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ABSTRACT

Genome sequences provide genomic maps with a
single-base resolution for exploring genetic con-
tents. Sequencing technologies, particularly long
reads, have revolutionized genome assemblies for
producing highly continuous genome sequences.
However, current long-read sequencing technologies
generate inaccurate reads that contain many errors.
Some errors are retained in assembled sequences,
which are typically not completely corrected by using
either long reads or more accurate short reads. The
issue commonly exists, but few tools are dedicated
for computing error rates or determining error loca-
tions. In this study, we developed a novel approach,
referred to as k-mer abundance difference (KAD), to
compare the inferred copy number of each k-mer in-
dicated by short reads and the observed copy num-
ber in the assembly. Simple KAD metrics enable to
classify k-mers into categories that reflect the quality
of the assembly. Specifically, the KAD method can be
used to identify base errors and estimate the overall
error rate. In addition, sequence insertion and dele-
tion as well as sequence redundancy can also be de-
tected. Collectively, KAD is valuable for quality eval-
uation of genome assemblies and, potentially, pro-
vides a diagnostic tool to aid in precise error correc-
tion. KAD software has been developed to facilitate
public uses.

INTRODUCTION

DNA sequencing technologies have revolutionized genetic
and genomic analyses, facilitating de novo assemblies of

genomes from various species with small to large complex
genomes of species such as wheat (1). Genome assemblies
using Illumina technologies, here referred to as short-read
sequences, are typically highly fragmented but sequence
bases are accurate. The contiguity of genome assemblies can
be dramatically improved by using long single-molecule se-
quencing technologies principally led by Pacific Biosciences
SMRT and Oxford Nanopore (ONT) platforms (2). Se-
quencing reads yielded from both technologies have rela-
tively high rates of errors, and are dominated by small in-
sertions or deletions. Although consensus sequences from
high coverage of sequencing reads reduce errors in genome
assemblies, nonrandom errors, or biased errors, in reads
can result in inaccurate consensus sequences. Biased errors
could be caused by epigenomic modifications that affect se-
quencing signals for base calling (3,4).

To mitigate per-base errors in a draft assembly, sequenc-
ing polishing algorithms have been developed using signal-
level raw data (5,6). However, for genome sequences of
many species, a great number of errors still exist after mul-
tiple rounds of sequence polishing, or error correction (7).
Practically, errors can be further reduced via correction with
additional Illumina short reads. Variants revealed by align-
ments of Illumina reads with assembled sequences are typ-
ically used for error correction (8). This strategy works well
for small low-repetitive genomes because most assembly re-
gions can be uniquely covered by Illumina reads. For large
repetitive genomes, the strategy works less well due to a
lower proportion of genomes uniquely aligned by Illumina
reads, a higher rate of misalignments and even no align-
ments at some poorly assembled regions (9).

Assembly quality of genome sequences is related to as-
sembly contiguity and completeness, correctness of se-
quence ordering and consensus base accuracy. Community-
based projects such as GAGE (10) and Assemblathon (11)
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looked at a suite of criteria for a comprehensive assessment
when benchmarking different assembly methods when the
ground truth assembly is known. The value of N50, the
length of the smallest contig of a set of the top long con-
tigs that cover half of assembly space, is widely used as an
indicator of assembly contiguity. Alignment rates or num-
ber of variants based on alignment to assembled sequences
with genome sequencing reads or RNA sequencing reads,
and comparison against the reference genomes of related
varieties or species can indicate assembly quality. Tools
were developed for comparing some of these parameters for
genome assemblies, such as QUAST (12). Conserved bench-
marking universal single-copy orthologs (BUSCO) (13) and
core eukaryotic genes mapping approach (CEGMA) (14)
have been used to assess genome completeness simply based
on evaluating the coding or gene space. LTR (long terminal
repeat) assembly index that indicates the assembly quality
of LTR retrotransposons was designed to evaluate assembly
continuity, extending assembly quality assessment to repet-
itive regions (15).

In addition, approaches for genome assembly character-
ization were also developed based on profiles of k-mers,
substrings of length k from longer DNA sequences. K-mer-
based approaches have been used to quantify genome size,
repetitive levels and heterozygosity in assembled sequences
(16–19), and to perform reference-free genome compar-
isons based on sequencing data (20,21). A method KAT (k-
mer analysis toolkit) was developed to profile k-mer spec-
tra of both sequencing reads and assemblies and to visual-
ize the difference of k-mer abundance in the assembly and
read data (22). Here, we quantified abundance of k-mers
from sequencing reads and k-mer occurrences in the assem-
bly genome, and developed a single value, k-mer abundance
difference (KAD), per k-mer. Given a set of input reads,
KAD analysis can evaluate the accuracy of nucleotide base
quality at both genome-wide and single-locus levels, which,
indeed, is appropriate, efficient and powerful for assessing
genome sequences assembled with inaccurate long reads.

MATERIALS AND METHODS

Simulation of genome sequences with single-nucleotide sub-
stitution errors

Genome sequences were simulated with various single-
nucleotide substitution errors using the software simuG
(23). The parameters of simuG were set as ‘-snp count <
total nucleotide number of genome × variation rate > -
titv ratio 0.5’.

Simulation of genome sequences with different error types

The software simuG was also used to simulate genome
sequences with different error types (23). For single-
nucleotide substitution errors, the parameters of simuG
were set as ‘-snp count < total nucleotide number of
genome × variation rate > -titv ratio 0.5’. For short in-
sertions and deletions (INDELs), the parameter was set
as ‘-indel count < total nucleotide number of genome ×
variation rate > -ins del ratio 1’. For long sequence re-
dundancy, the parameter was set as ‘-cnv count < num-

ber of long sequence redundancy > -cnv gain loss ratio
Inf’. For long sequence deletion, the parameter was set as
‘-cnv count < number of long sequence redundancy > -
cnv gain loss ratio 0’.

Simulation of reads with and without errors

The software DWGSIM (https://github.com/nh13/
DWGSIM) was used to generate reads with or with-
out errors (error-free reads) using reference genomes of
multiple species with various genome sizes. To simulate
reads without errors with different read depths, the pa-
rameter was set as ‘-e 0 -E 0 -C < read depth > -1 150 -2
150 -r 0 -R 0 -X 0 -y 0 -c 0 -S 0’. To simulate reads with
single-nucleotide substitution errors with 50× read depth,
the parameter was set as ‘-e < sequencing error rate > -E
< sequencing error rate > -C 50 -1 150 -2 150 -r 0 -R 0 -X 0
-y 0 -c 0 -S 0’. The parameter -C represents read depth, and
the parameters -1 and -2 represent the lengths of the first
and second reads of paired-end reads. To simulate reads
without errors, all the parameters controlling error rates in
reads (-r, -R, -X, -y, -c, -S) were set to 0.

Calculation of true capture rate and false capture rate

Error k-mers were identified with the KAD script ‘KAD-
profile.pl’, which determined the KAD value per k-mer and
identified error k-mers. To calculate the true capture rate
(TCR) value that stands for the percentage of simulated
base errors detected by KAD, all the error k-mers detected
by KAD were aligned to their simulated genomes with
bowtie (24) and the overlapping error k-mers were merged
into error regions, which was implemented by the KAD
script ‘KADdist.pl’. The ratio of simulated errors located
in error regions to total simulated errors was calculated as
the TCR value. The false capture rate (FCR) value stands
for the percentage of error k-mers that do not overlap with
simulated base errors. Therefore, the FCR value was deter-
mined by calculating the ratio of the number of error k-mers
that do not overlap with simulated errors to the total num-
ber of error k-mers detected by KAD.

Xvv1601 whole genome sequencing via PacBio and genome
assembly

The strain Xanthomonas vasicola pv. vasculorum (Xvv1601)
was collected in a Kansas corn field in 2016. Bacterial
growth and DNA extraction referred to a previous proce-
dure (25). The 10–20 kb whole genome shotgun (WGS) li-
braries were constructed using Xvv1601 genomic DNAs.
The library was sequenced with P6-C4 chemistry on SMRT
cells of PacBio RS II at the Yale Center for Genomic Anal-
ysis. PacBio genome assembly: Canu (v1.3) was previously
used for genome assembly (26). PacBio reads with the min-
imum length of 5 kb were used.

To generate Illumina data for the bacterium Xvv1601, the
sequencing library was prepared using the Illumina TruSeq
DNA LT Sample Prep Kit. Paired-end 2 × 300 bp reads
were generated on an Illumina MiSeq at the Integrated Ge-
nomic Facility at Kansas State University. To examine the
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impact of read depths on error detection, the module ‘sam-
ple’ of the software seqtk (https://github.com/lh3/seqtk) was
used to downsample Illumina reads to ∼90×, ∼80×, ∼70×,
∼60×, ∼50×, ∼40×, ∼30× and ∼20×.

Identification of polymorphisms between two Xvv1601 assem-
bly versions

The software MUMmer 4 (27) was used to identify DNA
polymorphisms between the two assemblies (canu and fi-
nal) of the bacterial strain Xvv1601. The two assembly se-
quences were aligned with the nucmer command. Align-
ments were filtered with the command delta-filter with (-1
-l 10000 -i 90), which resulted in unique alignments with at
least 10 kb matches and at least 90% identity between the
two assembled genomes. The alignments passing the filter-
ing were used for the variant discovery with ‘show-snps’.

B71 whole genome sequencing using Nanopore MinION

Wheat blast, a devastating emerging wheat disease, is caused
by the fungus Magnaporthe oryzae Triticum (MoT) (28).
Nanopore long reads from a virulent MoT strain B71 were
produced for the de novo genome assembly. B71 nuclear
genomic DNA was prepared as described previously (28).
Genomic DNA was subjected to 20 kb size selection using
Bluepippin cassette kit BLF7510 with High-Pass Protocol
(Sage Science, USA), followed by library preparation with
the SQK-LSK109 kit (Oxford Nanopore, UK). Library was
loaded to the flow cell FLO-MIN106D (Oxford Nanopore,
UK) and sequenced on MinION (Oxford Nanopore, UK).
Guppy version 2.2.2 was used to convert Nanopore raw
data (fast5) to FASTQ data with default parameters.

B71 Nanopore genome assembly and sequence polishing

Nanopore reads were input to Canu 1.8 for genome assem-
bly with the following parameters: genomeSize = 45m; min-
ReadLength = 5000; minOverlapLength = 1000; corOut-
Coverage = 80 (26). Nanopore reads were aligned back
to the Canu assembly with minimap2 (2.14-r892) with the
parameter of (-ax map-ont). Alignments in BAM format
converted by Samtools (1.9) were input for assembly pol-
ishing with Nanopolish (version 0.11.0) with default pa-
rameters (https://github.com/jts/nanopolish). The Nanop-
olish procedure was repeated twice. Nanopolish-polished
sequences were further polished with trimmed reads of Il-
lumina sequencing data (SRA accession SRR6232156) us-
ing Pilon (version 1.23) (8). In the Pilon polishing, Illu-
mina reads were aligned to Nanopolish-polished sequences
with the aligner bwa (0.7.12-r1039) with default parame-
ters of the module ‘mem’ (29). Pilon used bwa alignments
and polish assembled sequences with the parameters of (–
minmq 40 –minqual 15). Assembled contigs were renamed
based on their similarity to the assembly of B71Ref1 (28).
We also manually fixed a misassembly that joined a previ-
ously identified mini-chromosome’s sequence with chromo-
some 6. The assembly and polishing procedure resulted in
ONTv0.14. The same Pilon procedure was applied to fur-
ther polish the PacBio assembly B71Ref1 (28) with Illumina
reads, resulting in a new assembly PBRef1.3.

Whole genome sequence alignment via NUCmer

The nucmer command from the software MUMmer 4 (27)
was used for whole genome alignment between B71Ref1.3
and ONTv0.14. The parameter of ‘-L 1000’ was used in the
command nucmer and the parameter of ‘-L 5000 -I 98’ in
the command of show-coords, which resulted in alignments
with at least 5 kb matches and at least 98% identity between
the two assembled genomes.

KAD analysis to analyze B71 genome assemblies

Using trimmed B71 Illumina reads, the KAD analysis was
performed for both assemblies ONTv0.14 and B71Ref1.3
with the script ‘KADprofile.pl’, which determined the KAD
value per k-mer and grouped k-mers. The script ‘KAD-
dist.pl’ was used to map k-mers to the assembly genomes
and profile distributions of k-mers from each k-mer group,
particularly the group of error k-mers.

KAD analysis to assess the maize reference genome

The version 4 of maize reference genome of the bred
line B73 was downloaded from ensemblgenomes.org (30).
B73 WGS sequencing data were from SRA accessions
of SRR4039069 and SRR4039070. KAD was run using
trimmed WGS data with 47-mer as the k-mer length.

KAT analysis

The KAT software (version 2.4.2) was downloaded from the
KAT GitHub (https://github.com/TGAC/KAT). Different
tools in KAT were run with the Xvv1601 and B71 datasets,
respectively, to test KAT analysis. The KAT hist was used
to identify k-mer spectra from Illumina sequencing data of
Xvv1601 and B71, and the parameters of KAT hist were -t 4
-l 1 -h 1000000 -i 1 -m 25 -H 100000000. The KAT gcp was
used to calculate GC contents of k-mers in Xvv1601 and
B71 sequencing data, and the parameters of KAT gcp were
-t 4 -x 1 -y 1000 -m 25 -H 100000000. The KAT comp was
used to compare the sequencing data and assemblies. For
Xvv1601, two assemblies, canu and final, were compared
to Xvv1601 sequencing data with the KAT comp param-
eters -t 4 -m 25. For B71, two assemblies, ONTv0.14 and
B71Ref1.3, were compared to B71 sequencing data with the
same parameters.

KAD analysis on heterozygous genomes

The simulated heterozygous Escherichia coli genomes were
used to perform the KAD analysis. Simulations were per-
formed on the E. coli reference genome with the single-
nucleotide substitution frequencies from 1% to 10%. The
E. coli reference genome was combined with those simu-
lated genomes to form heterozygous genomes. From each
heterozygous genome, 25× reads with no errors were sim-
ulated from each haplotype. Then, the KAD analyses were
performed using the E. coli reference genome with each sim-
ulated heterozygous read dataset.
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RESULTS

Rationale of KAD profiling and software development

With the availability of long-noisy-read and short-accurate-
read sequencing technologies, genome sequences nowadays
are often constructed by using both long and short WGS
reads. The Illumina sequencing platform is the dominant
short-read technology and produces accurate reads with
∼0.1% error rate, predominated by single-nucleotide sub-
stitutions (31). High-depth sequencing data (e.g. 30× or
above) and relatively uniformly distributed reads across the
genome enable to quantify genome content through k-mer
analysis. Specifically, the abundance of a k-mer from short
reads is correlated with occurrence of the k-mer in the
genome (21). For most genomes, single-copy k-mers each of
which is present once in the genome are dominant among all
k-mer sequences (non-redundant k-mers with one or multi-
ple copies) derived from the genome. The mode of sequenc-
ing depths of single-copy k-mers (m), representing sequenc-
ing depth of read data, can be estimated from the spectrum
of abundance of read k-mers that are k-mers generated from
sequencing reads. For a given read k-mer, the k-mer abun-
dance, or the count per k-mer in reads, is signified by c. The
occurrence or the copy of the k-mer in a given genome can
be estimated by c/m. In assembled sequences, the occur-
rence of the k-mer is signified by n. Therefore, log2(c/mn)
represents the copy number difference between the estimate
by reads and the copy of the k-mer in assembled sequences.
Because the n value per k-mer is 0 for the k-mers that are
present in reads but absent in assembled sequences, the for-
mula was adjusted as log2[(c + m)/m(n + 1)], the value of
KAD. Using this formula, KADs of k-mers with match-
ing copies indicated by reads and the assembly should be
0 or around 0. If a single-copy k-mer from an assembly re-
sults from errors, and no such k-mer is found in reads, the
KAD equals −1. Read k-mers missed in the assembly have
positive KAD values. In such cases, high-copy k-mers from
a genome that are well represented in reads but not in the
assembly have high KAD values. Collectively, this simple
KAD metric indicates how each k-mer matches with read
data in copy number. Therefore, based on the KAD pro-
file of all k-mers together, the quality of an assembly can
be assessed using a common standard informed by a read
dataset.

Base errors in assemblies can be detected through KAD anal-
ysis

The use of KAD in error detection was tested by the sim-
ulation using an E. coli reference genome (4.7 Mb). The
KAD calculation requires a genome assembly and short
reads generated from the genome. We simulated 50× reads
without errors (error-free reads) from the E. coli refer-
ence genome and 10 sets of genome sequences with 0.1–
1% single-nucleotide substitution errors (see the ‘Materi-
als and Methods’ section). The KAD value using 25-mer
as the k-mer size was determined for each k-mer derived
from simulated genomes that contain varying numbers of
errors. A k-mer with the KAD value equaling −1 was re-
ferred to as an error k-mer. As expected, the numbers of

error k-mers increased with error rates of the simulated
genomes (Figure 1A). We extended simulations using larger
genomes from four additional species, namely yeast (Sac-
charomyces cerevisiae, 12.4 Mb), Arabidopsis (Arabidopsis
thaliana, 121.6 Mb), rice (Oryza sativa japonica, 381.3 Mb)
and maize (Zea mays, 2.2 Gb). For each genome, 50× error-
free reads were simulated. Similar to the simulation using
the E. coli genome, the number of error k-mers detected by
KAD analysis in four species showed a linear correlation
with error rates (Figure 1A, Supplementary Figure S1 and
Supplementary Table S1), which supported the conjecture
that the number of error k-mers determined by KAD anal-
ysis accurately reflects error rates regardless of genome size
and complexity.

Error k-mers were mapped to simulated genomes and the
regions covered by error k-mers were referred to as error
regions. The simulated errors located in error regions were
considered as errors captured by KAD and the percent-
age of captured errors was defined as TCR. In relatively
small genomes (E. coli, yeast and Arabidopsis) with error
rates ranging from 0.1% to 1%, the TCR values were all
>99% (Table 1), which indicated that KAD analysis can
inform almost all errors in these simulated genomes. For
a genome with a moderate size (rice), the TCR values re-
duced to ∼95%. The TCR values were further reduced to
∼67% for maize that has a large and complicated genome,
suggesting that the size and complexity of a genome have
impacts on error detection.

We also determined the FCR, which is the ratio of er-
ror k-mers that do not overlap with simulated errors to to-
tal error k-mers. Using data with simulated errors ranging
from 0.1% to 1%, all FCR values remained at low levels
(<5%) in all simulated genomes (Table 1), indicating that
KAD analysis accurately captured errors. In addition, in the
range of 0.1–1% simulated error rates, the number of error
k-mers detected exhibited an approximately linear relation-
ship with the number of errors regardless of the genome
size. Thus, we can use the number of error k-mers to esti-
mate the number of errors in a genome assembly. Our sim-
ulation data showed that, depending on the error rate and
the genome size, the exact conversion ratio of the number of
error k-mers to the error rate varied from 14 to 25 when 25-
mer was used as the k-mer length (Figure 1B, Supplemen-
tary Figure S2 and Supplementary Table S2). In addition,
we performed KAD analysis using 31-mer for five genomes
with 1% simulated errors; both TCR and FCR remained
very high and very low, respectively, for all genomes except
the complex maize genome, for which TCR was improved
from 68% to 80% and FCR was reduced from 0.4% to 0.3%
(Supplementary Table S3). The TCR and FCR values con-
tinued to improve when higher k-mers (37-, 43-, 49- and
55-mers) were used for maize analyses using the same sim-
ulated assembly and read data (Supplementary Table S4).
Among them, the 49-mer had the highest TCR (91.9%) and
the lowest FCR (0.12%). Collectively, the simulation sup-
ported that KAD analysis can detect most errors from the
assemblies of small genomes to those of large genomes and
provided the extrapolation formula to estimate error rates
based on the number of error k-mers detected by KAD
analysis.
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Figure 1. Error detection through KAD analysis. (A) Number of error k-mers detected in simulated E. coli and maize genomes with different simulated
error rates. The left and right y-axes represent the number of error k-mers detected in the simulated E. coli and maize genome sequences, respectively. (B)
Under the 0.5% rate of errors in simulated genomes, ratios of the number of error k-mers to the number of simulated errors in five simulated genomes were
plotted versus corresponding genome sizes.

Table 1. Assessment of error detection via KAD analysis

Simulated error rate TCR FCR

E. coli Yeast Arabidopsis Rice Maize E. coli Yeast Arabidopsis Rice Maize

0.1% 100.0% 99.8% 99.2% 95.0% 67.6% 1.5% 0.2% 0.2% 0.3% 4.9%
0.2% 99.9% 99.8% 99.2% 94.8% 66.8% 0.7% 0.1% 0.1% 0.2% 2.4%
0.3% 99.9% 99.8% 99.2% 94.7% 66.3% 0.5% 0.1% 0.1% 0.1% 1.5%
0.4% 100.0% 99.8% 99.2% 94.6% 66.2% 0.4% 0.1% 0.1% 0.1% 1.2%
0.5% 100.0% 99.8% 99.3% 94.6% 66.3% 0.3% 0.0% 0.0% 0.1% 0.9%
0.6% 99.9% 99.8% 99.2% 94.6% 66.4% 0.2% 0.0% 0.0% 0.1% 0.8%
0.7% 99.9% 99.7% 99.2% 94.6% 66.7% 0.2% 0.0% 0.0% 0.0% 0.7%
0.8% 100.0% 99.7% 99.3% 94.6% 67.0% 0.2% 0.0% 0.0% 0.0% 0.5%
0.9% 100.0% 99.7% 99.3% 94.7% 67.3% 0.2% 0.0% 0.0% 0.0% 0.4%
1.0% 99.9% 99.8% 99.3% 94.7% 67.7% 0.1% 0.0% 0.0% 0.0% 0.4%

KAD analysis detects multiple types of errors

Besides single-nucleotide substitution errors, we predicted
that KAD analysis can inform other types of errors, such
as short INDELs, missing sequences or assembly collapses,
and contaminated DNA sequences in genome assemblies
(32). We grouped k-mers other than error k-mers based
on their KAD values into k-mers with KADs close to 0
(Good), k-mers over-represented in the assembly (Over-
Rep), k-mers under-represented at a low level in the as-
sembly (LowUnderRep) and k-mers under-represented at
a high level in the assembly (HighUnderRep) (Figure 2).
Good k-mers represent k-mers from well-assembled and
accurate sequences. OverRep k-mers are k-mers with low
KAD values (e.g. <−1), representing k-mers showing mul-
tiple times in the assembly but are absent or having lower
copies indicated by read data. K-mers from redundant
sequences in the assembly belong to this group. Under-
represented k-mers are k-mers that occur less frequently in
the assembly. K-mers derived from incompletely assembled
or missing sequences belong to LowUnderRep or HighUn-
derRep. If a repetitive sequence has a high number of copies

and most are missing, the derived k-mers would have a high
KAD value (e.g. >2) and therefore would be grouped into
HighUnderRep. Note that the KAD ranges specified here
are default values used in the KAD scripts to define each k-
mer group, and may be redefined in different applications.

We next examined how the KAD-based grouping strat-
egy detects various assembly errors through simulation of
multiple types of errors using the E. coli genome. We sep-
arately simulated four types of errors: (i) single-nucleotide
substitution ranging from 1% to 10%; (ii) short INDELs
(<10 bp) ranging from 1% to 10%; (iii) long sequence re-
dundancy (insertion between 100 and 1000 bp); and (iv) se-
quence deletion (deletion between 100 and 1000 bp) with
the number from 50 to 500. KAD analysis was performed
on each of these simulated genomes along with 50× error-
free reads (Supplementary Table S5). For types I and II,
while the error rates increase, the number of Good k-mers
decreases and the number of Error k-mers increases (Figure
3A and B). Because of the presence of error sequences, cor-
responding correct sequences are under-represented in the
assembly, resulting in the increase of k-mers in the group
of ‘LowUnderRep’. Note that, owing to a higher frequency
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Figure 2. K-mer classification based on KAD values. Examples are provided to illustrate from each k-mer group: (A) Good, (B) Error, (C) OverRep, whose
k-mers are over-represented in the assembly, (D) LowUnderRep, whose k-mers are under-represented at a low level in the assembly, and (E) HighUnderRep,
whose k-mers are under-represented at a high level in the assembly. In these examples, six reads are the mode of k-mer abundances (m = 6). The c and n
values are abundances of k-mer in reads and copy numbers in the assembly, respectively. In each purple box, green bars highlight a k-mer in reads and red
bar(s) indicate the occurrence of the k-mer in the assembly. The KAD ranges specified are cutoff values that define each k-mer group.

of multiple errors in an error k-mer when the error rate in
the simulated genomes is >2%, the linear relationship be-
tween the number of error k-mers and error rates was not
maintained (Figure 3A and B). Long sequence errors, re-
dundancy and deletion, in the assembly resulted in abun-
dant OverRep k-mers and LowUnderRep k-mers, respec-
tively. However, both of them had a few error k-mers com-
pared to single-nucleotide substitutions and short INDELs
(Figure 3C and D, and Supplementary Table S5). These re-
sults indicated that KAD analysis was able to separate er-
rors due to sequence redundancy or missing assemblies. At
the same time, the KAD analysis can detect errors caused
by single-nucleotide substitutions and short INDELs but
cannot distinguish these two error types.

The impacts of depths and errors of sequencing reads on KAD
analysis

KAD analysis quantitatively compares k-mer abundance in
sequencing reads and in the assembly. To examine the im-
pact of sequencing depth on KAD analysis, error-free reads
were separately simulated with read depths from 10× to
100× from the E. coli genome. Using various depths of se-
quencing read data, KAD analysis was performed on the
previously simulated genome sequences with 1% to 10%
single-nucleotide substitution errors. As a result, the accu-
racy of error detection using KAD analysis, represented by
TCR, was >99.9% for simulated E. coli genomes when se-
quencing depths were >20× (Figure 4A). However, when
sequencing depth is <40×, FCR values were high for the
simulated genomes with low error rates (Figure 4B). Similar
results were observed for simulations with other three larger
genomes, namely yeast, Arabidopsis, and rice, with 0.1–1%
single-nucleotide substitution (Supplementary Data S1).
This simulation result indicated that at least 40× read depth
is required for accurate detection of errors through KAD
analysis.

All simulations so far used error-free reads. To examine
the impact of read errors on KAD analysis, 50× reads with

error rates of single-nucleotide substitutions from 0.1% to
0.5% and from 1% to 5% were simulated from the E. coli
reference genome. KAD analysis was then performed using
these error-bearing reads and the simulated E. coli genomes
with 1–10% single-nucleotide substitutions. The numbers of
error k-mers detected by KAD were robust using reads with
≤2% error rates (Figure 5A). The TCR values stayed above
99.9% for all error rates of reads from 0.1% to 5% (Figure
5B). However, where error rates of reads were >3%, high
levels of FCR were observed (Figure 5C). This simulation
result showed that, as long as read errors are not >1%, the
impacts of read errors on error detection of assembled se-
quences through KAD analysis are trivial.

Performance of KAD on heterozygous genomes

To understand the performance of KAD on heterozygous
genomes, eight heterozygous genomes with a heterozygous
frequency from 1% to 10% were simulated using an E. coli
genome. Reads from each heterozygous genome with no er-
rors were simulated as well. KAD was then performed on
the E. coli reference genome with heterozygous reads. As
expected, two peaks were detected in all k-mer spectra. The
first peak with the smaller count represented k-mers from
polymorphic regions, while the second peak with the higher
count represented k-mers from common sequences of the
two haplotypes in a heterozygous genome (Supplementary
Figure S3).

Using the first peak as the mode (m) of sequencing depths
of k-mers, a KAD was determined for each k-mer. Mul-
tiple peaks were found in the distribution of KAD values
(Supplementary Figure S4). The KAD peak around 0 rep-
resented k-mers only derived from one haplotype that was
in the assembly; the KAD peak around 0.6 represented k-
mers derived from the common regions of both haplotypes
of the heterozygous genome; and the KAD peak around 1
represented k-mers only derived from one haplotype that is
not in the assembly. Using the second peak as the mode (m)
of sequencing depths of k-mers, KAD profiles looked dif-
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Figure 3. KAD analysis of multiple error types simulated on the E. coli genome. KAD results of simulated genome sequences with different types of
errors: (A) single-nucleotide substitutions; (B) short INDELs; (C) long sequence redundancy; and (D) long sequence deletion. In each plot, colors of lines
represent different groups of k-mers detected by KAD.

Figure 4. Impacts of read depths on error detection in simulated genomes. Various random errors of single-nucleotide substitution on the E. coli reference
genome were simulated, resulting in simulated E. coli genomes with errors ranging from 1% to 10% that are shown on x-axes. KAD analyses were performed
to detect errors using different depths of error-free read data whose depths range from 10× to 100× coverages. Both TCR (A) and FCR (B) of error detection
via KAD were determined, and plotted versus percentages of simulated errors in the simulated genomes. Each curve represents a certain depth of read
data used for KAD analyses. Depths of read data, ranging from 10× to 100×, are color coded and labeled within each plot.
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Figure 5. Impacts of read errors on error detection. The simulated E. coli genome sequences contain single-nucleotide substitution errors ranging from
1% to 10%. KAD analyses were performed to detect errors on these simulated genomes using error-bearing reads ranging from 0.1% to 0.5% and from
1% to 5%. Numbers of error k-mers detected (A), TCR of error detection (B) and FCR of error detection (C) were plotted versus error rates in simulated
genome sequences. Each curve represents a certain level of errors in reads used for KAD analysis. Different levels of errors in reads are color coded and
labeled in each plot.

ferent (Supplementary Figure S5). The KAD peak around
0 represented k-mers derived from the common regions of
both haplotypes of the heterozygous genome, and the KAD
peaks around −0.4 and 0.6 represented k-mers only derived
from one haplotype that was and was not in the assembly,
respectively. Using either peak as the mode of sequencing
depths of k-mers, error k-mers whose KAD is −1 can be dif-
ferentiated from non-error k-mers. The selection of peaks
can be specified using the ‘cmode’ parameter in the KAD
script. The simulation result indicated that KAD can be ap-
plied to examine heterozygous genomes but might need to
adjust the parameters to obtain desirable results.

Assessing a bacterial genome assembly via KAD analysis

We previously produced a genome assembly of an Xvv iso-
late Xvv1601 that was isolated from a Kansas corn adult
leaf showing the symptoms characteristic of bacterial leaf
streak in 2016 (33). PacBio long reads were used for the
genome assembly with the assembler Canu (26). The result-
ing assembly with the software Canu, referred to as assem-
bly canu, was then polished with raw PacBio reads and Il-
lumina reads, followed by the circularization by removing
overlapping ends, resulting in a final assembly (assembly fi-
nal, GenBank accession CP025272.1). The final assembly
consists of 4 956 923 bp. Comparison between assemblies
canu and final found 142 polymorphisms that were all one-
base INDELs.

KAD analysis was performed on two versions of assem-
blies with trimmed Illumina 2 × 300 bp paired-end reads.
The spectrum of k-mer abundance showed that the sequenc-
ing depth of Illumina reads is 199 (Figure 6A). KAD pro-
filing of both assemblies canu and final showed KAD val-
ues of most k-mers are around 0, indicating that the over-
all base quality of both assemblies is high (Figure 6B). In
assembly canu, a small peak of error k-mers (N = 2649) is

detected, suggesting that base errors were retained in assem-
bly canu. These error k-mers covered 141 error regions on
assembly canu. All error regions were not >51 bp. Strik-
ingly, all 142 INDELs between the two versions of assem-
blies were located within these small error regions and each
error region contained one INDEL polymorphism except
one that contained two. KAD analysis of assembly canu
also showed that some k-mers are under-represented in the
assembly (Figure 6C). In the final assembly, no error k-
mers were found but under-represented (both LowUnder-
Rep and HighUnderRep) k-mers largely remained (Figure
6D). Aligning these under-represented k-mers to GenBank
databases found that these k-mers were not derived from
bacterial genomes. Instead, they were from the PhiX phage
DNA that was used as a control for Illumina sequencing
or DNA sequences of organisms other than Xanthomonas.
Therefore, these sequences under-represented in the assem-
bly were likely generated from DNA contamination during
Illumina sequencing or library preparation.

To understand distributions of k-mers of different
groups, k-mers were mapped to both canu and final as-
semblies, which required perfect matches but allowed mul-
tiple mapping locations. A KAD landscape plot display-
ing distributions of grouped k-mers from assembly canu
showed that error k-mers were spread along the whole as-
sembled genome and a few OverRep and LowUnderRep k-
mers were mapped (Figure 6E). The KAD landscape plot
of assembly final located the OverRep k-mers at a region
that has 15-copy ‘ATTCGGG’ 7-bp tandem repeats (Fig-
ure 6F). Collectively, KAD analysis indicated that the final
assembly of Xvv1601 (CP025272.1) is a finished genome as-
sembly with a very high base quality.

We randomly sampled reads from original high-depth
(∼200×) reads to the coverages from 90× to 20× and
performed KAD analysis using each downsampled read
dataset. When the read depth was 40× or above, at least
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Figure 6. KAD analysis of assemblies of a bacterial genome. (A) Spectrum of abundance per k-mer profiled with trimmed Illumina reads. The spectrum
determined the sequencing depth of Illumina data. (B) The summary table of numbers of k-mers in each k-mer group. Both k-mer counts from the
unpolished assembly (canu) and the polished assembly (final) are shown. (C) KAD profiling of assembly canu shows that a strong peak is at around the
KAD value of 0 (orange dash line), which represents correct k-mers (referred to as ‘Good’), and a small peak at the KAD value of –1 (blue dash lines),
which represents a group of error k-mers (referred to as ‘Error’). Red arrow points at a small bump representing a low level of under-represented k-mers in
the assembly, referred to as ‘LowUnderRep’. Blue arrow points at a bump representing a high level of under-represented k-mers in the assembly, referred
to as ‘HighUnderRep’. (D) The KAD profile of the ‘final’ assembly. The peak representing error k-mers disappears. However, small bumps (red and blue
arrows) remain, which contain k-mers from contaminated DNA during Illumina sequencing. (E) Grouped k-mers were mapped to assembly canu. All
HighUnderRep k-mers were not mapped. (F) Grouped k-mers were mapped to assembly final. Seven OverRep k-mers were repeatedly mapped to a 15-
copy tandem ‘ATTCGGG’ 7-bp repeat. In both (E) and (F), the number of k-mers per 50 kb in each group was determined and plotted versus the position
of the 50-kb window in the assembly. A k-mer was counted multiple times if it was mapped to different locations.

98% error k-mers originally identified in assembly canu were
repeatedly identified with the total number of error k-mers
highly close, and 0 error k-mers were found in the final as-
sembly (Supplementary Figure S6). However, both error k-
mers in assemblies canu and final were slightly increased
when the read depth was 30×, but were dramatically in-
creased when the read depth was 20× (Supplementary Fig-
ure S6). The result suggested 40× is the minimum read
depth for accurate KAD analysis, which agreed with pre-
viously simulation results.

KAD analysis to improve the genome assembly of a fungal
wheat blast isolate

We previously used PacBio long reads to assemble a near-
finished genome assembly of fungal field isolate B71 that
causes wheat blast diseases (28). The B71Ref1 assembly
consists of seven core chromosomes, five contigs that are
from a supernumerary mini-chromosome and a mitochon-
drial sequence (28). To improve the assembly, we gener-

ated Nanopore long reads (Figure 7A and Supplemen-
tary Figure S7) and performed a de novo assembly using
only Nanopore data, resulting in 12 contigs. Based on the
alignment of polished contigs (ONTv0.14; see the ‘Mate-
rials and Methods’ section) with the previously B71Ref1
assembly, we reorganized these contigs into chromosomes
and corrected a misassembly between chromosome 6 and
a verified mini-chromosome sequence (Supplementary Fig-
ure S8). The updated Nanopore assembly contains seven
core chromosomes, a mini-chromosome and a mitochon-
drial sequence. We also updated the previous PacBio as-
sembly with additional polishing steps (PBRef1.3). To com-
pare ONTv0.14 and PBRef1.3, we performed KAD profil-
ing on both assemblies and aligned the two assemblies using
NUCmer (27). The alignment of each core chromosome in-
dicated that the two assemblies have a very low level of dis-
similarity (Figure 7B and Supplementary Figure S9). KAD
analysis enabled the determination of errors and their distri-
bution along each chromosome. Combining both alignment
results and error profiling indicated by KAD analysis, we se-
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Figure 7. KAD analysis identified errors in the fungal genome assembly. (A) Spectrum of abundance per k-mer profiled with trimmed Illumina reads,
which was used to determine the sequencing depth. (B) Comparison of chromosome 5 between the assembly with Nanopore long reads (ONTv0.14) and
the assembly with PacBio long reads (PBRef1.3). Distributions of percentages of estimated base errors (err%) per 50 kb are plotted separately for the two
assemblies along chromosome 5 (orange shades). In between two assemblies, alignments of the same chromosomes with NUCmer are displayed with two
colors to indicate neighboring alignments. (C) B71Ref1.5 is the merged assembly combining both ONTv0.14 and PBRef1.3. KAD profiling was performed
using this merged assembly and trimmed Illumina reads. The red circle highlights a bump that is largely contributed by k-mers from the mitochondria
whose genome was in high number of copies in each cell. (D) Error k-mers and under-represented k-mers identified using the B71Ref1.5 assembly were
mapped to the B71Ref1.5 assembly. Each k-mer was allowed to map to up to 100 locations. The number of k-mers in each group per 50 kb was determined
and plotted versus the position of the 50-kb window in the assembly. (E) Counts of homopolymers of different lengths per 100 bp were plotted versus
lengths of homopolymers. The red curve represents counts on error regions and the gray curve represents counts on non-error regions. (F) After k-mers
were aligned to the assembly, the mean KAD value per position was calculated by averaging KAD values of all k-mers aligned to the position. This example
shows the mean KAD values per position at a small region on chromosome 2. The DNA sequence is from the assembly. Each base matches the linked
position. The lowest mean of KAD points at a G homopolymer tract (red).

lected assembled sequences from either assembly that con-
tains more complete sequences or fewer errors (Supplemen-
tary Table S6). The combined assembly (B71Ref1.5) took
advantage of both Nanopore and PacBio long-read tech-
nologies. KAD profiling of B71Ref1.5 indicated that the
combined assembly carries ∼2568 base errors as estimated
by the number of error k-mers, i.e. 99.995% accuracy (Sup-
plementary Table S7).

More than 99% error k-mers were uniquely and per-
fectly mapped to assembled sequences. The KAD landscape
plot showed that error k-mers were spread along the whole
genome but obviously not randomly distributed (Supple-
mentary Figure S10). About 66% error k-mers were located

in the repetitive regions that consist of only 13% of the
genome. K-mers with KAD values >5 were largely derived
from the mitochondrion that had a high number of copies
per cell (Figure 7C). Most k-mers from the highly repeti-
tive ribosomal DNA (rDNA) at the beginning of chromo-
some 1 have high KAD values (around 2), indicative of in-
complete assembly. The rDNA cluster region also carries a
higher level of errors (∼0.4%; Figure 7D). We defined error
regions where error k-mers were mapped. Sequence analy-
sis of these error regions revealed that the homopolymers
with the length between 4 and 16 are highly enriched as
compared to their frequencies in the genomic regions with
no error k-mers mapped (Figure 7E). We also determined
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the means of KAD values per genomic position by aver-
aging KAD values of k-mers mapped to the position. At
small regions with negative continuous KAD values, we fre-
quently observed the positions with the lowest means of
KADs pointed at homopolymer tracts (as shown in Fig-
ure 7F). Here, we scrutinized a Nanopore and PacBio com-
bined wheat blast fungal assembly; we showed that the com-
bined assembly B71Ref1.5 is a ‘finished’ assembly using the
community standard (34) but is still incomplete at highly
repetitive regions and contains a low level of base errors,
particularly in repetitive sequences.

KAD analysis to assess a large genome assembly

We performed KAD analysis on a large complex maize ref-
erence genome (B73Ref4) of an inbred line B73 (30,35) with
∼30× 2 × 125 bp Illumina reads (21). The k-mer length of
47 was used based on our simulation result that a large com-
plex genome needs to use a longer k-mer for KAD anal-
ysis. The result from the KAD analysis indicated that the
maize reference genome B73Ref4 had a high quality (Figure
8). The accuracy was estimated to be >99.99%, although
the estimation might be higher than actual errors due to a
slightly low sequencing depth. KAD profiling also found
a number of k-mers with low values (e.g. <−1) and high
values (e.g. >1), indicating the reference genome has room
to improve. For example, the NOR (nucleolus organization
region) repetitive region of the B73 genome was estimated
to contain 3658 copies of 45S rDNA (21). From the KAD
analysis, counts of k-mers from 45S rDNA agreed that more
than 3000 copies exist in the B73 genome but the B73Ref4
reference genome only had ∼60 copies assembled (Supple-
mentary Data S2). BLASTN with the 45S rDNA to the ref-
erence genome resulted in the consistent result. Collectively,
KAD analysis informed the overall quality of the maize ref-
erence genome and provided the assessment of the assembly
at repetitive regions.

KAD and KAT comparison

KAT is a tool for counting, comparing and analyzing spec-
tra for k-mers directly from sequence data (22). We ran a
head-to-head comparison using the same input data. Both
methods provided k-mer spectra and a list of error k-mers
(Table 2). KAT is more dedicated to find biases or issues
in read data, while KAD is focused more on the quality of
genome assemblies, including incomplete assembly or po-
tential contamination. Importantly, KAD, for a given k-
mer, integrates data from both reads and the assembly into
one metric, and can inform positions of errors on a genome
assembly, providing information for cautions or further cor-
rection.

We compared the performances of the two methods on
two datasets in previous case studies: Xvv1601 and wheat
blast B71. KAT and KAD identified similar numbers of to-
tal k-mers and error k-mers in both cases (Supplementary
Tables S8 and S9). For the evaluation of the Xvv1601 final
assembly, both KAT and KAD detected no error k-mers,
which was consistent with the high quality of the Xvv1601
final assembly. Besides error k-mers, additional groups of k-
mers were provided in KAD but not in KAT. The KAT ran

faster than KAD and required fewer computing resources
on both datasets. In conclusion, KAD is more dedicated to
the evaluation of genome assembly and is able to directly
inform error positions in assemblies.

DISCUSSION

Remarkable progress has been made to advance genome
assemblies in recent decades, including cost-efficient and
accurate high-throughput short-read sequencing, long-read
single-molecule sequencing, and improved assembly and er-
ror correction algorithms (36,37). The evaluation of mul-
tiple versions of assemblies using different assembly al-
gorithms and various assembly procedures is critical for
the optimization of genome assemblies. It is also impor-
tant to assess the final assembly products for information
on errors and incompleteness. Here, we developed a sim-
ple but effective method for genome evaluation based on
the quantitative comparison of k-mer abundances between
accurate short-read sequencing data and the assembly se-
quences. The method, referred to as KAD, depicts how
sequence contents from high-depth short reads are repre-
sented in each examined genome assembly, identifies the
regions in the assembly where base errors occur, estimates
the overall error rate of an assembly and finds the regions
containing potential sequence redundancy or incomplete-
ness. Additionally, problems with short-read data, if they
exist, could be detected. The KAD method has been imple-
mented and the scripts are freely accessible (https://github.
com/liu3zhenlab/kad), which would be useful for genome
assembly projects of a wide range of species from small bac-
terial genomes to large eukaryotic genomes.

KAD first analyzes high-depth (40× or higher recom-
mended) Illumina data to determine the sequencing depth,
or the coverage of the genome. This analysis assumes that k-
mers having a single copy in the genome are most abundant
among all k-mers generated from the genome, which is true
for genomes of most species if the k-mer length is sufficiently
long (e.g. 25 nt). The method can be used to assess genome
sequences of heterozygous diploids, but caution is needed
when analyzing polyploidy genomes such as wheat. Based
on that assumption, the k-mer abundance that occurs most
frequently (the mode of k-mer abundances) should repre-
sent the sequencing depth of single-copy k-mers if reads
contain no sequencing errors. Reads with sequencing errors,
even at a low frequency of sequencing errors, generate a very
high number of k-mers with small abundance (e.g. 1–3), and
can slightly reduce k-mer abundance of each correct k-mer.
Such reduction is negligible as it is very small. We thus use
the mode of k-mer abundances (the most frequent k-mer
abundance that is not small) as the estimate of the sequenc-
ing depth, which is an important parameter in the formula
to calculate KADs.

For a complete assembly with no errors and unbiased
sequencing data with no contamination, the KAD profile
would be ideal in that KADs of all k-mers would be around
0. In reality, problematic k-mers with KADs distant from
0 can be found. We categorized problematic k-mers into
four groups: OverRep, Error, LowUnderRep and HighUn-
derRep. The group of ‘Error’ is well defined. KAD values
of all k-mers of this group are –1, which indicates that no

https://github.com/liu3zhenlab/kad
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Figure 8. KAD profiling of the maize B73 reference genome. (A) Spectrum of abundance per k-mer profiled with trimmed B73 Illumina paired-end reads.
(B) KAD profiling of the reference genome (B73Ref4) with counts of k-mers versus KAD values shows a major peak at 0 (orange dash line) and a small
bump at −1. (C) KAD profiling of the reference genome (B73Ref4) with the cube root of counts of k-mers versus KAD values indicates certain levels of
over- and under-represented k-mers.

Table 2. Comparison of KAT and KAD

Module KAT KAD

K-mer spectrum Yes Yes
Detection of GC bias in reads Yes No
Quality assessment of read data Yes No
Evaluation of assembly quality Identification of error k-mers Yes Yes

Error position on an assembly No Yes
Long assembly errors Noa Yes

Comparison of two assemblies No Yes

aNot directly detected but might be visualized from the KAT output.

such k-mers are produced from sequencing reads, but they
are present in the assembly. Importantly, the number of k-
mers in this group (error k-mers) reflects the sequence error
rate of the assembly. Our simulation data indicate that the
assembly error rate can be estimated using the number of
error k-mers. This estimation is particularly useful nowa-
days because many genome assemblies retain a number of
errors from noisy long reads that are used for assemblies
(7). Importantly, most of these errors create new sequences
that are not present in the actual genome sequences. There-
fore, most error k-mers can be unambiguously mapped to
error regions in the assembled sequences even though error
k-mers are located in highly repetitive regions. This provides
a unique approach to identify errors in repetitive sequences
that are error-prone. The other three groups are arbitrarily
categorized by defining the range of KADs. KAD thresh-
olds to define these categories are adjustable but the defaults
worked well for all the genomes that we tested.

The over-represented group includes k-mers with low
KAD values (e.g. <−1), representing k-mers occurring mul-
tiple times in the assembly, but are absent or represented
less frequently in reads than expected. Most likely, these k-
mers are derived from sequence redundancy in the assem-
bly, or regions containing systematic errors across multi-
ple locations in the assemblies, or sequences in the genome
that are biasedly under-represented in reads. Biased under-
representation in reads could occur at extremely highly GC-
or AT-rich regions (25). The under-represented groups in-

clude k-mers with high positive KAD values (e.g. >0.75),
representing k-mers showing fewer copies in the assembly
than indicated by reads. For example, k-mers from a region
incorrectly collapsed due to tandem repeats would be cat-
egorized in these groups. The higher the KAD values, the
higher the level of potential assembly incompleteness. How-
ever, when k-mers are derived from high-copy organelles or
plasmids, the high KAD values reflect the fact that high
copies of the sequence are present but only one is probably
assembled. In addition, when k-mers are from contamina-
tion in short reads, their KAD values could be high. When
mapping over- and under-represented k-mers to the assem-
bly, the issue of multiple mapping is frequently encountered.
KAD scripts allow users to tune the parameter of the maxi-
mum number of locations, which enables the examination of
k-mers that are located at multiple genomic regions. How-
ever, users need to bear this in mind that the over- or under-
represented signal from a region could be repeatedly shown
at multiple locations.

In this study, for most analyses, we chose 25-mer as the
k-mer size because it is an optimal size in the genome as-
sembler ALLPATHS-LG for analyzing k-mer abundance
spectrum (38) and we have successfully applied it to exam-
ine repetitive sequences of maize that has a large complex
genome (21). A shorter k-mer size can have a higher resolu-
tion to pinpoint error regions but compromises the unique-
ness of each k-mer in the assembled genome sequences.
In our simulation result, we showed that 25-mer has high
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power and accuracy for detecting base error in assembled
genomes with small or moderate sizes. We also showed that
large complex genomes like maize need longer k-mers for
improving the uniqueness of k-mers in the genomes. How-
ever, error regions identified using longer k-mers are wider
and more likely to cover multiple errors, and the analy-
sis requires more computation resources. In addition, se-
quencing reads used in KAD analysis are not error-free.
The longer the k-mer size, the higher the likelihood that a k-
mer from reads would carry errors (39). Therefore, slightly
higher depth than 40× would help ensure reliable error de-
tection when a longer k-mer length (e.g. 49-mer) is used.

The development of the KAD analysis was inspired by
a motivation to generate a high-quality genome assembly
and to develop a method to compare different assemblies
for nomination of the final release. With the KAD bioinfor-
matics pipeline, we can quantify the overall sequence error
rate and locate errors. Existing error correction algorithms
can use the information provided by KAD for targeted er-
ror correction, which should reduce false correction. KAD
can also help to determine whether one or multiple rounds
of polishing were sufficient to meet the convergence criteria,
for example, on the basis of the diagnostic plots including
KAD error profiles and KAD landscape plots. In the future,
new error correction approaches, particularly approaches
that are not based on read alignments, could be developed
along with KAD for precise error correction in both non-
repetitive and repetitive sequences.
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JNA355407. KAD codes are available at GitHub (https:
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