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Background: Hepatocellular carcinoma (HCC) is an aggressive malignancy that poses a serious threat to 
human life. The conventional therapies for HCC cannot substantially improve overall survival (OS), disease 
duration, and prognosis. Therefore, it is important to study the underlying mechanism of HCC and seek 
better methods for HCC prevention and treatment. Ubiquitination is a post-translational modification that 
modulates great cellular function by cooperating with E1, E2, and E3 ligases. Yet, the ubiquitination and 
lysine residues in HCC are still elusive. Seven in absentia homolog 1 (SIAH1), as an important E3 ubiquitin 
ligase, regulates ubiquitin-mediated proteolysis to function as a tumor suppressor in HCC. In the present 
study, we downregulated SIAH1 in the mouse HCC cell line Hepa1-6 and studied its function by using 
proteome-wide identification.
Methods: SIAH1 was knocked down by SIAH1 short hairpin RNA (shRNA) in mouse HCC cell line 
Hepa1-6 cells, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was conducted 
to analyze the ubiquitinated proteins. Functional analysis was performed using Kyoto Encyclopedia of Genes 
and Genomes (KEGG) and Gene Ontology (GO) enrichment.
Results: The systematic profiling showed a total of 550 differently expressed proteins (DEPs), including 
263 upregulated DEPs and 287 downregulated DEPs. Considering the amino acid sequences around the 
modified lysine residues, seven proteins were identified as conserved ubiquitination motifs in the peptides. 
The ubiquitinated proteins were mainly distributed in the cytoplasm, nucleus, and plasma membrane. 
Functional analysis suggested that the ubiquitinated proteins were mostly enriched in the nucleus, cytoplasm, 
and extracellular space; in addition, the ubiquitinated proteins were mostly attributed to the protein binding, 
and disease. The ubiquitinated proteins modulate HCC by mapping lysine modification sites.
Conclusions: The use of high-throughput characterization to identify novel and specific targets associated 
with SIAH1 is of great significance in terms of functional weight. The results obtained in this paper from the 
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Introduction

Hepatocellular carcinoma (HCC) is an aggressive 
malignancy with an increasing mortality rate around the 
world; it represents a growing cause for concern. Infection 
of hepatitis B and C viruses, primary hemochromatosis, 
nonalcoholic fatty liver disease, and prolonged exposure 
to aflatoxin B1 have been reported as the risk factors for  
HCC (1). The conventional therapies for HCC include 
surgery, radiotherapy, and chemotherapy, but the overall 
survival (OS) rate and duration have not yet been improved. 
In recent years, even though the novel therapeutic 
modalities, such as immunotherapy, and targeted therapy, 
have been put forward, the prognosis for advanced HCC 
has remained poor. Therefore, it is important to study the 
pathogenesis of HCC and look for better methods for HCC 
prevention and treatment.

Ubiquitin is a group of small proteins consisting of 

76 amino acids with a C-terminal diglycine tail (2). 
Ubiquitination is one kind of critical post-translational 
modifications, and plays a vital role in the cellular function 
by controlling the protein load in eukaryotic cells (3,4). 
Mechanically, the ubiquitination pathway exerts its 
biological function by cooperating with E1, E2, and E3 
ligases in a 3-step cascade reaction (3,5). Explicitly, the 
C-terminal carboxyl is activated by ubiquitin-activation 
enzyme E1 and then binds a second ubiquitin under the 
help of ubiquitin-conjugating enzymes E2, and finally, 
the ubiquitin-protein ligases E3 mediates the transfer of 
ubiquitin from E2 to the ε-amino group of lysine residues 
(6-8). The E1-E2-E3 modification regulates a range of 
protein hydrolysis and signal transduction processes (9),  
among which E3 ubiquitin ligase has an important role 
as it can specifically recognize substrates among the 
ubiquitination modifications. 

The seven in absentia homolog (SIAH) family belongs to 
the RING finger ubiquitin ligases of E3 ubiquitin ligases. 
SIAH1, a mammalian homolog of Drosophila Siah1, is a p53 
target gene, and regulates various physiological reactions, 
such as hypoxia, apoptosis, DNA damage response, 
tumorigenesis, and neural functions, by binding proteins 
(10,11). SIAH1 regulates ubiquitin-mediated proteolysis 
by using its RING finger domain (12-14). RING is located 
on chromosome 16q12-q13, a region that has a high 
frequency of the loss of heterozygosity (LOH) in tumors 
arising in various tissues such HCC (15), suggesting that 
SIAH1 might function as a tumor suppressor. Furthermore, 
SIAH1 can interact with adenomatous polyposis coli, a 
tumor suppressor gene, and accelerate β-catenin degradation 
(16,17). In HCC, SIAH1 interacts with paternally expressed 
gene 10 (PEG10) to mediate cell death (18). E3 ligases can 
regulate the degradation of tumor promoters or repressors 
and are involved in regulating some common signaling 
pathways in HCC (19,20). Among them, the important 
E3 ligase SIAH1 has a complex function in HCC and 
can be involved in the development and progression of 
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HCC by targeting the Wnt/β-catenin pathway (20). In the 
present study, to further identify the role of SIAH1 on 
HCC, we downregulated SIAH1 with short hairpin RNA 
(shRNA) in the mouse HCC cell line Hepa1-6, studied its 
cell function by using proteome-wide identification, and 
detected alterations in the expression levels of hypoxia-, 
proliferation-, apoptosis-, and autophagy-related proteins. 
Our data raise novel insights for hepatocarcinogenesis and 
treatment of HCCs. We present this article in accordance 
with the MDAR reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-124/rc).

Methods

Cell culture

Mouse HCC cell line Hepa1-6 cells (#SCSP-512) were 
purchased from the Cell Bank of Chinese Academy of 
Sciences (Shanghai, China), and cultured in Dulbecco’s 
modified Eagle medium (DMEM; Keygen Biotech, 
Nanjing, China) supplemented with 10% fetal bovine 
serum (FBS; Beyotime, Shanghai, China) at 37 ℃ under 5% 
CO2. The cell line used for the experiment was the second 
passage cell. 

For SIAH1 knockdown, cells were planted on a 6-well 
plate with the density of 3×105 cells per well. After being 
cultured at 37 ℃ under 5% CO2 for 24 hours, cells were 
treated with shRNA targeting cellular SIAH1 using 
Lipofectamine® 2000 transfection reagent (Thermo Fisher, 
Waltham, MA, USA) according to the manufacturer’s 
instructions. The shRNA sequence against SIAH1 was (5' 
to 3') CCTTGTAAATATGCCTCTTCT.

The cells transfected with green fluorescent protein 
(GFP) served as a negative control. After 24 hours, cells 
were collected for the subsequent experiment. 

Protein extraction

Frozen samples were lysed with 300 µL lysis buffer 
supplemented with 1 mM phenylmethylsulfonyl fluoride 
(PMSF), followed by centrifugation at 12,000 g for  
15 minutes at 4 ℃. After removing the insoluble particles 
and other precipitation, the proteins were collected from the 
supernatant, and proteins of each sample were acquired and 
separated by 12% sodium dodecyl sulfate polyacrylamide 
gel electrophoresis (SDS-PAGE), and equal amount of 
protein was collected for the following experiment. Before 
storage at −80 ℃, the protein concentration was detected 

by using the bicinchoninic acid (BCA; Thermo Fisher) 
method.

Western blotting

Proteins in cell and liver samples were extracted with 
radioimmunoprecipitation assay (RIPA) buffer. Proteins 
were separated by SDS-PAGE according to standard 
procedures. Polyvinylidene fluoride (PVDF) membranes 
were closed with 5% skimmed milk powder for 2 hours at 
room temperature and then incubated with death-associated 
protein 1 [DAP1; 2282S; Cell Signaling Technology (CST), 
Danvers, MA, USA], RGS3 (66790-1-Ig; Proteintech, 
Rosemont, IL, USA), UBE2Q2 (12581-1-AP, Proteintech), 
H1-2 (19649-1-AP, Proteintech), and β-actin (81115-1-
RR, Proteintech) antibodies overnight at 4 ℃. The next 
day, the membranes were washed with membrane wash and 
incubated with secondary antibodies at room temperature 
for 2 hours. The target bands were visualized by enhanced 
chemiluminescence (ECL) solution after membrane 
wash and the relative expression of the target bands was 
quantified by Image J (National Institutes of Health, 
Bethesda, MD, USA) using β-actin as the internal reference.

Trypsin digestion

For trypsin digestion, a protein sample was reduced via 
reducing buffer [10 mM dithiothreitol (DTT), 8 M urea, 
100 mM triethylammonium bicarbonate (TEAB), pH 8.0] 
and incubated at 60 ℃ for 1 hour. After cooling at room 
temperature, the protein sample was treated by indole-3-
acetic acid (IAA) with the final concentration of 50 mM in 
darkness at room temperature for 40 minutes. The protein 
sample was then diluted by 100 μL 300 mM TEAB and 
centrifuged at 12,000 rpm for 20 minutes and this step was 
repeated twice. After washing, the samples were incubated 
with 100 μL 300 mM TEAB and followed with 3 μL 
sequencing-grade trypsin (1 μg/μL). After digestion at 37 ℃  
for 12 hours, samples were centrifuged at 12,000 rpm for  
20 minutes, and the solutions were collected and lyophilized.

Nano liquid chromatography-tandem mass spectrometry 
(LC-MS/MS) analysis

The lyophilized peptides were re-suspended in 2% 
acetonitrile containing 0.1% formic acid, and 4 μL aliquots 
and then loaded into a ChromXP C18 (3 μm, 150 Å) 
trap column. The chromatography was conducted using 

https://tcr.amegroups.com/article/view/10.21037/tcr-23-124/rc
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an Ekspert nanoLC 415 system (SCIEX, Concord, ON, 
Canada). Briefly, the peptides were carried out with 100% 
solvent A for 5 minutes and then eluted with the gradient 
of 5–85% solvent B over 67 minutes. Mass spectrum (MS) 
techniques were conducted on a Triple TOF 6600 tandem 
mass spectrometer (SCIEX) fitted with a Nanospray III ion 
source to acquire tandem data. An Orbitrap Fusion Lumos 
mass spectrometer (Thermo Fisher) coupled to EASY-nLC 
1000 was conducted to performLC-MS/MS analysis. A total 
of three individual biological replicates were performed on 
each sample. 

Enrichment of phosphopeptides

To enriched phosphopeptides, titanium dioxide beads 
(TiO2) was used. Briefly, samples were centrifuged at 
12,000 rpm for 3 minutes, the precipitate peptides were 
collected and resolved using enrichment kit loading buffer. 
After vortex for 15 minutes, the fluid on the wall was 
collected by centrifuge, and then the TiO2 beads were added 
(protein:TiO2 =1:4, m/m) and vortex for 15 minutes. The 
sediment was collected after centrifugation, and 400 µL wash 
buffer 1 [0.5% trifluoroacetic acid (TFA)/50% acetonitrile 
(can)] was added. After centrifugation, the sediment was 
washed by 10% NH3·H2O, and the phosphor-peptides were 
washed off in the solution. The final enriched phosphor-
peptides solution, which could be vacuum concentrated for 
further use, was collected followed by centrifugation for  
5 minutes at 12,000 rpm. 

Enrichment of ubiquitin-modified peptides

Ubiqu i t in-modi f i ed  pept ide s  were  d i s so lved  in 
immunoaffinity purification (IAP) buffer at pH =8.0, 
consisting of 50 mM NaCl, 50 mM Tris-HCl, 1 mM 
ethylenediaminetetraacetic acid (EDTA), and 0.5% NP-40.  
Afterward, the solution was incubated by anti-K-ε-GG 
antibodies crosslinked on agarose beads from PTMScan 
Ubiquitin Remnant Motif Kit (Cell Signal Technology, 
USA). After centrifugation, the beads were washed with 
intragenic antimicrobial peptide (IAP) and double-distilled 
H2O (ddH2O) twice times, individually. After elution with 
0.1% trifluoroacetic acid, peptides were vacuum-dried and 
stored at −80 ℃ for LC-MS/MS analysis.

Bioinformatic analysis

Differently expressed proteins (DEPs) were identified 

with a reference threshold: fold change =1.2 and P value 
<0.05. Gene Ontology (GO) analysis was performed via 
the Gene Ontology Database (http://www.geneontology.
org) using Blast2GO (version 3.3.5). GO functions of 
DEPs including biological process (BP), molecular function 
(MF), and cellular component (CC) were analyzed. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment of DEPs was conducted to analyze the main 
functional pathways. KAAS (https://www.genome.jp/
tools/kaas/) was used to annotate the KEGG database, 
and KEGG Mapper was used to map the annotation result 
on the KEGG pathway database (https://www.genome.
jp/kegg/). The Motif-X software (http://meme-suite.org/
tools/momo) was used to find conserved Lys ubiquitination 
motifs. 

Statistical analysis

Data were expressed as mean ± standard error of the mean 
(SEM) and analyzed using GraphPad Prism 6.0 (GraphPad 
Software, San Diego, CA, USA). The in vitro experiments 
were repeated at least 3 times. Comparisons between two 
groups were performed with unpaired 2-tailed Student’s 
t-tests. A P value <0.05 was considered statistically different.

Results

DEPs in the Hepa1-6 cells in response to sh-SIAH1 

In this study, a total of 550 DEPs were identified in Hepa1-6  
cells between SIAH1 knockdown and GFP groups by 
proteome analysis, including 263 upregulated and 287 
downregulated DEPs (Figure 1A). The detailed DEPs are 
provided in the Tables S1,S2. Furthermore, we validated 
the expressions of representative DEPs by western blotting. 
Congruent with the expectations, SIAH1 knockdown 
inhibited the protein level of DAP1, RGS3 (regulator of 
G-protein signaling 3), and UBE2Q2 (ubiquitin conjugating 
enzyme E2 Q2), and promoted H1-2 (histone H1.2) protein 
level (Figure 1B). For functional analysis, the KEGG 
enrichment mostly attributed DEPs candidates to 40 
pathways, including the top 20 upregulated DEPs, and the 
top 20 downregulated DEPs. As illustrated in Figure 1C,  
KEGG enrichment of upregulated DEPs mainly annotated 
in ‘alcoholism, autophagy-animal, coronavirus disease-
COVID-19, oocyte meiosis, progesterone-mediated oocyte 
maturation, ribosome’; whereas downregulated DEPs were 
significantly enriched in ‘estrogen signaling pathway, focal 
adhesion, human cytomegalovirus infection, pathways 

http://www.geneontology.org
http://www.geneontology.org
https://www.genome.jp/tools/kaas/
https://www.genome.jp/tools/kaas/
https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
http://meme-suite
https://cdn.amegroups.cn/static/public/TCR-23-124-Supplementary.pdf
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Figure 1 Comparative analyses on differentially expressed genes in Hepa1-6 cells in response to SIAH1 knockdown. (A) Number of DEPs 
in response to SIAH1 knockdown. (B) Protein levels of DAP1, RGS3, UBE2Q2, and H1-2. (C) KEGG enrichment for upregulated DEPs. 
(D) KEGG enrichment for downregulated DEPs. (E) GO enrichment analysis for downregulated DEPs. (F) GO enrichment analysis for 
upregulated DEPs. *, P<0.05; **, P<0.01 vs. SH-GFP. DEPs, differently expressed proteins; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; GO, Gene Ontology; COVID-19, coronavirus disease 2019; ECM, extracellular matrix. 
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in cancer’ (Figure 1D). GO enrichment analysis showed 
that the downregulated DEPs were mostly enriched in 
cell division under the subcategory of BP. As for CC, 
DEPs showed enrichment in nucleolus. MF showed that 
those genes predominantly enriched at DNA binding 
(Figure 1E). Meanwhile, the upregulated DEPs were 
predominantly involved in negative regulation of neuron 
differentiation under the subcategory of BP, cell surface 
under the subcategory of CC, and integrin binding under 
the subcategory of MF (Figure 1F). 

Ubiquitination sites and motifs in the Hepa1-6 cells 

To further understand the structural context of Hepa1-6 
cells in response to sh-SIAH1, we first examined the amino 
acid sequences around the modified lysine residues. Herein, 
we found that among 696 peptides, 7 were conserved 
motifs, which were designated as ……T…K……, ……
L..K……, ……AK……, ……LK……, ……SK……, ……
TK……, ……K.L……..(Figure 2A). Those ubiquitination 
motifs showed different abundance, and ……K.L…… was 
widely distributed, followed by ……L..K…… and ……
LK……. (Figure 2B). 

Next, ubiquitylomic analysis was performed. Functional 
analysis showed that GO identification enriched those 
ubiquitinated proteins in ubiquitin-dependent protein 
catabolic process under the subcategory of BP, cytosol 
under the subcategory of CC, and identical protein 
binding under the subcategory of MF. Among which, the 
proteins targeted for ubiquitination were predominantly 
involved in the subcategory of CC (Figure 2C). To obtain 
insights into KEGG enrichment, those ubiquitinated 
proteins were mainly enriched in amyotrophic lateral 
sclerosis, coronavirus disease, endocytosis, pathways 
of neurodegeneration, ribosome, and other processes  
(Figure 2D). Subcellular localization prediction presented 
that those ubiquitinated proteins were mainly distributed in 
the cytoplasm, nucleus, and plasma membrane (Figure 2E). 

Proteomic and ubiquitylomic analyses on proteins of 
different patterns 

To further elucidate the regulation of ubiquitinated proteins, 
we performed integrative analyses on the proteome and 
ubiquitylome data. As shown in Figure 3A, within the 1,287 
ubiquitinated proteins, 1,210 proteins overlapped with the 
proteins identified from the proteome. Furthermore, the 
1,287 ubiquitinated-proteins and 263 up-regulated DEPs 

were identified, 38 of which were overlapped (Figure 3B). 
In addition, among 1,287 ubiquitinated proteins and 287 
down-regulated DEPs, 27 were down-regulated and also 
ubiquitinated (Figure 3C).

Functional analysis of ubiquitinated proteins 

To further conduct the functional analysis of ubiquitinated 
proteins, GO enrichment analysis on the proteome and 
ubiquitylome data were performed. As shown in Figure 4A,  
the main GO functions associated with proteome and 
ubiquitylome under the subcategory of BP were enriched 
in negative/positive regulation of transcription by RNA 
polymerase II, and apoptotic process (Figure 4A). Under 
the subcategory of MF, the ubiquitinated and proteomic 
proteins were mostly enriched in the identical protein 
binding, ATP binding, and metal ion binding (Figure 4B).  
Moreover, the ubiquitinated and proteomic proteins 
were mostly enriched in the cytoplasm, cytosol, and 
nucleus under the subcategory of CC (Figure 4C). The 
KEGG analysis indicated that the ubiquitinated and 
proteomic proteins were mostly enriched in the pathways 
of neurodegeneration-multiple diseases, and amyotrophic 
lateral sclerosis (Figure 4D).

Discussion

Treatment for HCC at the initial stage includes surgery, 
radiotherapy, and chemotherapy; there are limited 
treatments for patients at advanced stage. However, 
most HCC patients are diagnosed at advanced stage, 
leading to the high mortality rate. In addition, the high 
rate of recurrence and metastasis also contribute to the 
poor prognosis. Therefore, there is an urgent need to 
explore novel prognostic molecular markers and search 
for potential effective therapeutic insights for HCC to 
improve patients’ OS rate. Recently, the development of 
high-throughput identification followed by high-resolution 
mass spectrometry analysis has made it possible to enrich 
the novel proteins in various diseases. Therefore, it is 
interesting to identify the functional importance of HCC-
related novel and specific protein by using high-throughput 
identification.

Ubiquitination reaction is involved in various human 
physiological processes, such as embryogenesis, cell 
growth, and oxidative stress. The abnormal response of 
ubiquitination often leads to important events such as 
tumorigenesis (21,22). The mass spectrometry (MS)-
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Figure 2 Sequence characteristics of ubiquitinated proteins in Hepa1-6 cells in response to SIAH1 knockdown. (A) Conserved motifs of 
ubiquitinated proteins. The middle K represents ubiquitinated Lys, and the height of each letter indicates the frequency of amino acid 
residues at this position. The capital letter E represents glutamate (Glu); the capital letter D represented aspartic acid (Asp); and the capital 
letter G represents glycine (Gly). (B) Number of identified peptides containing the indicated ubiquitinization motifs. (C) GO enrichment 
analysis of the ubiquitinated protein substrates. (D) KEGG enrichment of the ubiquitinated proteins. (E) Predicted subcellular localization of 
the ubiquitinated proteins. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; COVID-19, coronavirus disease 2019.
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Figure 3 Comparative analysis on the differentially expressed genes and ubiquitinated proteins. (A) Venn diagrams between total identified 
proteins and ubiquitinated sites. (B) Venn diagrams of the connection between upregulated DEPs and ubiquitinated proteins. (C) Venn 
diagrams of the connection of between downregulated DEPs and ubiquitinated proteins. DEPs, differently expressed proteins.

Figure 4 Analysis of ubiquitinated proteins compared to global proteome. Top 20 GO enrichment between ubiquitinated proteins and 
global proteome in (A) biological process, (B) molecular function, and (C) cellular component. (D) Top 20 KEGG pathways between 
ubiquitinated proteins and global proteome. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; COVID-19, 
coronavirus disease 2019.
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based high-throughput proteomic approach is a crucial 
technique for large-scale protein characterization, 
and could quantify peptides or intact proteins, which 
make it possible for the research into basic biology on 
human disease. Ubiquitination analysis based on the 
high-resolution LC-MS/MS has allowed researchers 
to systematically comprehend the potential biological 
mechanism. Ubiquitination is a critical post-translational 
protein modification on regulating the lysine modification 
sites. Further, ubiquitination sites and the E3 ligases might 
act as the attractive therapeutic targets (23,24). In addition, 
hundreds of E3 ligases mediate the function and structure 
of its target proteins, and E3-substrate interactions often 
induce target degradation. In recent years, a number of 
different degradation signals have been identified to analyze 
ubiquitinated protein targets (25). In the present study, to 
identify the role of E3 ligases on HCC, we selected SIAH1 
as the target E3 ligase, and found that SIAH1 knockdown 
in Hepa1-6 cells altered 550 proteins. Functional analysis 
illustrated that those proteins were mainly enriched in 
the diseases, and located at the CC. These data indicated 
that these processes are regulated by SIAH1. Additionally, 
to further identify the ubiquitin modification that was 
regulated by SIAH1, the KEGG and GO analysis were 
performed to analyze their function. The results showed 
that ubiquitinated proteins were mostly regulated diseases, 
and manifested cytosol, cytoplasm, and nucleus. The 
results further confirmed that E3 ligases mediated various 
human diseases, which could be considered as a therapeutic 
target for further clinic treatment (26). The functions of 
ubiquitinated proteins were reported to relate to their lysine 
modification sites. Herein, SIAH1 knockdown altered great 
ubiquitination motifs with different abundance, and motif 
analyses of peptides showed that ……KL…… was widely 
distributed, followed by ……L..K…… and ……LK……., 
indicating that SIAH1 modulates HCC by mapping the 
lysine modification sites. 

Taken together, this study revealed that SIAH1 mediates 
HCC by regulating great protein expression, and those 
ubiquitinated proteins are mainly located at the nucleus, 
cytoplasm, and extracellular space. Those ubiquitinated 
proteins are mostly enriched in diseases, protein binding, 
and virus. In addition, the ubiquitinated proteins modulate 
HCC by mapping lysine modification sites. Based on this, 
further study should be conducted to explore the role of 
SIAH1 on HCC in the clinical setting and to search for 
possible mechanisms and potential targets for SIAH1 to 
affect HCC, providing great basis for HCC therapy. 

Conclusions

The use of high-throughput identification followed by 
high-resolution mass spectrometry analysis to identify 
novel and specific targets associated with SIAH1 is of great 
significance for HCC treatments. The results obtained 
in this paper provide novel insights into ubiquitination 
regulation by SIAH1 in HCC, which pave the way for 
further research and mechanism disclosure of HCC.
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