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Controlling Plateau-Rayleigh 
instabilities during the 
reorganization of silicon 
macropores in the Silicon 
Millefeuille process
M. Garín   1, C. Jin   1, D. Cardador1, T. Trifonov2 & R. Alcubilla1

The reorganization through high-temperature annealing of closely-packed pore arrays can be exploited 
to create ultra-thin (<20 µm) monocrystalline silicon layers that can work as cheap and flexible 
substrates for both the electronic and the photovoltaic industries. By introducing a periodic diameter 
modulation along deep etched pores, many thin layers can be produced from a single substrate and 
in a single technological process. Besides the periodicity, the exact shape of the modulation also has 
a profound impact on the process and subtle profile changes can lead to important differences on the 
process outcome. In this paper we study both theoretically and experimentally the effect of the initial 
profile on the pore reorganization dynamics and the morphology of the thin layers obtained through 
annealing. We show that process reliability, annealing time and final layer characteristics, all can be 
engineered and optimized by precisely controlling the initial pore profile.

That a free falling stream of fluid, initially of a constant radius, is inherently unstable and that will eventually 
break into a series of droplets with a characteristic spacing between them is a familiar and well understood effect 
known as the Plateau-Rayleigh instability1–3. Beyond its academic purpose in fluid mechanics, this effect has 
demonstrated to be of great significance in many applications such as ink-jet printing4, microfluidic lab-on-chip 
systems5, 6, drawing of optical fibres7, and the long-term stability of electronic devices8, 9, just to name a few. 
Furthermore, the general underlying principles of this instability has proven to be successful in diverse areas of 
knowledge covering from the very small, governing the instabilities of solid nanostructures and thin films9–12, 
to the very large, having been proposed as an analogy to the Gregory-Laflamme instabilities in black strings13.

A particular case of Plateau-Rayleigh instabilities occurs during the high-temperature annealing of pores 
etched on crystalline Silicon. When the annealing is done under deoxidizing ambient the pores evolve by surface 
diffusion tending to reduce its surface energy, giving rise to instabilities very much like in the case of a fluid cyl-
inder even though the process occurs in solid phase. The result is the formation of one or more bubbles beneath 
the surface maintaining the monocrystallinity of the surrounding Silicon. When a closely packed array of pores 
is annealed, the trapped bubbles can contact laterally collapsing into a spacing layer and creating a free-standing 
high-quality monocrystalline thin layer on top. This process, so-called empty-space-in-silicon (ESS), was devised 
by Mitsushita and Sato14, 15 as an advanced substrate for developing silicon-on-nothing electronic devices. Later, 
Depaw et al. proposed to use it as a kerf-less wafer slicing method, by pealing-off the free-standing monocrystal-
line layer, for developing ultra-thin (1 µm thick) solar cells16, 17.

The ESS method has been primarily used to create a single thin layer per annealing process. If additional layers 
are desired the remaining substrate must be polished and reused, which has serious implications in terms of cost 
and yield. As an alternative we recently demonstrated that deep pores with a particular in-depth pore profile can 
be used to slice a wafer up into multiple thin monocrystalline films in a single technological step18, 19. We termed 
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this process “Silicon Millefeuille” since all produced layers are free standing after the annealing, which can be exfo-
liated into separate thin substrates. In order to produce this all-at-once result, we electrochemically etched very 
deep pores in the wafer with alternating narrow and wide pore diameter sections that develop during the anneal-
ing into the solid and spacing layers, respectively. Electrochemical etching of silicon20 is particularly well suited 
for this purpose as its versatility in terms of in-depth porosity control21 is unmatched. The distinctive Millefeuille 
profile allows defining both the number of layers and their thickness, which does not need to be the same for all 
produced layers. Also, the achievable thicknesses can range from a few microns, like in the ESS technique, to 
tenths of microns, although macro bubbles will appear inside the layer in that last case.

The flexibility offered by the in-depth pore modulation is one of the key features of the Millefeuille process 
that is yet to be fully understood and exploited. In this paper we present a comprehensive study, both theoretical 
and experimental, of the effect of the initial pore profile on the dynamics of the pore transformation during the 
annealing, and how these changes define the outcome of the process. It turns out that the in-depth profile, in 
addition to defining the number and thickness of the produced layers, also has a profound impact on the stability 
of the process, the total annealing time needed, and the final morphology of the layers in terms of bubble for-
mation and surface roughness. Furthermore, we propose that a precisely designed profile can be used to control 
and engineer such layer characteristics, i.e. to control the number, size, and distribution of microbubbles and the 
surface roughness, which would have relevant consequences in their optical behaviour. For instance, especially 
crafted ordered distribution of bubbles within the thin films could act as an integrated light trapping mechanism 
optimized to boost light absorption through both scattering and resonant effects. Last, but no least, we show that 
a strong diameter modulation is not always desirable nor essential to produce multiple layers in a single process, 
opening the possibility to apply deep RIE techniques in the Millefeuille process.

This paper is organized as follows. First of all we will establish the theoretical background by introducing the 
physical model that describes the evolution of cylindrical pores during the annealing and by revising the trans-
formation/evolution of straight pores. This example, will give us an intuitive understanding of certain collapsing 
dynamics that we will find later when dealing with modulated pores. Next, we will present the battery of exper-
iments we have prepared for the study. Three different initial pore shapes have been considered namely square, 
saw-tooth and sinusoidal, with different in-depth modulation periods. The analysis of the resulting structures 
after the annealing will reveal several patterns that will constitute the focus of the paper. These patterns will be 
discussed under the light of numerical calculations.

Theoretical Background
When a crystalline silicon microstructure is annealed at high temperature under appropriate deoxidizing ambient 
(H2 or Ar), it changes its shape in order to reduce its surface free energy. At temperatures below the fusion point, 
this process occurs in solid phase by surface diffusion, maintaining the crystalline nature of the structure. Surface 
diffusion is a process driven by gradients in surface curvature, i.e. surface atoms at high curvature regions present 
a higher chemical potential than atoms at low curvature regions. As a consequence, a flow of adatoms appear, 
from high to low curvature regions, that tends to reduce such differences. This process was studied by Mullins22 
who showed that, for an isotropic material, the surface current of atoms, Js, is described by
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where ∇s denotes the surface gradient operator, h = ½(κ1 + κ2) is the mean curvature being κ1 and κ2 the prin-
cipal curvatures, Ds is the surface self-diffusion coefficient (isotropic), γ is the surface free energy per unit area, 
Ω is the molecular volume and v is the number of atoms per unit area. Notice that this expression is assuming an 
isotropic diffusion behaviour, which is a good approximation for annealing temperatures above 1050 °C23. The 
rate of advance of a surface element in the normal direction, dn/dt, will be proportional to the divergence of the 
current and Ω, leading to the Mullin’s equation for surface diffusion
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The above equations are scale invariant and, therefore, it is convenient get rid of the constants by normalizing 
to a characteristic length a leading to canonical equation
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where N = n/a is the normalized distance normal to the surface, H = ah is the normalized mean curvature, 
τ = tB/a4 is the normalized time, and a is the characteristic length.

In order to simulate the transformation of pores under annealing, we have evolved the Mullins’ diffusion 
equation, Eq. (4), in time using a finite-differences time-domain (FDTD) method assuming cylindrical symme-
try24. This assumption implies that we can simulate the evolution and collapse of a single cylindrical pore with an 
arbitrary profile. On the contrary, we cannot fully explore the dynamics of the layer formation where the collapse 
between neighbouring pores takes place, since the cylindrical symmetry of the pore surface breaks after lateral 
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contact. In any case, as it will be shown in the discussion, through analysis of the evolution and collapse dynamics 
of a single pore it is possible to explain most, either quantitatively or qualitatively, of the features observed.

Before continuing, it is worth analysing what happens when a straight pore in silicon is annealed, since some 
of the behaviours observed in this case will be useful to qualitatively understand what is happening in certain pore 
profiles. An infinite cylindrical pore under the dynamics of surface diffusion is intrinsically unstable to long range 
perturbations following the Rayleigh instability criterion, i.e. it becomes unstable to perturbations with period 
longer than 2πR, where R is the cylinder radius. Thus, a randomly perturbed cylinder will collapse into a random 
string of spherical bubbles with a typical distance between them of λ π= R2 20 , which corresponds to the fastest 

growing perturbation period, and a typical radius πρ = ( ) R20
3
2

1
3 . A similar process occurs in a finite pore 

etched on the surface of silicon, although in this case it is dominated by the strong perturbation that represents 
the ending of the pore. As result, the pore collapses sequentially from both ends into a string of spheres. This 
process is sometimes termed as “ovulation”, since right after the collapse the detached bubble is egg shaped, and it 
is much faster than the growing of random perturbations along the smooth part of the pore. This sequential ovu-
lation leads to a string of uniform spheres as shown in Fig. 1 at the pore end. The distance between spheres is 
λ = 8.19 × R, the radius of spheres is ρ = 1.83 × R and the ovulation period is 0.6 time units provided that we 
considered a = 2R. This pattern is very precise with slight deviations at the first bubble formed at both pore ends, 
which depend on the exact pore start/ending shape. It is remarkable that the pore is particularly unstable at the 
surface and, therefore, it collapses there in less than 0.12 time units (normalized), after which it continues follow-
ing the regular ovulation pattern. Also, at the centre of the pore, where both collapsing fronts meet, one can 
expect to find one or two bubbles that deviate from the regular pattern depending upon whether the pore can be 
split into an integer number of bubbles of the expected natural size.

From the above results it is reasonable to think that a closely packed array of straight deep pores could poten-
tially be used to produce multiple layers in a single process. However, it presents several limitations that hinders 
its practical application, the more important being the fact that the collapsing dynamics scales with the pore 
radius. Any experimental variation in the pore size will directly translate into a proportional variation in the bub-
ble size and in spacing, leading to a cumulative displacement of bubble positions along the pore axis. As a result, 
a slight change on the pores’ diameter over the surface, due to lithography or etching variations, will severely 
limit the number of layers that can be attained with reasonable yield. Another limitation of this approach is the 
lack of degrees of freedom to adjust the process. In fact, the only sensible parameter is the ratio between the pore 
spacing and the in-plane periodicity, which slightly changes the ratio between the thickness of the silicon and 
spacing layers produced, and that should be optimized for robustness. The practical way to change the thickness 
of the layers is by scaling the structure at the expense of annealing time, which grows with the fourth power of the 
scaling factor. For instance, to double the thickness of the final layers we should double the structure and, for the 
same annealing temperature, increase the annealing time by 24 = 16. The pore length only allows the definition of 
the number of layers that would be produced.

Experimental Details
Instead of using straight pores and relying on the ordered sequential pinching of the pores from the extremes, in 
the Millefeuille process we artificially set a diameter profile along the pore axis that defines the collapsing 

Figure 1.  (left) Rayleigh instability in an infinite cylindrical pore. (right) Instability in a finite pore.
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dynamics of the pore18, 19. The amplitude of the diameter modulation must be wide enough so as to prevail over 
both the natural instability period λ π= R2 20  and the sequential pinching at the pore endings. In such case, the 
formation of layers and spaces, both in size and number, can be fully controlled through the specific initial profile. 
Since the collapse of the pore occurs simultaneously all over the pore, much like in the collapse of an infinite pore 
due to the Rayleigh instability, there are no accumulative errors during the annealing. In other words, the varia-
bility of the fabricated porous structure does not get amplified during the annealing as it is the case in purely 
straight pores. Furthermore, the introduction of a diameter modulation along the pore introduces new degrees of 
freedom to control and fine tune the process. This pore modulation can be periodic and low-amplitude, in which 
case it can be analysed as a perturbation that gets amplified, or it can have a large amplitude and profit from the 
non-linearity of the pinching process.

In order to gain an understanding of the main effects involved during the transformation of deep modulated 
pores, and the formation of layers, we have realized a set of experiments with different initial profiles that shall be 
described first. In particular, we have electrochemically etched a total of nine silicon samples comprising the com-
binations of three different profile shapes and three different in-depth modulation periods. The profiles include, 
according to the pore radius-vs-depth function, a square profile, a saw-tooth profile, and a sinusoidal profile. The 
rationale behind these three different profiles is the following. The square profile, on the one hand, serves as an 
example of a strongly modulated pore with sharp diameter changes. The sinusoidal profile shows the diamet-
rically opposite case, a very smoothly modulate pore. Finally, the saw-tooth profile will help us to understand 
the effect of introducing an asymmetry on the modulation of the pore. For each pore shape we have processed 
three different samples with modulation period, Lz, of 8 µm, 12 µm and 16 µm, while the number of modulation 
cycles is 7 for all produced samples. In the plane, pores follow a perfect square lattice with an in-plane periodicity 
Λ = 2 µm. Besides fabrication inaccuracies, all samples have been designed targeting a minimum pore diameter 
dmin = 0.5 µm, a maximum pore diameter dmax = 1.5 µm and an average pore diameter of dav = 1 µm. Finally, all 
samples have been annealed 3 h at 1200 °C in Argon ambient.

Figure 2 shows side by side scanning electron microscope (SEM) images of the cross section, cleaved side, 
of all processed samples before and after the annealing. The obtained pore profiles, right after the etching, are 
faithful enough reproductions of the intended shapes, although the sharp diameter transitions in the square and 

Figure 2.  Scanning electron microscope (SEM) images, cross-section view, of samples with different pore 
profile before and after the high-temperature annealing. The scale bar, common to all panels, represents 10 µm.
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saw-tooth profiles are limited by the fabrication method. Notice also that, in the case of the samples with square 
profile, the produced samples exhibit an imbalance between the narrow and wide pore sections, the former being 
shorter than the later, even though we initially intended both to be the same in all three periodicities. This subtle 
deviation will be pointed out again later, during the discussion, as it can lead to different results.

After the 3 h annealing all samples but one successfully transformed into a stack of free standing layers, several 
patterns emerging in the final structures that can be correlated to both the pore shape and the modulation perio-
dicity. The results show that the square profile tends to produce silicon thin layers with a buried plane of ordered 
macro bubbles. These bubble planes, however, do not form for small enough modulation periodicities, while for 
long modulation periods it becomes a layer of elongated spheroids but, in any case, they always appear at the cen-
tre of the produced layer. On the other hand, the saw-tooth profile leads to the formation of bubbles that are not 
centred in the layer and that tend to be larger and partially collapsing into a percolating void layer. Furthermore, 
as the period becomes longer, the layer tends to trap bubbles of different sizes. Finally, the sinusoidal profile tend 
to produce layers with none or a few randomly distributed bubbles even though bubbles eventually appear for 
large Lz values, randomly distributed and not forming a definite bubble plane. Also, it seems that the anneal time 
increases as the modulation period increases for the sinusoidal profile, since the layers are not fully formed for 
Lz = 16 µm and 3 h of anneal time.

Discussion
To shed light on the experimental results, we have first calculated the time evolution of the modulated pores 
subjected to transformation by surface diffusion; the simulation results are shown in Fig. 3. The basic parameters 
of the starting pore geometries are dmin = 0.5a, dmax = 1.5a and, in the case of the square profile, lmin = lmax = ½Lz, 
which, fabrication inaccuracies aside, match the targeted experimental profiles with a = 1 µm. Evolutions are 
shown as a series of pore snapshots at carefully selected instants of time. Notice also that, for the sake of compar-
ison, profiles with the same Lz value share the same timestamps so that differences in the evolution rate between 
them can be better observed.

In what follows we will discuss for each of the analysed profiles the main aspects related to the reorganiza-
tion process, i.e. the pore collapse, the spacing and the surface roughness of the resulting layers. Finally we also 
get some insight into the annealing time needed with each profile by comparing the times needed to collapse 
(pinch-off) and the time needed for bubbles to contact laterally (coalescence).

Pore collapse.  Square profile.  This is the original profile shape reported in the Millefeuille technique. It 
consists of a porous structure alternating narrow and wide pore diameter sections with an abrupt transition, 
which are expected to transform into the solid and spacing (empty) layers, respectively. The basic idea behind this 
profile was to modulate the diameter as much as possible, i.e. alternating between diameters close to zero to diam-
eters close to the in-plane periodicity, so as to minimize the amount of silicon that must be moved by diffusion 
and, therefore, the annealing time. As shown in the simulations (Fig. 3), the narrow pore section collapses very 
quickly, in less than 0.05 time units with independence of Lz, trapping an elongated void that eventually develops 
into one or more bubbles depending on the modulation length. After the collapse, the wide pore section develops 
in a similar fashion into a large bubble, although in a much longer time. These large elongated bubbles contract 
and become spherical, eventually touching and coalescing with the neighbouring ones. Since all lie in a periodic 
matrix along a plane, this leads to the formation of the empty layer.

The structural evolution of the square profile can be understood as the evolution of two cylinders of different 
diameter, which evolve at different speeds due to their different scale. First of all, the narrow sections tend to 
pinch-off very quickly at the ends, fostered by the abrupt diameter change at the interface between the sections, 
effectively separating the narrow and the wide pore sections, which further evolve and spheroidize independently. 
Each section will pinch-off into one or more bubbles depending on the length to diameter ratio (lmin/dmin and 
lmax/dmax), larger ratios leading to pinching into a greater number of bubbles. The wide diameter section should, 
by design, evolve into a single large spherical bubble that would lead to the correct formation of the spacing layer 
by coalescence with the neighbouring ones, this normally happening before actually transforming into a perfect 
sphere, as already mentioned.

Due to the large lmin/dmin value characteristic of this profile, the final layers obtained usually contain a perfectly 
2D or 3D arrangement of bubbles symmetrical with respect the centre of the layer. In the plane these bubbles 
follow the initial arrangement of the pores, while in the vertical direction they are periodically spaced as dictated 
by the periodic pinching of a finite straight pore, i.e. roughly λ = 4.1 × dmin. It must be emphasized that for a fixed 
lmin value, i.e. for a targeted layer thickness w ≈ lmin, the trapped bubbles can be adjusted by controlling dmin and 
the total annealing time. On the one hand, size, spacing and number of spheres will depend on dmin; for instance, 
a perfectly 3D cubic arrangement of bubbles can be obtained by choosing dmin = Λ/4.1. On the other hand, by 
precisely controlling the annealing time it is possible to frustrate the complete spheroidization of the narrow pore 
without impeding the formation of the spacing layer, what allows to control the shape of the trapped bubbles and 
produce, for instance, peanut-shaped bubbles or large cylindrical voids.

Depending on the application, the appearance of bubbles may or may not be desired. In the later case, bub-
bles can be avoided by choosing lmin/dmin ratios low enough so that the closing dynamics does not allow trap-
ping a bubble. This, can be accomplished in two ways namely reducing lmin (i.e. producing thinner final layers) 
or increasing dmin. As we increase dmin, however, the contrast between the two porous regions reduces and the 
dynamics of the pore evolution departs from the simple two independent sections. It becomes, in fact, much more 
similar to the evolution of a straight pore with a shallow perturbation on the diameter and, since the changes in 
curvature are reduced, the time required by the perturbation to grow and pinch the pore increases noticeably. 
Figure 4 shows a computed diagram with the dmin vs. lmin regions that lead to the formation of a layer without, or 
with one or more bubbles. For this computations we assumed a fix dmax = 1.5 and lmax = lmin in order to allow a 
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straightforward comparison with the rest of the studied profiles. As the figure shows, the boundaries between the 
regions are nearly straight lines and, as a result, can be effectively approximated through a defined lmin/dmin ratio 
(solid lines in the figure).

Saw-tooth profile.  The standard square Millefeuille pore allows to introduce bubbles inside the layers exhibiting 
a mirror symmetry with respect to the centre plane of the final layers. This is, in fact, a direct consequence of the 
mirror symmetry that exhibits the profile itself. Further control on the bubbles forming inside the layer can be 
achieved by breaking this symmetry, for instance, by using a saw-tooth pore profile. This profile is composed of 
tapered sections with a fast transition between them, similar to the fast diameter change in the square profile. As 
it can be seen in Fig. 3, during the transformation this profile quickly pinches at the sudden diameter transitions 
and, then, each modulation period transforms into a string of spheres of decreasing size following the progres-
sive change of the profile diameter, the total number of bubbles depending on the modulation length. Ideally, 
the in-plane periodicity should be adjusted so that only the bigger of these bubbles get involved in the spacing 
layer formation. The resulting layers produced with this profile will present a variable number of inner bubble 
planes, even null for small periodicities, much like the square profile but breaking the mirror symmetry. In the 
case of a single bubble plane, this will not be in the centre of the layer, but will be closer to one of the surfaces. 

Figure 3.  Structural evolution by surface diffusion, snapshot sequences, of infinitely-long modulated pores 
with different initial pore shape and different in-depth modulation periodicity, Lz. For all calculations, 
dmin = 0.5a and dmax = 1.5a.
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Larger periodicities develop into multiple bubble planes featuring different bubble sizes as shown in the numer-
ical calculations.

An important characteristic of the string of bubbles obtained after annealing this kind of pores is that the 
two largest bubbles have relatively similar sizes, what makes this profile prone to certain problems. In particular, 
since the pores must be close enough so that the plane with the largest bubbles can coalesce and transform into 
the spacing layer, this implies that the plane with second largest bubbles will be very closely packed and also 
close to coalescence. In the experiments it turns out that this plane of bubbles ends up partially, and randomly, 
coalescing and producing a percolating porous buried plane instead of a buried plane of isolated bubbles. This 
can be observed in Fig. 2 for Lz = 8 µm and Lz = 12 µm. It is also worth noting that the asymmetry on the trans-
formation dynamics can also introduce an asymmetry on the surface finish of the layers. For certain modulation 
lengths, the expected plane of large bubbles is very close to the top surface and do not form cleanly, inducing a 
large surface roughness. On the other hand, this problem is not present on the bottom surface, which forms and 
reaches a much planar condition in the same annealing time. This can be clearly observed in Fig. 2 for Lz = 16 µm. 
Obviously, much longer annealing times should end up planarizing also the top rougher surface.

Sinusoidal profile.  As we have discussed in the previous section, the square and saw-tooth profiles tend to 
quickly pinch-off trapping bubbles inside the final layer. Although it is possible to tweak the profile in order to 
minimize the formation of bubbles, it comes at the expense of either reducing the modulation length, which 
limits the thickness of the layer, or reducing the modulation amplitude, which makes the total annealing time 
larger. It turns out that a pore modulation profile that is particularly suitable for avoiding bubble trapping is the 
sinusoidal profile. A sinusoidal profile resembles a grown-up perturbation just before entering the non linear 
dynamics of the pore pinch-off. As a result, it nicely induces a transformation dynamics that lead to the formation 
of bubble-free layers, as calculations show in Fig. 3 for all Lz values shown. During the transformation, the profile 
pinches-off at the minimum radius point and, right after this moment, the pore resembles an ideally tapered cyl-
inder, which helps avoiding the formation of small bubbles during its reorganization24.

Numerical calculations show that a single sinusoidal pore with dmin = .5a and dmax = 1.5a will correctly col-
lapse into a single bubble per period for modulation lengths up to l = 20a. In principle, this would allow to easily 
produce bubble-free layers with thickness wSi above 15a for Λ = 2a (a = 1 µm in the experiments). This is not fully 
consistent with the experimental results since a few bubbles start to get trapped at Lz = 12 µm and plenty of them, 
randomly distributed, are formed at Lz = 16 µm (see Fig. 2). There are, however, other effects that come into play 
at those large modulation lengths and that limit this behaviour. First of all, at large modulation lengths the pores 
become very smooth and the regions around the minimum diameter point starts to locally resemble a straight 
pore. In this situation, the roughness and imperfections of the real pores trigger Rayleigh instabilities similar to 
that of a straight pore, randomly trapping bubbles inside the layer, as observed in the experiments. As a result, 
a smooth profile such as the sinusoidal can be used to induce the formation of a pseudorandom distribution of 
bubbles inside the layer.

Spacing layer and layer roughness.  In the previous paragraphs we have covered the details of the pore 
collapsing, and bubble trapping inside the final layers. The dynamics of the bubble sintering and empty layer 
formation, on the other hand, also has an impact on the properties of the layers, especially on their surface. As 
one can see in Fig. 3, once the pore pinches off, the trapped section tends to contract and spheroidize, progres-
sively becoming wider. When neighbouring bubbles touch laterally the pore walls dissolve introducing very high 

Figure 4.  Map showing the regions where layers form with different number of bubbles trapped inside 
assuming dmax = 1.5a and lmax = lmin. Threshold points were numerically calculated using an automatic search 
algorithm. Solid lines, crossing the origin, represent constant lmin/dmin ratios fitting the points.
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curvatures around the opening edges, triggering the process of bubble coalescence and spacing layer formation, 
which occurs very quickly.

Depending on the exact initial conditions (pore shape, modulation length Lz, and in-plane spacing), the exact 
shape of the voids when the coalescence process begins can lead to different results. Let us take the square profile 
as an example. Right after pinching, the larger void is mostly cylindrical and its transformation into a spherical 
bubble can go through an intermediate peanut shape depending on the initial length of the void (Lmax). This inter-
mediate peanut shape is nearly inappreciable for short Lmax values (short Lz), but becomes evident for larger Lmax 
(large Lz). See, for instance, the extreme peanut shape appearing in the square profile for Lz = 16 at one unit time 
in Fig. 3. As a result, two situations can be distinguished. First, the bubbles can contact laterally through the cen-
tre when they have become nearly spherical, what typically occurs for short Lz values and for optimized in-plane 
spacing. This is an ideal case that leads to a clean coalescence of the bubble plane leading to the formation of layers 
with smooth surfaces, as the experiments show for Lz = 12 µm (see Fig. 2). Second, for larger Lz values, it can hap-
pen that the voids contact laterally with a peanut shape which, in essence, means that they contact at the extremes. 
When this happens the dynamics of the sintering tends to become random, since it is undetermined whether the 
coalescence will start at the top or the bottom of the peanut, leading to the formation of rough surfaces such as it 
happens for in the experiments for square profile at Lz = 12 µm and Lz = 16 µm. In some particular cases, even a 
spurious thin layer can form in the middle of the spacing layer. Figure 5 shows in a SEM image, cross section, of 
a sample before, after 35 min. annealing and after 90 min annealing, in which a spurious layer forms. The image 
after 35 min confirms that this profile forms a peanut shape that contact at the extremes.

The above discussion explains the increased layer roughness as Lz increases that is observed in the experi-
ments for the square profile. In fact, the layer roughness can be controlled independently of the layer thickness 
by appropriately choosing Lmax. According to the results, a smooth surface will be easily obtained for, roughly, 
Lmax < = 5 µm, whereas a rougher surface will be obtained for larger values. Alternatively, the experiments show 
that the sinusoidal profile always seems to produce much smoother surfaces than the square profile. This is also 
explained by the particular transformation and coalescence dynamics occurring in the sinusoidal profile. As the 
simulations show, right after the pore pinch-off the trapped void has a particular smooth shape that progres-
sively sharpens toward the edges. That kind of shape tends to evolve into a big bubble with minimal intermediate 
“peanut” shape, as opposed to the square profile. As a result, the sinusoidal profile not only prevents the bubble 
formation inside the layer, but also favours a correct spacing layer formation and smooth surfaces.

As opposed to the sinusoidal profile, which tends to avoid the peanut shape, the saw-tooth profile tends to 
favour it. This can be seen in Fig. 3 where, for Lz = 8 µm, the saw-tooth profile already forms a nice peanut bub-
ble after 0.5 time units. However, in this case the bubble is asymmetrical and, as a result, the contact point will 
always be in a clearly defined plane, at the wider point of the bubble. However, during the coalescence process the 
high curvatures appearing on the walls tend to favour the collapsing of the structure producing a buried bubbles 
plane that is not predicted in the calculations shown in Fig. 3. For instance, the buried bubble layer present in the 
experiments for Lz = 8 µm would be explained by that fact. When this buried layer forms, both surfaces of the final 
layers achieve a smooth surface with the typical annealing time. For certain profile parameters, particularly as Lz 
increases, the buried bubble layer do not form, or form randomly, producing a highly rough surface in the oppo-
site surface. We believe that this is what occurs in the experimental saw-tooth profile for Lz = 16 µm, resulting in 
an asymmetric layer with one smooth surface and another rough.

Figure 5.  Cross-sectional view SEM images of different samples with identical starting profile after different 
annealing times, revealing the evolution of a structure with a large separation void which develops into a 
spurious layer. Scale bar is 5 µm.
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Modulation amplitude and annealing time.  In order to study the effect of the initial pore profile on the 
annealing time we define two characteristic times regarding the pore transformation process namely the pinch-off 
time and the coalescence time. The pinch-off time, i.e. the time needed until the pore collapses, carries informa-
tion about the minimum time needed for the solid layer to form whereas the coalescence time, i.e. the time until 
the diameter of the pore reaches the pitch value at some point, carries information about the minimum time 
needed for the spacing layer to form. Since the pinch-off always happens first, the coalescence time also carries 
information about the minimum time needed for the whole process. The actual time needed will be, in any case, 
higher than the coalescence time and will vary depending on the level of smoothness desired on the surfaces but, 
nevertheless, the pinch-off and coalescence times offer a proper framework to compare the effect of the different 
parameters of the profile.

Let us start by looking at the evolution of those times as a function of the modulation amplitude (dmax − dmin) 
for a fixed values of the average pore diameter, dav = 0.5 (dmax + dmin) = 1.2a, and the pore modulation period 
along the z axis, Lz = 8a (see Fig. 6, left) and considering an in-plane period Λ = 2a. As a general rule, the evo-
lution slows down as the profile get smoother and curvatures soften. Therefore, both times (pinch-off and coa-
lescence) decrease as dmax − dmin increases, although the reduction of the pinch-off time is much more dramatic 
since the minimum diameter becomes very small for large dmax − dmin values. By the same principle, the sinusoidal 
profile always show the longer pinch-off and coalescence times since it exhibits the lower curvature changes for 
a given modulation amplitude. Conversely, the square profile show the shortest times in most of the calculated 
range since it presents the greatest curvature changes.

Let us now focus on the evolution of both pinch-off and coalescence times as a function of Lz, shown in the 
right panel in Fig. 6. When the modulation length increases the only profile becoming clearly smoother is the 
sinusoidal and, as a consequence, the corresponding pinch-off and coalescence times increase. On the contrary, 
for either square and saw-tooth profiles the abrupt diameter changes are independent of Lz and, therefore, the 
pinch-off times remain approximately constant. With regard to the coalescence times, they also tend to reach 
a constant value for large Lz values, although it peaks at a higher time value for lower Lz values. The reason for 
this is that for large Lz values the coalescence occurs always through a peanut-shaped bubble, which leads to a 
coalescence time independent of Lz. For low Lz values, however, the coalescence occurs through the equator of a 
spherical shaped bubble and the time increases with Lz. At the transition between these two coalescence regimes, 
a maximum time is observed. It is worth noticing that the transition from a spherical to a peanut coalescence 
domain implies a reduction in time that can be rather abrupt. Also, a change in the number of trapped bubbles 
inside the solid layer also can lead to features in the time curves, which can lead to rather complex pinch-off and 
coalescence curves.

Finally it should be noted that, for periodically modulated pores, either collapse or coalescence occurs all 
along the pore at the same time, whereas in an initially straight pore the profile evolves starting from the extremes 
(Fig. 1). In fact, sequential spheroidization through the pore extremes occurs at the same time during the trans-
formation of periodically modulated pores. Taking as a reference a straight pore with a diameter equal to the 
average diameter, dav = 1.2a, the ovulation time would be, roughly, 1.24 time units. This time is shown as a dotted 
line in both panels in Fig. 6 for reference purposes. To avoid interferences from this effect, especially on the first 
and last layers that are closer to the pore ends, the collapse time should be smaller than the ovulation time. As it 
can be seen in Fig. 6, this is normally the case except for very shallow modulations. This, in effect, sets the mini-
mum modulation amplitude that can be used in the process. Roughly, a modulation amplitude down to the range 
0.22a–0.34a can be used, with the square profile exhibiting the lowest amplitude modulation. Furthermore, as the 
calculations show, it is reasonable to use this lower modulation amplitudes without incurring in excessively high 
coalescence times. For instance, in the particular case shown in Fig. 6 and for Lz = 8a and dmax − dmin = 0.3a, the 

Figure 6.  Dependence of the pinch-off (dashes) and coalescence (lines) times on the modulation amplitude, 
dmax − dmin, (left) and on the modulation length Lz (right). In all calculations, the average diameter is 
dav = ½(dmax + dmin) = 1.2a. The dotted line represents the ovulation time for a straight pore with diameter dav.
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coalescence time would roughly be twice the ovulation time. This might open the door to consider other etch-
ing techniques such as reactive ion etching (RIE) methods, where introducing a porosity modulation along the 
pore has been recently demonstrated25. However, further research would be still necessary to achieve a sufficient 
diameter modulation at the required Lz. In addition, careful attention would need to be paid to the removal of 
the passivation layer covering the pore walls after a deep RIE etching process, which would otherwise carbonize 
and interfere with the surface diffussion during the annealing. This layer, a fluorocarbon polymer, usually is very 
inert and can be difficult to remove in some cases. Although wall smoothing with H2 annealing after DRIE has 
been successfully reported26 in pillar structures, the removal of the passivation polymer from very hight aspect 
ratio pores arrays might pose a greater challenge. Long ashing times (oxigen-fluorine plasma) and commercial 
solutions would probably be needed to achieve a clean silicon surface within the pores prior the annealing.

Summary
In this paper we have studied the transformation dynamics in solid phase, driven by surface diffusion under 
high-temperature annealing, of ordered arrays of deep pores etched in crystalline silicon, transforming a silicon 
wafer into many ultra-thin (<20 µm) monocrystalline substrates in a single technological step. In particular we 
have shown that a precise control over the initial in-depth pore profile can be used as a powerful tool for con-
trolling the transformation and pore-collapse dynamics and, as a result, the structural features of the produced 
layers such as inner porosity and surface roughness. In this work we have explored three different profiles namely 
square, saw-tooth and sinusoidal profiles. The square profile has proven to be able to produce layers with an 
ordered array (2D or 3D) of trapped macrobubbles. The saw-tooth profile, on the contrary, allows to produce 
ordered structures of bubbles with different sizes breaking the mirror symmetry inside the layer. Finally, the 
sinusoidal profile is better suited to produce thick layers without trapped bubbles, but it can be also tuned to trap 
bubbles with a pseudo-random distribution. The ability to control both the surface finish and the formation and 
distribution of macrobubbles inside the thin crystalline films could be exploited to boost light absorption without 
the need of resorting to expensive high-resolution lithography steps. Although further research is needed, this 
might lead to the production of thin crystalline substrates with good integrated light trapping capabilities for 
low-cost photovoltaic applications. In addition, contrary to what is referred in ref. 18, we have also shown that a 
strong pore modulation is not essential for layer formation although the annealing time need to be increased. This 
fact, however, opens the door to implement the Millefeuille process using DRIE techniques.

Methods
The starting substrates are <100 > n-type CZ silicon wafers with both sides polished and a resistivity of 0.5 Ω·cm. 
First of all, a highly doped n + layer is implanted on the back of the wafers that will work both as a transparent 
contact and as a back surface field to minimize surface recombination losses. After the implantation, 70 nm of 
high-quality SiO2 is thermally grown while, at the same time, driving-in the implanted impurities. Then, a square 
array (2 µm pitch) of inverted pyramids is created on the front surface through standard photo-lithography and 
anisotropic wet etching. These pyramids define the sites where individual pores will grow, which would randomly 
nucleate otherwise. The remaining SiO2 is removed from the wafers with an HF solution, which are then cleaved 
into individual square samples of 1 × 1 inch ready for being etched. Pores are created by electrochemical etching 
of silicon under backside illumination in 5% HF solution. The electrolyte also contains some amount of ethanol 
for wetting purposes and is kept at a controlled temperature of 10 °C. In order to produce stable pores with the 
desired profile, applied voltage, etching current and back-side illumination all are accurately controlled through-
out the process. A circular area of, approximately, 2.5 cm² is electrochemically etched in each sample.

After the electrochemical etching, samples are annealed in a horizontal quartz tube oven for 3 h at 1200 °C in 
a mixture of Argon with 5% Hydrogen. Samples are introduced 600 °C right after a long dip in HF (5%) to ensure 
that native oxide is removed from the inner pore walls. In order to keep the partial pressure of oxygen low, the gas 
flow is kept at 10 l/min throughout the process. Finally, samples are removed once temperature falls below 500 °C.

The structure of the samples both before and after annealing has been studied though scanning electron imag-
ing (SEM) of a sample’s cleaved side. After the electrochemical etching, and before annealing, a small side-portion 
of the samples were cleaved in order to see the initial pore profile. After the annealing, the samples were cleaved 
again and inspected by SEM.
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