm, afterwards purified
DNA and prepared the library. More detailed steps of the protocol can be
found in this article [28]. ATAC-seq data was analyzed by the previous
method [29], with the only exception is that reads were trimmed using a
custom script and aligned using Bowtie2.

Detection of the eccDNA circles from ATAC-seq data
All ATAC-seq data were processed as previously described [15]. Using
bwa-mem [30], with the default setting to map paired-ended reads to the
hg19 genome build. The split reads were collected using the tool
samblaster [31]. The complete pipeline to identify the eccDNAs coming
from one locus of any length is available through the GitHub (https://
github.com/pk7zuva/Circle_finder and https://github.com/pk7zuva/
Circle_finder/blob/master/circle_finder-pipeline-bwa-mem-samblaster.sh).
Obtained the eccDNAs were annotated by annovar with refGene and
cytoBand (https://annovar.openbioinformatics.org/en/latest/). Oncogene
and tumor suppression genes were annotated according to oncokb
(https://www.oncokb.org/).

Characterize eccDNA across all cell types
The eccDNAs were dived into mircroDNAs and ecDNAs according to
length. Most statistical analyses in this study were performed and
visualized by the R Bioconductor package, Maftools package [32]. Oncoplot
of the eccDNA across all cell types identified by Maftools visualization.
Karoplot of eccDNA was performed by karyoploteR. The various groupwise
and pairwise comparisons were performed to identify enriched eccDNA for
every category cell. Overlapping eccDNA regions across cell types and the
eccDNA distribution over different genomic features were analyzed by
ChIPpeakAnno. GO enrichment was processed by Metascape (http://
metascape.org/).

Survival analysis
The survival analysis was performed by Kaplan–Meier method in GEPIA
(http://gepia.cancer-pku.cn/), the data from The Cancer Genome Atlas
(https://portal.gdc.cancer.gov/). The endpoint was overall survival (OS). OS
was defined as the time from study enrollment to death or last follow-up.
The P value with statistical significance was 0.05 for the two-tailed test and
the confidence interval (CI) was 95%.

DATA AVAILABILITY
All original ATAC-seq and RNA-seq data were available under GEO accession
GSE74912.
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