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The detection of mutations in telomerase reverse transcriptase promoter (pTERT) is
important since preoperative diagnosis of pTERT status helps with evaluating prognosis
and determining the surgical strategy. Here, we aimed to establish a radiomics-based
machine-learning algorithm and evaluated its performance with regard to the prediction of
mutations in pTERT in patients with World Health Organization (WHO) grade II gliomas. In
total, 164 patients with WHO grade II gliomas were enrolled in this retrospective study. We
extracted a total of 1,293 radiomics features from multi-parametric magnetic resonance
imaging scans. Elastic net (used for feature selection) and support vector machine with
linear kernel were applied in nested 10-fold cross-validation loops. The predictive model
was evaluated by receiver operating characteristic and precision-recall analyses. We
performed an unpaired t-test to compare the posterior predictive probabilities among
patients with differing pTERT statuses. We selected 12 valuable radiomics features using
nested 10-fold cross-validation loops. The area under the curve (AUC) was 0.8446 (95%
confidence interval [CI], 0.7735–0.9065) with an optimal summed value of sensitivity of
0.9355 (95% CI, 0.8802–0.9788) and specificity of 0.6197 (95% CI, 0.5071–0.7371). The
overall accuracy was 0.7988 (95% CI, 0.7378–0.8598). The F1-score was 0.8406 (95%
CI, 0.7684–0.902) with an optimal precision of 0.7632 (95%CI, 0.6818–0.8364) and recall
of 0.9355 (95% CI, 0.8802–0.9788). Posterior probabilities of pTERT mutations were
significantly different between patients with wild-type and mutant TERT promoters. Our
findings suggest that a radiomics analysis with a machine-learning algorithm can be useful
for predicting pTERT status in patients with WHO grade II glioma and may aid in
glioma management.
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INTRODUCTION

Large-scale tumor genomics research has altered the perspective
of tumor research by revealing a novel method for classification
of central nervous system (CNS) tumors, especially for the most
malignant primary brain tumor: gliomas. Currently, gliomas are
primarily classified based on the molecular characteristics of
tumor tissues according to the 2016 World Health Organization
(WHO) classification of CNS tumors (1), with the status of these
molecular biomarkers guiding the chemotherapy and radiation
therapy strategies after surgical resection. Based on these new
classification standards, glioblastomas and oligodendrogliomas
often exhibit mutations in the telomerase reverse transcriptase
promoter (pTERT) (1, 2). The function of TERT is to maintain
telomere length, which shortens with each division of normal
cells (3, 4). When pTERT is mutated, TERT is upregulated,
resulting in maintenance of cellular growth (5). Mutations in
pTERT can be detected in a variety of tumors. In high-grade
glioma glioblastoma and low-grade glioma oligodendroglioma,
mutations in pTERT can be detected with a high probability.
According to the cIMPACT-NOW update, mutations in pTERT
usually suggest a better prognosis in IDH-mutant diffuse gliomas.
Conversely, mutations in pTERT in IDH-wild-type diffuse
gliomas and glioblastomas suggest a poor prognosis (6). Thus,
determining pTERT status can be helpful for predicting
prognosis and optimizing clinical treatment targets.

Radiomics analysis has been widely adopted in the field of
preoperative prediction in gliomas. The use of radiomics to
analyze the WHO grades, molecular characteristics, and clinical
outcomes of tumor tissue via preoperative magnetic resonance
imaging (MRI) has produced good results (7–10). However, the
predominant focus of many prior studies has been the prediction
of the subtype combination of pTERT and IDH, which has
demonstrated moderate performance (11, 12), rather than the
status of pTERT alone. Other studies have exhibited superior
performance at predicting pTERT status in patients, including
those with higher-grade gliomas (WHO grade III or IV) (13, 14).
In this regard, pTERT status in WHO grade II gliomas has rarely
been predicted directly. In addition, the limited sample sizes used
in previous prediction models pose several issues arising from
overfitting when generalizing to other patient populations.

In the present study, we aimed to investigate the potential
association between radiomics features and pTERTmutations by
selecting valuable radiomics-based features. Based on extracted
radiomics features from conventional MRI sequences used in
most hospitals and clinical centers, we attempt to preoperatively
predict the pTERT mutation status of WHO grade II gliomas by
developing a machine-learning-based predictive model with
limited overfitting and bias via a nested 10-fold cross-validation.
MATERIALS AND METHODS

Patients
The clinical histories of 275 patients with pathologically confirmed
primaryWHO grade II gliomas were retrospectively collected from
the CGGA database from June 2014 to June 2019. The following
Frontiers in Oncology | www.frontiersin.org 2
inclusion criteria were used: (a) adult (age ≥18 years); (b)
histopathological diagnosis of primary grade II glioma; (c) no
history of preoperative therapy or biopsy; and (d) available
preoperative conventional MRI sequences, including T1-weighted
images (T1WIs), T2-weighted images (T2WIs), and contrast-
enhancement T1WIs (CE-T1WIs). Information on IDH and 1p/
19q statuses was acquired from the CGGA database (http://www.
cgga.org.cn/), and the details of the measurements and relationship
among molecular biomarkers are shown in the Supplementary
Materials and Supplementary Table S1, respectively.

Ethics Statement
All clinical information was retrospectively collected from the
institutional medical database, and the retrospective study was
approved by the local institutional review board.

Telomerase Reverse Transcriptase
Promoter Mutation
Polymerase chain reaction (PCR) and Sanger sequencing were
used to identify mutations in pTERT (15). The genomic mutational
hotspots in the core promoter region of TERT were covered by
sequences, including the nucleotide positions 1,295,228 [C228T]
and 1,295,250 [C250T]. Nested PCR was performed for
amplification based on the human genome reference sequence
(grCh37 February 2009; http://genome.ucsc.edu/). To remove any
unused primers, PCR products were purified using Illustra
ExoProStar system (GE Healthcare, Buckinghamshire, UK) after
amplification. The quality of PCR products was analyzed by
electrophoresis on 2% agarose gels before sequencing. Then, PCR
products were directly sequenced using a BigDye Terminator cycle
sequencing kit on an ABI 3100 PRISM DNA sequencer (Applied
Biosystems, Foster City, CA, USA).

Magnetic Resonance Imaging Acquisition
and Preprocessing
Regions of interest (ROIs) were drawn in slices presenting with
tumors based on T2WI, in which the abnormal area could
accurately represent the region implicated in low-grade
gliomas (16–19). MRI was mainly performed using a Trio 3.0-
T scanner (Siemens, Erlangen, Germany). T2WIs were obtained
with the following imaging parameters: TR = 5,500 ms; TE = 120
ms; field of view = 240 × 240 mm2; flip angle = 150°; and voxel
size = 0.65 × 0.65 × 5 mm3. T1WIs were obtained with the
following parameters: TR = 450 ms; TE = 15 ms; field of view =
240 × 240 mm2; voxel size = 0.65 ×0.65 × 5 mm3. Patients were
injected with gadopentetate dimeglumine intravenously (0.1
mM/kg), and CE-T1WIs were collected after contrast injection.
To delineate tumor masks, two neurosurgeons (>5 years of
experience, ZF and ZS) who were blinded to the patients’ clinical
information used MRIcro (http://www.mccauslandcenter.sc.edu/
mricro/) to draw the ROIs. Regions with hyperintense signals on
T2WI were considered tumor areas. The T2WI and ROI for each
patient were then registered to the high-resolution (1.0-mm
isotropic) MNI (Montreal Neurological Institute) brain space
using the SPM8 software (http://www.fil.ion.ucl.ac.uk/spm/
software/spm8). A senior neuroradiologist (>20 years of
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experience, SL) made the final decision when the inter-
neurosurgeon’s discrepancies of tumor masks exceeded 5%
(DICE coefficient).

Quantitative Radiological
Feature Extraction
To avoid heterogeneity bias, various MRI signal intensity values
were transformed into standardized intensity ranges via z-score
transformation. Radiomics features were then extracted from
tumor masks based on the different types of MRI sequences using
an automated approach (details are provided in the
Supplementary Material) (20). For each sequence, 431
radiomics features were extracted and classified into four types
(Figure 1): (1) first-order statistics features (n = 14), which
quantitatively delineate the distribution of voxel intensities with
the MRI scan through commonly used and basic metrics; (2)
shape- and size-based features (n = 8), which used three
dimensional features to reflect the shape and size of the ROI;
(3) textural features (n = 33), which are calculated from gray-
level run-length and gray level co-occurrence texture metrics and
reflect the intra-tumoral heterogeneity differences; and (4)
wavelet features (n = 376), which were transferred from
intensity and texture features.
Frontiers in Oncology | www.frontiersin.org 3
Feature Selection and Model Development
We developed a commonly used machine-learning algorithm, the
linear support vector machine (linear SVM), to build predictive
models. A linear SVM, which specified the use of a linear kernel,
aimed to identify the best hyperplane that maximizes the margin
between the data points of two classes (21–25). The fitcsvm function
in MATLAB was used to build the linear SVM model. To optimize
the predictive models, we varied the box constraint and kernel scale
parameters in a 10-fold cross-validation (CV). In the CV, predictive
models with minimal loss were considered as the optimal model.

The linear SVM was evaluated with a nested k-fold CV
approach. Nested CV is widely employed in the machine-learning
analysis of neuro-imaging (12, 26–29). Compared to simple CV,
nested CV can reduce overfitting and limit optimistic biases,
especially in relatively small samples (30, 31). These methods can
make full use of all the information in the dataset and prevent
circular analysis. After the dataset is split into 10 non-overlapping
subsets, one selected subset (test dataset) is used to estimate the
performance of a model that is trained by the remaining nine
subsets (training dataset), which used another 10-fold CV for
hyperparameter tuning (inner loop). These processes are repeated
10 times (outer loop), each time selecting an independent subset as
the test dataset for model evaluation.We performed a 10-fold CV in
A B

C

D

FIGURE 1 | Workflow of patient recruitment, image processing, and machine-learning. (A) Patient recruitment process. (B) Image processing. Tumor segmentation
was performed with T2-weighted images (T2WIs). Radiomics features were extracted from T1-weighted images (T1WIs), T2WIs, and contrast-enhanced T1WI using
region-of-interest masks. (C) Feature selection and machine-learning were computed in a nested 10-fold cross-validation scheme, which comprised an inner and
outer loop. The inner loop included hyperparameter tuning and feature selection. The outer loop was performed for the evaluation of model performance. (D) ROC
analysis and P-R analysis were used for model performance evaluation. AUC, area under the curve; CGGA, Chinese Glioma Genome Atlas database; TERT,
telomerase reverse transcriptase; P-R analysis, precision and recall analysis; ROC, receiver operating characteristic.
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the outer loops and computed the model performance, which was
evaluated by ROC and PR analyses, using posterior probabilities.

Feature selection using elastic net (E-net) was conducted in the
training component with nine datasets of each outer loop. The E-net
penalty was regarded as a weighted sum of the least absolute
shrinkage and selection operator penalty (LASSO) and ridge
penalty (32, 33). l and a, ranging from 0 to 1 in steps of 0.1,
were selected using 10-fold CV viaminimum or minimum plus one
standard error criteria in the E-net model. We then selected the
valuable features with non-zero coefficient resulting from the
optimal l and a for further analysis. After feature selection, a
linear SVM was trained using the training dataset with an inner 10-
fold CV loop for hyperparameter tuning. Grid searches were used
for all of the hyperparameter tuning processes. Thus, 10 different
linear SVM models were built with specific sets of features
and hyperparameters.

Statistical Analyses
The entire nested 10-fold CV process was computed in MATLAB
2019b (MathWorks, Natick, MA, USA). Receiver operating
characteristic (ROC) and precision-recall analyses were
conducted to determine the performance of models in the
prediction of pTERT status. The optimal threshold was identified
when the sum of sensitivity and specificity was maximal. The 95%
confidence interval (CI) of performance was evaluated using
bootstrapping. We report the correlation coefficients and
corresponding p values of the point-biserial-correlation between
the true labels and posterior probabilities of TERT status, which
were transformed from the decision values of SVM (34). The linear
SVM model decision values of patients with wild-type or mutant
pTERTwere compared using unpaired t-test. Data are presented as
means ± standard deviations. Differences were considered
statistically significant at a P-value (p) <0.05.
RESULTS

Clinical Characteristics
Overall, 275 patients with pathological confirmed primary WHO
grade II gliomas were retrospectively collected from the CGGA
database. We excluded 26 patients younger than 18 years of age; 11
patients without results of TERT promoter mutation; eight patient
received radiotherapy; chemotherapy, biopsy, or any treatment
before preoperative MRI examinations; and 66 patients without
available preoperativeMRIs. As a result, we retrospectively enrolled
164 patients with primary WHO grade II gliomas (89 men and 75
women; age range, 20–80 years; Table 1). The proportion of
patients with a mutation in pTERT was 56.7% (93/164). The
proportion of patients with a mutation in IDH and a 1p/19q
codeletion were 86% (141/164) and 48.2% (79/164), respectively.
The mean ( ± standard deviation) age and tumor volume were
41.6 ± 10.4 years and 61.4 ± 55.3 cm3, respectively.

Radiomics Feature Selection
We extracted 431 features from each sequence and a total of 1,293
radiomics features from all conventional sequences for each patient.
The radiomics features selected by E-net in each outer loop ranged
Frontiers in Oncology | www.frontiersin.org 4
from 12 to 234. Features that were selected in at least nine of the 10
loops were considered to be the most valuable (Table 2). The 12
valuable radiomics features that were retained were textual features
(Group 3) and their wavelet-transformed features (Group 4), such
as CE-T1WI_Cluster Tendency, T1WI_Contrast, T1WI_Long Run
Low Gray Level Emphasis_1, T1WI_Low Gray Level Run
Emphasis, T2WI_Long Run High Gray Level Emphasis_1, etc.
The z-score-transformed value of each important radiomics
feature and pTERT status were compared, revealing that all
valuable radiomics features in patients with mutations in pTERT
were significantly different from patients with wild-type pTERT
(p < 0.05).

Model Performance
Ten predictive models were built in this study. Model parameters
are shown inTable 3, and the performance of each predictivemodel
in each loop are summarized in Supplementary Table S2. The box
constraints and kernel scale ranged from 10 to 1,000 and 0.46 to
215.4, respectively. The ROC analysis revealed an AUC value of
0.8446 (95% CI, 0.7735–0.9065), with optimal summed values of
sensitivity of 0.9355 (95% CI, 0.8802–0.9788) and specificity
of 0.6197 (95% CI, 0.5071–0.7371) (Figure 2). The overall
accuracy was 0.7988 (95% CI, 0.7378–0.8598). The P-R analysis
displayed an F1-score value of 0.8406 (95% CI, 0.7684–0.902) with
an optimal precision of 0.7632 (95% CI, 0.6818–0.8364) and
optimal recall of 0.9355 (95% CI, 0.8802–0.9788). A total of 34
patients were misclassified. There were 27 (79.4%) patients with
wild-type pTERT, 28 (82.4%) patients with wild-type IDH, and 26
(76.5%) patients with 1p/19q non-codeletion. To evaluate the
association between posterior probability and true labels, we
computed point-biserial-correlations, revealing r and p values of
0.59 and <0.0001, respectively. Further, we compared the posterior
probability between wild-type and mutant pTERT, revealing a
p-value <0.0001, which indicated that our model can be used to
predict the pTERT status of WHO grade II gliomas (Figure 3).

Furthermore, the performances of the prediction model in the
subgroup of IDH and 1p/19q were evaluated. Although the AUCs
TABLE 1 | Baseline demographics and clinical characteristics of patients.

Variable Value

Number of Patients 164
Sex
Male 89
Female 75

Age (years)* 41.6 ± 10.4
IDH
Wild-type 23
Mutant 141

1p/19q
Codeletion 79
Non-codeletion 85

pTERT
Wild-type 71
Mutant 93

Tumor volume (cm3) 61.4 ± 55.3
February 2021 | Volume 10 | Ar
*Data are presented as means ± standard deviations.
IDH, isocitrate dehydrogenase; NOS, not otherwise specified; pTERT, telomerase reverse
transcriptase promoter.
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of the ROC analysis reached a value of 0.853 (95% CI, 0.7834–
0.9153), 0.8333 (95% CI, 0.6445–0.9732), and 0.8868 (95% CI,
0.8094–0.9501) for mutant IDH, wild-type IDH, and 1p/19q non-
deletion groups, respectively, the AUC for the 1p/19q codeletion
showed a rather low value of 0.4595 (95% CI, 0.1638–0.7114).
Regarding the high rate of pTERT mutations in the 1p/19q
codeletion (74/79), the P–R Curve, which is suitable for
describing imbalances in binary data, showed a more reliable
result to evaluate the model performance. The precision,
recall, and F1-score in 1p/19q codeletion group were 0.9367 (95%
CI, 0.8797–0.9873), 1 (95% CI, 1–1), and 0.9673 (95% CI, 0.936–
0.9936), respectively. In addition, the accuracies were 0.8085 (95%
CI, 0.7447–0.8652), 0.7826 (95% CI, 0.6087–0.913), 0.9367 (95%CI,
0.8734–0.9873), and 0.8706 (95% CI, 0.8–0.9412) in mutant IDH,
wild-type IDH, 1p/19q codeletion, and 1p/19q non-deletion groups,
respectively. The detailed prediction model performances in
molecular subgroups are shown in Supplementary Table S3.
DISCUSSION

The clinical characteristics of patients with mutations in pTERT
were associated with poor prognosis with glioblastomas and a good
prognosis with oligodendroglioma (6, 35, 36). Based on the
Frontiers in Oncology | www.frontiersin.org 5
presence of pTERT mutations, IDH1/2 mutations, and 1p/19q
codeletion status, gliomas were divided into five subtypes with
different overall survival (37). Since patients with lower-grade
gliomas (LGGs) who carry mutations in pTERT always have a
better survival, the determination of pTERT status by a non-
invasive MRI scan may help patients make better decisions
regarding their treatment plan. The development of an efficient
method to accurately and preoperatively identify the pTERT status
of the tumor before surgery is a critical unmet need. In this regard,
radiomics offers a promising approach. To predict pTERTmutation
status preoperatively, we built a preoperative model based on
radiomics analysis that exhibited good performance and robustness.

Based on artificial intelligence, radiomics showed its potential
to connect radiological images and tumor metadata (38).
Radiological images contain tumor features, such as shape,
volume, density, structure, and other characteristics, which are
associated with tumor genomics (39). In this study, data from 164
patients with WHO grade II gliomas, whose pTERT status and
preoperative MRIs were available, were included into the dataset.
We used E-net to reduce dimensionality, identified the main
features of the data, and attempted to eliminate the overfitting
phenomenon of the model caused by excessive features (40). In
total, 12 important radiomics features were selected more than
nine times by E-net in the loops. These valuable radiomics features
were predominantly textual information that could not be fully
identified by the human eye in imaging and reflected the internal
tissue characteristics of tumor imaging, such as internal density,
morphological cell proliferation state, and infiltration degree (41–
44). Among the five top radiomics features selected by the loops
(10 times), three features were selected from T1WIs, and one
feature was selected from CE-T1WIs and T2WIs, respectively.
These results indicated that T1WIs provide the most valuable
information for predictions given that WHO grade II gliomas are
rarely contrast-enhanced.

By analyzing the textures extracted from patients’ radiological
images, substantial progress has been made with regard to WHO
grade and genotype prediction of gliomas (7, 9, 16, 45–48). On
one hand, since the classification of pTERT status has
predominantly been associated with IDH and 1p/19q
alterations, previous studies have aimed at combining subtypes
of mutations in pTERT and IDH mutations for predictions.
However, these attempts did not achieve a satisfactory result.
Based on the radiomics analysis of conventional MRI, a LASSO
regression model was used for predicting molecular subtypes of
LGGs including mutant IDH1/2, mutant IDH1/2 with pTERT
mutations, and wild-type IDH (11). The accuracies of the
prediction model reached 0.74 in the training set and 0.56 in
the validation set. Another study showed lower performance
based on the combination of patient age, radiomics features, and
convolutional neural network features; a linear SVM model was
used for predicting three subtypes of LGGs, and the accuracy
reached 0.63 ± 0.08 (12). On the other hand, some studies
presenting radiomics analysis focus on pTERT mutations only.
A previous study compared three machine-learning methods in
predicting pTERT mutations in LGGs, including random forest,
SVM, and adaboost methods (13). The results showed that the
TABLE 2 | Selected valuable features.

Feature name Selected times p*

CE-T1WI_Cluster Tendency (Group 3) 10 0.0025
T1WI_Contrast (Group 3) 10 <0.0001
T1WI_Long Run Low Gray Level
Emphasis_1 (Group 4)

10 <0.0001

T1WI_Low Gray Level Run Emphasis
(Group 3)

10 0.0066

T2WI_Long Run High Gray Level
Emphasis_1 (Group 4)

10 <0.0001

CE-T1WI_Homogeneity 2_4 (Group 4) 9 0.0055
CE-T1WI _Sum Entropy_1 (Group 4) 9 <0.0001
CE-T1WI _Sum Variance_2 (Group 4) 9 0.0056
CE-T1WI _Variance_2 (Group 4) 9 <0.0001
T1WI_Cluster Prominence (Group 3) 9 <0.0001
T1WI_ Inverse Difference Moment
Normalized (Group 3)

9 0.0006

T2WI_Homogeneity 2 (Group 3) 9 0.0007
*P-value of comparison between TERT promoter mutant and wild-type using unpaired t-test.
TABLE 3 | Optimal model parameters in each outer loop.

Loops Box constraint Kernel scale

Loop 1 1,000 215.4
Loop 2 215.4 46.4
Loop 3 46.4 46.4
Loop 4 1000 215.4
Loop 5 215.4 10
Loop 6 10 10
Loop 7 1,000 46.4
Loop 8 46.4 46.4
Loop 9 1,000 215.4
Loop 10 10 0.46
February 2021 | Volume 10 | Article 606741
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random forest method had the best performance after feature
selection using LASSO, and the AUC value reached 0.827 (95%
CI, 0.667–0.988) in the validation group. An extreme gradient
boosting model with recursive feature selection showed
similarity AUC of 0.82 ± 0.04 (29), which was similar to our
prediction models. In addition, based on the convolutional
neural network features described above, the linear SVM
model reached an accuracy of 0.84 ± 0.09 (12). Further, the
prediction of mutations in pTERT in the subgroup of IDH also
reached stable performances, where the random forest model
achieved an AUC of 0.824 (95% CI, 0.639–1) and 0.750 (95% CI,
0.260–1) in the mutant IDH and wild-type IDH groups,
respectively (13).

Although the above radiomics-based analysis achieved good
performance in the predication of mutations in pTERT, previous
studies have focused on LGGs, which are composed of WHO
grades II and III gliomas, with limited sample sizes (11–13, 29).
However, gliomas in WHO grade II and HGG showed
differences in biological and radiomics features (49). Thus, the
present study focuses on WHO grade II gliomas, which
decreased the sample size but improved the consistency and
practicality of the results. As a result, we enrolled 164 patients
with WHO grade II gliomas and used nested CV to fully utilize
the information of the enrolled patients. In addition, the
Frontiers in Oncology | www.frontiersin.org 6
performance of the prediction was also evaluated in the
subgroups with IDH and 1p/19q alterations, which reached
high and stable accuracies. However, because of the highly
skewed dataset of the 1p/19q codeletion group (74 pTERT
mutant and five wild-type samples), the ROC curve was
limited, and the P–R curve gave a more informative picture of
performance (50), which showed a high F1-score of 0.9673 (95%
CI, 0.936–0.9936) and a high accuracy of 0.9367 (95% CI,
0.8734–0.9873).

There are some limitations of this study. First, as all patients
enrolled were from a single hospital, multi-center data
verification is lacking. In subsequent experiments, we will
include other clinical centers or glioma imaging datasets, such
as TCIA, to eliminate potential systematic errors caused by using
different equipment to collect image information. Second, ROI
labeling in this study relied on manual labeling by imaging
scientists, which inevitably resulted in differences in ROI
interpretation and affected subsequent analysis and processing.
To overcome this limitation, artificial intelligence labeling should
be introduced in future research to automatically label ROIs and
improve the efficiency and consistency of the prediction system.

In conclusion, our results demonstrate the clinical utility of
radiomics analysis for predicting pTERT mutation status
preoperatively. Through nested CV, we developed an efficient
A B

C D

FIGURE 2 | Performance of the prediction model for mutations in the promoter region of TERT (pTERT) in WHO grade II gliomas. (A, B) The receiver operating
characteristic (ROC) curve and P–R curve in the prediction of mutations in pTERT in WHO grade II gliomas. (C, D) The ROC curve and P–R curve in the prediction of
mutations in pTERT in the subgroups of molecular biomarkers in WHO grade II gliomas.
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machine-learning-based model with robust performance. Given
that pTERT mutation status plays an important role in glioma
patients’ outcomes, our predictive model will facilitate the
optimization of clinical management strategies for patients
with gliomas.
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