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Abstract: Ankle injuries are among the most common injuries in sport and daily life. However,
for their recovery, it is important for patients to perform rehabilitation exercises. These exercises are
usually done with a therapist’s guidance to help strengthen the patient’s ankle joint and restore its
range of motion. However, in order to share the load with therapists so that they can offer assistance
to more patients, and to provide an efficient and safe way for patients to perform ankle rehabilitation
exercises, we propose a framework that integrates learning techniques with a 3-PRS parallel robot,
acting together as an ankle rehabilitation device. In this paper, we propose to use passive rehabilitation
exercises for dorsiflexion/plantar flexion and inversion/eversion ankle movements. The therapist
is needed in the first stage to design the exercise with the patient by teaching the robot intuitively
through learning from demonstration. We then propose a learning control scheme based on dynamic
movement primitives and iterative learning control, which takes the designed exercise trajectory as a
demonstration (an input) together with the recorded forces in order to reproduce the exercise with
the patient for a number of repetitions defined by the therapist. During the execution, our approach
monitors the sensed forces and adapts the trajectory by adding the necessary offsets to the original
trajectory to reduce its range without modifying the original trajectory and subsequently reducing
the measured forces. After a predefined number of repetitions, the algorithm restores the range
gradually, until the patient is able to perform the originally designed exercise. We validate the
proposed framework with both real experiments and simulation using a Simulink model of the
rehabilitation parallel robot that has been developed in our lab.

Keywords: rehabilitation robots; parallel robots; dynamic movement primitives; iterative learning
control; force control; motion control

1. Introduction

Nowadays, robots are present in many different areas. For instance, rehabilitation devices can be
used as therapy aids, e.g., for the development of adjustable devices for assisting different sensorimotor
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functions [1,2], in schemes for improving therapeutic training [3], and for the assessment of patients’
sensorimotor performance [4]. Assistive devices have also been developed [5].

Rehabilitation robotics brings scientists from human-robot interaction and biomedical engineering
together with clinicians and therapists in order to develop the necessary technologies to improve
patients” quality of life. The main goals here are [6]: (i) to develop implementable technologies that
can be easily used by patients, therapists, and clinicians, (ii) to enhance the efficacy of clinicians’
therapies, and (iii) to facilitate patients’ daily activities. Moreover, using robotic systems, a very precise
quantification of motion parameters can be provided by observing position, velocity, forces, etc. [7].
In order to achieve these goals, rehabilitation devices should meet some functional requirements,
including: safety, stability, adaptability to the patient’s needs, accommodating a wide range of patients,
providing a complete Range of Motion (ROM), being equipped with the necessary sensors for haptic
and visual feedback, etc. [8,9].

In order to examine the patients’ level of adaptability while using rehabilitation devices,
techniques such as passive exercise, active assisted exercise, active resistive exercise, active constrained
exercise, and adaptive exercise [10] can be used, among others. Passive exercise needs no intervention
by the patient and the motion is completely driven by the rehabilitation device. However, in active
exercises, the patient actively interacts with the device and vice versa. Adaptive exercise refers to
an excessive workout that the robot has never done, from which it tries to adapt to a new unknown
pathway. During a rehabilitation treatment, cooperation between therapists and patients is required
over many rehabilitation sessions in a clinic. Moreover, patients are required to continue the prescribed
exercises at home. It has been documented that recovery, when using conventional treatment,
is slow and sometimes takes more than a year [11]. Such a variety of rehabilitation techniques
can achieve a certain level of improvement in the mobility of joints and limbs of the human body,
such as the ankle joint. Some interesting examples of rehabilitation robots are MIT-MANUS for upper
limb rehabilitation [11], LOKOMAT for gait training [12], and Parallel Robots (PRs) for ankle joint
rehabilitation [13].

As mentioned above, the purpose of rehabilitation robotics is to design a device that mimics the
work done by patient and physiotherapist during a rehabilitation session. In this paper, we propose
to use a PR as a rehabilitation device. PRs have a high load capacity, stiffness, precision, compact
structure, excellent energy/weight ratio, and provide better feedback control [14]. Interested readers
can refer to [15-18] for more details about rehabilitation devices, modified isokinetic tables [19],
gait training [20], upper limb rehabilitation [21,22], and ankle rehabilitation [23-25].

Regarding ankle rehabilitation systems, there are devices that generate ankle movements
for neurological rehabilitation [2,26,27] or ankle sprains [13]. These devices require very precise
control in order to reproduce precise movements. This control system should manage positions
and forces during different exercises [28]. The Rutgers Ankle [29] was the first device used for
ankle rehabilitation that provided a six-degrees-of-freedom (df) PR movement to the ankle joint.
The robot applies assistive or resistive moments depending on whether the exercise is passive or active,
respectively. For entertainment during exercises, the platform can be interfaced with game-like virtual
environments [30]. The Rutgers Ankle is also being used to perform clinical trials for post-stroke
rehabilitation [31]. Despite its use in research and experimentation, the device suffers from redundant
actuations. For redundancy reduction, the authors of [13] proposed three-df and four-df PRs with a
configurable central strut for sprained ankle treatments [13,32]. Different configurations of the central
strut allowed the authors to analyze three different PRs in the stiffness domain.

The characteristics of the exercises to be performed in each case are very different. For that
reason, a reconfigurable device is introduced in order to adapt to each patient’s range of ankle
motion [33]. This robot works on the metatarsophalangeal joint and its controller varies the impedance
parameters in order to accommodate different exercise modes. A three-RSS (Revolute, Spherical,
and Spherical) PR is proposed by [34] and validated in simulation for ankle rehabilitation. Syrseloudis
and Emiris [26] introduced a tripod-based PR actuated by electric motors for ankle rehabilitation.
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Actuation redundancy is used to deal with PR singularities [35]. Fan and Yin developed a four-df
wearable PR [36]. In their design, the moving platform is linked to the patient’s foot, while the
fixed platform is attached to the lower extremity. Cable-driven systems [37] have also been used in
rehabilitation.

For more recent approaches for ankle rehabilitation using PRs, readers may refer to [38—-42].
The selection and design of the control algorithms are based on analysis of the rehabilitation protocol
taking into account the dynamics of both the system and the human-robot interaction. Dynamic
posturography has been studied [43], where multi-axial perturbations are required. However, they did
not use force sensor measurement.

The main motivation behind this work is to improve the therapeutic resources that can be applied
to people with locomotive disorders and to offer better rehabilitation results by providing different
types of exercises. In this context, it is important to develop an appropriate low-cost mechanical
solution that is able to adapt different rehabilitation exercises to different patients. Unlike the
aforementioned rehabilitation devices, the proposed system not only has a suitable kinematic and
dynamic design but also provides a control system equipped with a learning algorithm that monitors
movements and forces that arise during the execution of the exercise and that can adapt to patients’
needs using a new Learning from Demonstration (LfD) framework [44]. LfD is an end user technique
for non-roboticists to teach new behaviors to a robot by extracting task-relevant information from
a demonstration (or several demonstrations) and transfer these skills directly to a robot instead of
hard-coding. LfD has proven to be an effective way of teaching robots important motion skills
that are necessary when assisting people and providing health care services [45]. Specifically,
LfD approaches have been used to teach robots a variety of skills, e.g., physical rehabilitation [46],
hand rehabilitation [47], motion planning for rehabilitation [48], robotic surgery [49], and feeding [50],
among others.

In this paper, we propose to exploit LfD to learn passive rehabilitation exercises and adapt them
based on the patient’s needs by integrating Dynamic Movement Primitives (DMPs) [51] and Iterative
Learning Control (ILC) [52]. DMPs are trajectory generators that can effectively encode and reproduce
trajectories. DMPs were first introduced by [51], then updated in 2013 by [53], before being further
updated to include unit quaternion trajectories [54]. Most recently, they have been updated to encode
symmetric positive definite matrices profiles [55]. On the other hand, ILC makes it possible to reuse
the control signal from the previous iteration cycle in the next one [56].

This paper is an extension of a previous conference paper [57], where we extended the theory
behind the rehabilitation device and algorithm, the control scheme, stability analysis, and the validation
experiments. The main contributions of this paper are:

- Exploitation of force sensing in an LfD framework for ankle rehabilitation using a PR that
integrates ILC and DMPs to learn different passive exercises and adapt them autonomously;

—  Implementation of soft emergency stopping due to the integration of DMP phase-stopping in the
emergency button control loop in order to provide soft and smooth stopping;

—  Provision of a stability analysis of our learning control;

—  Provision of a brief review of ankle rehabilitation devices, injuries, and exercises;

—  Implementation of different experiments in order to validate our control scheme.

2. Overview of the Ankle Joint: Anatomy, Physiology, and Injuries

The human foot and ankle are composed of 28 bones: tibia, fibula, 7 tarsals, 5 metatarsals,
and 14 phalanges. The human ankle joint is a very complex bony structure [58] that is composed of
three joints: the ankle joint proper or talocrural joint, the subtalar joint, and the inferior tibiofibular joint.

The ankle joint has rotations in the sagittal, frontal, and transverse planes. Figure 1 shows the
ankle motion in these three orthogonal planes. These motions are: (i) plantar flexion and dorsiflexion
movements in the sagittal plane that occur around the y-axis, (ii) adduction and abduction movements
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in the transverse plane that occur around the z-axis, and (iii) inversion and eversion movements in
the frontal plane that occur around the x-axis. The ranges and moment requirements are summarized
in Table 1.

abduction * adduction

plantar
flexion

Y

dorsiflexion

inversion
X

eversion
Figure 1. Ankle joint movements in three orthogonal planes [59].

Table 1. ROM and moment requirement for the human ankle.

Range of Motion Maximum Passive

Ankle Motion Moment (Nm)
ROM [60] [61-63]

+v  Dorsiflexion 20.3° t0 29.8° 34.1£145
— Plantarflexion 37.6° to 45.75° 481 £122
+B Inversion 14.5° to 22° 33.1+16.5
—pB  Eversion 10,0° to 17° 40.1 £9.2

Adduction 22.0° to 36° -

Abduction 15.4° to 25.9° -

Ankle injuries are among the most common injuries in sport and daily life [58]. Ankle sprains
represents 20% to 40% of all sport injuries. These sprains are a stretch or tear of the ligaments due to
sudden changes in direction [64,65]. In most cases, ankle sprains can become chronic if the injury is
not rehabilitated properly. Approximately 85% of ankle sprains are caused by excessive inversion [66].

The first ankle treatment after injury includes Rest, Ice, Compression, and Elevation (RICE) of
the affected foot [13], which should be followed by stretching and therapy exercise along with partial
weight bearing with crutches to maintain mobility in the ankle. In order to avoid muscular atrophy,
which may lead to a reduction of the ROM, and stimulate healing of the injured ligaments, patient
should start motion therapy within 72 h after the injury [64]. Once the ROM is achieved, strengthening
of weakened muscles is essential for rapid recovery and is a preventive measure against further
injury. Once patients achieve full weight-bearing capability without pain, proprioceptive exercises
are initiated. These exercises aim to recover both balance and postural control using wobble boards.
Finally, advanced exercises using an uneven surface wobble board should be performed to regain
normal activity functions.

At present, different techniques are used for ankle rehabilitation; however, not all of them have
the same effectiveness. Some techniques require the patient to be an active agent in the rehabilitation
process [67]. In these cases, the patient performs active work through a series of exercises which are
gradually intensified to help the ankle regain its mobility. On the other hand, the patient may also
perform passive work [67,68], which usually occurs in the early stages of rehabilitation. In this type
of work, an external agent, either a qualified person or a device, moves the patient’s ankle without
her/his voluntary movement.

In this article, a number of references have been generated to rehabilitate an injured ankle
with passive exercises. These passive exercises are used to train dorsiflexion/plantar flexion and
inversion/eversion ankle movements. The rehabilitation exercises are performed using a three-PRS
(Prismatic, Revolute, and Spherical) PR, which is described in the following section.
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3. Parallel Robot: Kinematics And Dynamics

A three-df PR is used as a mechanical device for ankle rehabilitation. Its kinematic and dynamic
models are explained in the following subsections.

3.1. Three-PRS Kinematics

The PR has been modeled by means of a set of nine dependent coordinates, as can be seen
in Figure 2. These coordinates are: (i) actuated prismatic joints (P) represented by 41, 46, and gs,
(ii) passive revolute joints (R) in g5, 7, and g9, and (iii) the coordinates g3, 44, and g5 only correspond
to one spherical joint (S), which is located at position P;.

B,
9~ T
ZI 7 6 q,\' B
Y in q%@——
A
23 q3 1 2 Zm Pj 5 4
[III
[ " LG
q, R Xy A ule A, qs
[
L m P
qs p
Zv A Yu
4, X, 4,

Figure 2. Kinematic diagram of the three-PRS, type of joints, and generalized coordinates.

Explicit expressions can be obtained for the inverse kinematic problem. Given the location of the
mobile platform, so that the position and orientation of the reference system {P,, — X, Y;uZ,, } with
respect to the fixed one {A; — XYyZ} attached to the base of the robot, it is possible to obtain the
coordinates of points P;, P», and P3, corresponding to the spherical joints. These points are then used
to determine the active coordinates g1, g4, and gg.

The forward kinematics is solved using a geometric approach, taking into account that the length
between any consecutive P; points is constant and equal to /,;, where d = 1,2, 3. Thus, the following
three nonlinear geometrical constraints can be obtained:

T1(q1267) = |(ra,B, +rB,p,) — (ra,a, + 74,8, +7B,p,) | — I =0,
T2(q1289) = [(ra,B, +rB,p,) — (ra,a; +74;8, +7Bsp;) || — I =0, 1)
[3(96789) = [(ra,a; + 14385 +Bsp;) — (ra, 4, + 74,8, + 78,2, || = Im =0,
If we know the active generalized coordinates 41, 46, and gg, it is possible to obtain the passive
coordinates g3, g7, and g9 by solving the equation (Equation (1)). Afterwards, the locations of points
Py, P;, and P; can be easily obtained. From the coordinates of those three points, the roll v, the pitch

B angles, and the heave z of the mobile platform can be obtained.
The velocity problems, both inverse and forward, are based on the following:

rap, +1p,p, =144, +49j4a, B, +Lup,p, ()
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where j =1,6,and n =1, 2, 3. A; is the fixed frame system. Py is the origin of the reference system
attached to the mobile platform (end effector), u4,p, is a unitary vector from joints A, to By, up,p,
is a unitary vector from points B, to Py, and I, is the constant length of links 2, 5, and 7. Figure 3
shows the closed loop for the velocity and acceleration problems for link 1; the same can be applied for
links 2 and 3.

B,
7 /|6
B, B
qlu 1,8 5 4
A,
P,

3

4,

Figure 3. Closed loop for the velocity and acceleration problems.

By multiplying (dot product) both sides of Equation (2) by up, p, and taking time derivatives,
the following matrix expression can be obtained. This expression relates the linear and angular
velocities of the mobile platform to the time derivative of the active generalized coordinates:

T T

Ll v 2 @ @ @] =T |0 de ds] ©

where Vp, = [t y 2| is the velocity of the origin of the mobile reference frame (end effector).
wp, = [wx wy, w;]' is the angular velocity of the mobile platform, Jx is the Jacobian matrix in
Cartesian space, and ], is the Jacobian matrix in generalized coordinate space.

Finally, taking into account that the parallel robot has three degrees of freedom, it is possible to
obtain a relationship between the velocities of the mobile platform and the time derivatives of the roll,
pitch, and heave of the reference system attached to the mobile platform and any choice of three of

them forming the matrix [, such as:
. . T . T
vz ¢ B =Tulz B 4] @

so that:
.

. T
Fu |t B 4] =T [0 de ds] (5)
This equation allows us to solve both the inverse and the forward velocity problems. In a similar
way, the expressions for the acceleration can be obtained.

3.2. Three-PRS Dynamics

As mentioned before, the parallel robot has been modeled through a set of dependent generalized
coordinates, considering which the equation of motion will be as follows:

M(q,0)i+C(9,4,0)4+G(q,0)=T—]'A 6)
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where O is a vector grouping the dynamic parameters (masses, first inertia moments, moments and
products of inertia of the links and friction coefficients). g, 4, and 4 are the generalized coordinates,
velocities, and accelerations. M stands for the mass, C for the centrifugal and Coriolis terms, while G
denotes the gravitational vector. T is the generalized torque vector. By deriving the constraint equations
with respect to all generalized coordinates, we can obtain the Jacobian matrix J. A is the vector of
Lagrange multipliers. The detailed dynamic model of this PR is described in [69].

For control purposes, the generalized internal forces term is not convenient, so it could be canceled
by multiplying both terms of Equation (6) by an orthogonal complement R [70]. Thus, Equation (6)
can be rewritten as follows:

R'(M(q,©)j+C(q,4,0)4+G(q,0)) =Rt @

By considering the relationship between all the generalized coordinates and the active ones,
Equation (7) can be written as follows:

Mrar(4,0)dar0 + Capear(2,4,0)dgp + Garua (4, 0) = Trg ®)

where df is the number of degrees of freedom of the parallel robot, and the new vectors 4%, §*
correspond to the active generalized velocities and accelerations.

4. Policy Learning and Adaptation Algorithm

In this section, we introduce our trajectory learning and adaptation algorithm for robots employed
in rehabilitation activities. The proposed algorithm is general and can accommodate other robotics
applications that involve contact with the environment, such as force-based trajectory tracking.

Figure 4 shows an illustrative diagram of the proposed framework. The position controller is
fed by g.(x) (Equation (14)), which in turn results from either the emergency reference trajectory or
the adapted one from the policy learning block (in gray). The policy learning block is covered in
Sections 4.1-4.4, while feedback error and offset learning is covered in Section 4.5. A more detailed
diagram is shown below in Figure 6.

Policy learning: L(X) Position Controller = IP;&:)rba(l)ltel Robot state
C|
WP -IE combinator
[ L !
=" F

Figure 4. Simple diagram of the control of the proposed force-based trajectory learning and adaptation.
4.1. Learning from Demonstration for Rehabilitation Exercises

In this section, the patient’s ankle reference exercise trajectory is designed and the robot
learning procedure of the rehabilitation trajectory is described. The trajectory is designed by a
medical professional, who guides the mobile platform of the PR while the patient’s foot is in the
orthopedic boot [38]. This means that the specialist moves the platform in specific directions in
dorsiflexion/plantar flexion and eversion/inversion. During this movement, the trajectory of the
orthopedic boot (with the patient’s foot) is measured by proprioception. The specialist moves the
platform, performing an appropriate rehabilitation exercise and setting the maximum positions in each
direction. These maximums are determined for each patient according to the pain that the specialist
considers the patient can endure in each direction of the movement.

The force sensor is located under the orthopedic boot (Figure 5) and, consequently, the forces
exerted by the specialist (human operator) during the demonstration affect the measured forces and
torques. Therefore, to obtain the net forces and torques exerted by the patient, the acquired trajectory
is replayed by the PR interacting solely with the patient’s foot in the boot and without any adaptation.



Sensors 2020, 20, 6215 8 of 23

The resulting force profiles are then recorded. These profiles indicate the actual maximum forces
allowed by the patient. This procedure should be repeated for each patient.

Figure 5. The orthopedic boot and the force sensor attached to the PR.

At this stage, the exercise reference trajectory is determined. Moreover, patients should be able
to repeat the exercise without any danger, because they are doing a customized exercise designed
for them. In order to make the exercise more comfortable for patients and reduce the maximum
forces (pain) applied to them, the specialist marks a threshold a little below those maximum forces.
Thus, patients would be able to repeat the exercise assisted by the PR with less pain. After several
repetitions, patients may be able to repeat the reference trajectory perfectly without pain. Afterwards,
the specialist would determine whether a new exercise reference trajectory should be designed or
whether the treatment should end.

4.2. Overview of DMPs

In this paper, robot trajectories are encoded by DMPs. They have the ability to slow execution
of the trajectory (exercise) down using a phase-stopping mechanism [51] whenever it is necessary to
adapt to the patient’s needs. DMPs can be found in many applications, e.g., biped locomotion [71],
adaptive frequency modulation [72], reinforcement learning [73], automatic assembly [54,74,75], etc.

For each exercise, as mentioned in Section 4.1, a medical professional sets a personalized exercise
reference trajectory for each patient. These trajectories are encoded by DMPs. A DMP for a single
arbitrary trajectory y is defined by the following nonlinear differential equations [53]:

w2 = az(Ba(ya —y) —2) + f(x), ©)
Ty = Z2, (10)
TX = —&yX, (11)

where y is the phase variable, z is an auxiliary variable, and 7 is the time constant. Both parameters «,
and B, define the behavior of the second-order system described by Equations (9) and (10). The phase
evolution is defined by Equation (11). With the choice of the time constant T > 0, a; = 4, and &) > 0,
the convergence of the underlying dynamic system to a unique attractor pointaty = y;and z = 0 is
guaranteed [53]. f(x) is the linear combination of N nonlinear radial basis functions, which enable
the robot to follow any trajectory smoothly from an initial position g to a target position y;. In the
basic DMP Equations (9) and (10), each df is encoded as a separate DMP (one for dorsiflexion/plantar
flexion and another for eversion/inversion); however, all the dfs share the same phase variable yx.
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4.3. Exercise Generation Using DMPs

In order to encode exercise trajectories we substitute y, y,, f(x) in Equation (9) for g, g4, f7(x),
and y in Equation (10) for 4.
_ DZf\il w;¥i(x)
AR 4109

where D = diag(gq; — q) € R¥*3. The diagonal matrix D is used to scale the movement amplitude if
the target configuration changes. i = 0,1,--- ,N, ¥;(x) = exp(—h; (x — c,-)z) are fixed basis functions.
c; are the centers of Gaussian distributed functions throughout the phase of the trajectory and #; are
their widths. w; are adjustable weights. For each df trajectory, the weights w; are estimated from
nominal trajectories using regression [76]. Thus, the resulting DMPs encode the desired exercise
trajectory. To track the desired trajectory,Equations (9) and (10) need to be integrated for all dfs with
the common phase in Equation (11).

Since forces F; and torques M, (obtained from human demonstration in Section 4.1) are used
as desired variables along the trajectory and not as robot control variables, they do not need to be
encoded by DMPs. Instead, linear combinations of radial basis functions are used to approximate the
desired forces throughout the phase x; = x(t;):

i wf ¥i(x) X wM¥i(x)
E(X)= w75 & MiX)="g7 X (13)
W="w MW g X
Thus, six systems of linear equations need to be solved in order to estimate w! and w from the
measured force/torque data.

4.4. Overview of ILC

ILC [52,56] is a tracking control method for systems that execute the same trajectory in a repetitive
mode. ILC assumes that the performance of an agent that repeatedly performs the same task can be
improved by learning from past executions. In the conventional ILC formulation, the objective is to
reduce the trajectory tacking error while rejecting periodic disturbances. This is obtained by adjusting
the pre-defined control input with a corrective term that linearly depends on the tracking error.

Standard ILC assumes: (1) stable system dynamics, (2) fixed common initial conditions for each
trial, and (3) the same duration for each trial. In the case of this paper, the third assumption cannot be
fulfilled due to the slowing-down/speeding-up of the trajectory. However, in order to overcome this
problem, the trajectory is temporarily scaled as a function of the phase variable using Equation (11).
In this case, it is possible to sample the same number of times in each trial. In other word, all trials
have the same phase even though they have different durations.

4.5. Error Feedback and DMP Phase Stopping

In human-robot interaction, the interaction might change the resulting measured forces/torques
when the robot executes the demonstrated trajectory. These forces may be different from the ones
(desired forces) recorded by the human demonstration. Consequently, the robot has to adapt the
trajectory in order to minimize this difference between the measured and desired forces. As a solution
for this problem, either admittance or impedance control can be implemented. In this work, admittance
control [77] has been implemented. In human life, it can be observed that individuals are able to
acquire skills in many different ways (through work, play, etc.) by repeating the same action over and
over again. This means that humans learn skills from repeating actions. In the same way, and for the
same task, the robot should learn from previous repetitions to adapt the executed trajectory, especially
when the robot is interacting with humans for safety reasons. Hence the importance of tracking and
monitoring the error in the previous repetition, which can be used to improve the performance of the
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next repetition for the same action (trajectory). This principle is used to learn and adapt rehabilitation
exercises (trajectories) which is the basic idea of ILC [52,56].

In passive ankle rehabilitation exercises, the robot is required to follow a specific predetermined
trajectory, as described in Section 4.1. However, depending on the state of the patient’s ankle,
this exercise may cause some pain if the robot executes its preset trajectory. To avoid this, trajectory
adaptation is introduced whenever the measured force exceeds a certain safety threshold due to the
resistance of the patient’s ankle to follow the exercise. In order to adapt the PR to the new situation,
the trajectory is modified according to the admittance control law [77]:

gc(x) = @q(x) + K- eq(x) +gpmp(X), (14)

where q.() is the new position commanded of the robot controller. gpap(x) is the reference trajectory
obtained by DMPs and K is the gain matrix. The force feedback control is provided by the feedback
error K - e;(x), where e;(x) = F;(x) — F, F and F;(x) are the actual measured force profile and the
desired force one as a function of phase y, respectively. ¢;(x) is the on-line learned offset to be added
to the original trajectory, where its initial value is [0,0,0] ". This way, the commanded trajectory is
modified by adding the offset to the original one, instead of modifying it.

To ensure safety for the patients, our proposed framework adapts the execution trajectory in order
to minimize the force error between the desired and measured forces. Thus, low gains are used in order
to achieve stable and robust force adaptation. Moreover, for efficient force adaptation the algorithm
slow the trajectory execution down. DMP slow-down mechanism is derived from Equation (11) [51]:

S ¢, S
™= + apye’ (15)
g =z+ "‘py(q -q), (16)

where € = ||§ — q||, g and § are the DMP output and the the corresponding actual position of the robot,
respectively. In this work, € = HeqT |, and &y, «py are positive constants.

4.6. Offset Learning

The aim of our learning framework is to iteratively modify the reference trajectory so that the
patient can safely repeat the rehabilitation exercise. The offset is updated after each trial through

5Zz+1 = @g1(xt) + K- eq(xt), (17)

where [ is the iterator. Each offset component ¢y, is represented as a linear combination of M radial

basis functions as follows u

Yicq wix¥i(x)
211'\11 ¥i(x)

The new data points {51‘ ; +1}' t=0,...,T, are obtained from the k-th component of the offsets

trajectory, where k = 1,2, 3. This optimization problem aims to find {w; s } that minimize the quadratic
objective function:

or(x) = (18)

T

g(q’k(?ﬁ) —8f1) (19)
=

4.7. Ankle Rehabilitation Control Scheme

A detailed control scheme of the proposed ankle rehabilitation framework is shown in Figure 6.
The reference trajectory Q,(t) is designed by the specialist. The transformation of data from time
domain to phase domain and vice versa are done in the blocks t = x and x = ¢, respectively. g,(x) is
the DMP reproduction of the encoded original trajectory Q(t). F ;(t) describes the reference/desired
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force profile that produces F;(x) by applying Equation (13). The measured forces F may have high
values depending on the patient’s response during the exercise. The objective of this work is to adapt
the exercise by reducing the difference between F and F;()x). By applying Equation (14), the new offset
is estimated and added to the one from the previous repetitions ¢().

Position Controller

Slowing down by DMP phase stopping

Figure 6. Control scheme.

qc(x) is the commanded trajectory to be executed by the robot and represented as the aggregation
of force feedback in Equation (14), the learned offset in several repetitions through Equation (17),
and the DMP-generated trajectory. This procedure is repeated until the desired and measured forces
match or no further improvement is possible. The gray shaded area in Figure 6 represents the learning
procedure, which belongs to the ILC algorithms, where current iteration causal learning is applied,
as described in [52,56].

In our framework, we do not modify the reference/original trajectory, instead, we adapt it by
adding iteratively an offset learned from the previous iteration. This offset update is represented by
the discrete delay Z N block in Figure 6, where N is the number of samples of that repetition.

Under normal conditions, the DMP provides the reference (heave, pitch, and roll angles) for
the parallel robot control unit (see Figure 6). The controller compares the reference with the robot
position/velocity to calculate the torques as in Equation (8), providing them at a frequency of 100 Hz.

It should be noted that the robot is equipped with an emergency button that can be actuated
by the patient or by the specialist. If the button is pressed, the DMP stops the rehabilitation exercise
and brings smoothly the platform into a safe configuration. In our case, it has been considered that
the platform is at zero value for the heave as well as for the angles of eversion (roll) and dorsiflexion
(pitch). When the emergency button is released, the DMP smoothly brings it to the pose where the
platform was in before the button was pressed and continues with the rehabilitation exercise.

4.8. Stability Analysis

In order to prove the stability of the learning control, we assumed that the closed control loop
of the 3-PRS is stable, without the iteration loop, with proper choice of the admittance feedback gain
K [78,79]. However, closed-loop stability does not necessarily imply that the system will remain stable
during the repetitive learning. In this regard, the aim of this section is to determine how our system
may be affected by the iteration loop.

To clarify the notation, let uppercase letters denote one-sided Z-transform of the corresponding
time-discrete signal, which is denoted with lower case letters. Note that the signals in Equations (14),
(17) and (18) are phase dependent. However, we can always express the time-dependent counterpart
and express the corresponding Z-transform. For the sake of simplicity, explicit dependence on z
in transfer functions and Z-transform of the signals is omitted. After that, it is assumed that the
nonlinear dynamics of the robot is fully compensated for using feedback control. By assuming a
known environment stiffness K, the force at iteration ! (F;) can be predicted:

F :KS(GPI_PO)/ (20)
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where K; is a diagonal positive definite environment stiffness matrix, G is a diagonal matrix containing
the decoupled dynamics of the robot in the form of a second-order system which maps the desired
position vector P, into the actual position, and P, denotes the environment contact positions. According
to Equations (14) and (17), the Z-transform of the error function E;, the position update function P,
and the learned offset function ® are:

E,=F —F, (21)
P =P+ ®, + KE, 22)
®; = Q(®;_1 +KE;_). (23)

where Q presents a transfer function which maps the original sampled function to a function
approximated with Gaussian kernel functions. K is the gain matrix from Equation (14). In [80] it was
shown that QQ can be approximated with a second-order transfer function. However, with enough M
(in Equation (18)), the approximated function, with Gaussian kernel functions, is close enough to the
original function, so that Q can be set to I. By defining E; as the error function and E;_; as the error
function in the previous learning cycle [81]:

E, = EF—-F

F;— Ks(GP, — P,)

F; — Ks(G(P; + ®; + KE}) — P,)

F;—Ks(G(Pj+ ®;_1 + KE;_1) — P,) (24)
—K,GKE,

F; — F_1 — KsGKE,

E, ; — KsGKE,

Dividing Equation (24) by E; and re-arranging leads to:

E I
E,_; I+KsGK

(25)

Asymptotic stability is assured if % < 1,V I. Inserting the z dependence into transfer

functions and signals and substituting z = ¢/ in Equation (25), the condition for asymptotic stability

becomes [52]:
I

R P 2
11 KG(e)K(ew) =7 ¢ @)

With a proper selection of K and K, the above equation is fulfilled and the learning stability
is guaranteed.

5. Results

In this section, we develop different simulation examples as will as real experiments in order
to validate the performance of our LfD framework. The trajectories used in these examples were
obtained from the real robot by a medical professional guiding the moving platform of the robot,
while the patient’s foot is installed in the boot, according to the procedure detailed in Section 4.1.
These trajectories represent only passive exercises, which require the robot to follow them accurately.

To simulate the robot, we used a MATLAB Simulink® model. The model accurately imitates
the real robot [69]. The description of the robot’s hardware is detailed in the next section, where the
kinematic and dynamic models used in the simulation are based on that setup.
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5.1. Hardware Description

The rehabilitation robot (see Figure 7) consists of three PRS kinematic chains (1, 4, 6 in Figure 2)
connected at one end to a coupling bar (2, 5, 7 in Figure 3), and at the other end they are perpendicularly
attached to the platform’s base, as shown in Figure 2. Each leg is driven by a direct drive ball screw
actuator (actuated prismatic joints) (P). The coupling bar is connected on one side to the leg with a
revolute (R) joint and with a spherical joint (S) to the moving platform on the other side. The legs are
distributed forming an equilateral triangular configuration at the base. The choice of this configuration
is based on the need to develop a low-cost robot with two rotational dfs that are required to perform
the main rehabilitation exercises; dorsiflexion/plantar flexion and eversion/inversion. In addition,
a translational df is used to adapt the platform with respect to the patient’s height while sitting on
a chair. The configuration and dimensions of the robot fulfill the requirements to perform the lower
limb rehabilitation exercises proposed in this paper.

Figure 7. Left: a snapshot showing our 3-PRS robot. Right: a physiotherapist is fitting the patient’s foot
in the orthopedic boot.

The motor for each actuated prismatic joint is a brushless DC servomotor equipped with a power
amplifier, with the following specifications: continuous stall torque of 2.86 Nm and continuous peak
torque of 11.43 Nm. The lead of the ball screw is 20 mm and the actuators are Aerotech BMS465 AH
brushless servomotors.

The control unit of the robot is based on an industrial PC equipped with two AdvantechTM cards:
a PCI-1720 to supply the control actions by means of digital-to-analog outputs, and a PCI-1784, to read
the actuated prismatic joint positions. The PC is equipped with a Linux Ubuntu operating system
(patched with the real-time kernel Xenomai) and the open software middlewares Open RObot COntrol
Software (Orocos) and Robot Operating System (ROS).

We have used open-source middlewares installed on an industrial PC for the robot control
architecture. The main advantages of that are: (i) open-source with high-level tasks programming
capabilities (e.g., control based on external sensing using a force sensor, automatic trajectory generation,
and artificial vision, etc) and (ii) it is low-cost where the total cost of the hardware is around $2000,
in addition to free operating system and programming tools.

The parallel robot is equipped with an orthopedic boot and Delta SI-330-30 ATI force sensor
(Figure 5). This sensor is six-df and is capable of measuring forces and torques in 3D using a amonolithic
instrumented transducer. The force/torque sensor is integrated into the system to measure the effort
exerted by the patient. This configuration provides the possibility of implementing different types
of rehabilitation exercises (active and passive), although this paper focuses on passive exercises.
A complete description of the mechatronics of this robot can be found in [79].



Sensors 2020, 20, 6215 14 of 23

5.2. Experiments in Simulation

5.2.1. Execution of Different Exercises

In the first simulation test, we have applied our proposed framework to learn and adapt an
exercise trajectory that moves the robot platform in z while maintaining zero values for the pitch and
roll angles, Figure 8. The robot moves along the nominal trajectory as long as the vertical force exerted
by the patient keeps within the admissible values. Whenever the sensed forces exceeds a threshold
designed by the therapist, the control system will trigger the phase-stopping mechanism in order
to slow the trajectory evolution down, Equation (15). During the slow-down, a new z-offset will be
estimated to be added to the trajectory in the next cycle which subsequently will reduce the sensed
forces. Consequently, across cycles, the phase stopping becomes less frequent and the execution time
decreases in each learning iteration.
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Timels]
Figure 8. Force adaptation of the proposed framework after nine trials. Top-right: shows how the

forces adapt, decreasing from Line-2 to Line-10. Top-left: represents the learned offsets, which increase
throughout the trials. Bottom: shows the phase evolution after nine trials.

If we observe Figure 8, the measured forces decrease from one trial to the next (from 2 to 10).
This is because the PR adapts its trajectory whenever the measured forces exceed the desired forces.
Moreover, the learned offset increases with each iteration (from 2 to 10) to adapt the trajectory to the
new situation. Line-1 in Figure 8 corresponds to the reference force, offset, and phase. At this stage of
this work, the desired force profile is equal to zero to test the functionality of the proposed algorithm
on our robot.

Figure 9 shows a simulation for an exercise that has been repeated 14 times. The purpose of this
simulation is to show the adaptability of the system to new situations. For instance, when the measured
forces are high, trajectory amplitude is reduced. The reference trajectory peaks are at 0.5 m and the
corresponding forces are at 17.5 N. Now, if we set the force threshold to 13 N; which corresponds to
position 0.35 m, it can be observed from the figure that the algorithm modifies the reference trajectory
amplitude by adding a position offset in each repetition. This offset is calculated from the feedback
forces error. After 14 repetitions, the algorithm is able to replay the trajectory into the safe region.

The next experiment, shown in Figure 10, demonstrates a three-df exercise. In this experiment the
algorithm runs 7, , and z trajectories.

Figure 10-bottom shows the phase evolution of the whole exercise, the learned offset for each
df is shown in Figure 10-left, while the force adaptation for each df is illustrated in Figure 10-middle.
Figure 10-right shows the original exercise trajectory for each df as a dashed red line, the first, fifth,
and fifteenth repetitions (cycles) of the same exercise. It is clear from the figure that the algorithm does
not change the shape of the original trajectory. In fact, it slows the exercise down and tries to reduce
the resulting forces.

It is noteworthy that when the system stabilizes and there is no further adaptation, after a period
of time determined by the specialist, the algorithm starts to go backward in the direction of the original
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trajectory by gradually removing the added offsets
exercise for another period of time, and so on.
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15 0f 23

. At each offset removal, the system repeats the
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Figure 9. Adaptation of torques of the proposed framework after 14 trials. Top-right: shows torques

decreasing from Line-1 to Line-14. Top-left: represents

the learned offsets and increases throughout the

trials. Bottom: shows adaptation of the exercise trajectory after 14 trials.
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Figure 10. Adaptation for a three-df exercise. Left-column: increase of learned offset over 15 cycles.
Middle-column: force adaptation. Right-column: exercise trajectory adaptation. Bottom: phase evolution.

5.2.2. Position Tracking Error

Different model-based control strategies have been implemented for the PR, such as
passivity-based control, inverse dynamic control, and adaptive control. More detailed information
about the design and implementation of these controllers can be found in [79]. In addition, the authors
in [78] demonstrated that the closed-loop system (robot/adaptive controller) is convergent, so the
tracking error asymptotically converges to zero and all internal signals remain bounded under suitable

conditions of the controller gains.

Figure 11 illustrates the robot response for the third active generalized coordinate gg. Figure 11-left
shows the reference and the robot response, while Figure 11-right represents the joint error. As can
readily be appreciated in these figures, the robot response obtained is accurate because the robot joint



Sensors 2020, 20, 6215 16 of 23

follows the reference with a very small error. The other generalized coordinates, 41 and g¢, have a very
similar behavior. For verification, Table 2 shows the mean error, the root-mean—square error (RMSE)
and the variance between the references and the parallel robot active joint positions.

Table 2. Robot position errors (mean and RMSE) and variance.

Joint Mean Errors RMSE Variance

7 0.00343 0.00405 1.643 x 1073
d6 0.00320 0.00396 1.567 x 1073
qs 0.00265 0.00341 1.156 x 1073
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Figure 11. The response of the generalized coordinate gg in Simulink.
5.2.3. Emergency Button Testing

In order to validate soft-emergency-stopping, in this simulation we have used an isokinetic
rehabilitation exercise based on gait trajectory training [33]. Such exercises are used to restore the
original mobility and ROM and to strengthen the affected limbs or ankle joint. The ankle and foot
motions are generated based on a gait of normal walking on level ground.

This exercise is used to restore the range of flexion/dorsiflexion motion. In order to establish
the exercise, we need to elevate the platform to a certain heave. Figure 12-left shows the reference
trajectory of the heave and the corresponding robot response, while Figure 12-right represents the
error between both signals. In the same way, Figure 13-left illustrates the plantar flexion/dorsiflexion
trajectory of the gait exercise along with the robot response. The error between both signals is shown

in Figure 13-left. In all the cases, the robot controller provides very good performance, with a small
error value.
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Figure 12. Mobile platform heave of the rehabilitation robot.

The following figures show another application of the DMPs with the rehabilitation robot. In this
case, the patient and the medical doctor have an alarm button (red block in Figure 6). By pressing it,
the control unit stops the normal execution of the exercise and moves the platform to a rest position
using linear DMPs in Equation (9) with f;(x) = 0 (yellow block in Figure 6). As soon as the alarm
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button is released, the robot returns to the initial position before the alarm activation and restarts the
rehabilitation exercise. The resting configuration that has been considered for the moving platform is a
heave position of 0.3 m with an orientation for the roll and pitch of 0 rad. In this trial, the alarm button
was pressed at time f = [19, 24] s. and at time f = [44, 53] s. Figures 14 and 15 show the heave and the
pitch evolution for the mobile platform in this experiment.
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Time [s] Time [s]

Figure 13. Mobile platform pitch of the Simulink model of the rehabilitation robot.
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Figure 14. Demonstrates the effect of soft-stopping (yellow block in Figure 6) on heave evolution.
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Figure 15. Pitch evolution with alarm activation in the Simulink model of the PR.
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5.3. Experiments in Real Robot

Similarly, the previous simulated experiments (Section 5.2.3) have been tested here in real setup
using the PR shown in Figure 7. Figure 16 illustrates how accurately the robot tracks a reference
trajectory. Figure 16a shows the reference and the response of the active joint gg, while (b) shows
its response when the emergency button is pressed and released in two different locations during
the execution.
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Figure 16. The response of the generalized coordinate gg of the real robot is shown in (a) while the
effect of soft-stopping is shown in (b). (¢,d) show the tracking error in both cases. (e f) demonstrate the
effect of soft-stopping on pitch and heave evolution.

As can be observed in Figure 16¢,d, the response of the real robot is very precise, having a tracking
error around 1 mm in both previous executions.

Figure 16e,f show the reference trajectory and the response of the robot for ¢ and the heave,
respectively. In this execution, the emergency button has been activated twice, as it can be observed in
the figure. This execution has been obtained with a system of 10 cameras that detect the position and
orientation of the mobile platform. As we can see, the tracking for the angle 7 is accurate, while the
heave has a tracking error of about 3 mm due to the mechanical clearances of the robot.

6. Conclusions

In this paper, we proposed an LfD framework to learn and adapt passive exercises for ankle
rehabilitation using a PR. This framework, exploits DMPs along with ILC in order to iteratively
adapt the exercise trajectory by transferring the feedback error into an offset that can be added to the
original trajectory.

Moreover, we solved the forward and inverse kinematic models for our device as well as the
dynamic model and the Jacobian needed to implement force control. A model-based controller was
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chosen to carry out the active generalized coordinates position control. The response obtained with
this position control showed an accurate response in terms of position error.

In order to validate our system, we conducted several simulation examples in addition to real
experiments in order to test the adaptability, robustness, and accuracy of the system. In these tests,
we used passive exercises trajectories where different movement references for , 8, and z have been
executed by the robot. Observing the experiments, the algorithm was able to successfully adapt the
exercise to the patient’s needs by learning the offset that leads to a reduction in the measured forces
exerted by the patient.

Finally, our proposed framework successfully adapts trajectories based on sensed forces. However,
in the future we still need to extend this approach in two directions: (i) perform a clinical study,
and (ii) speed-up the exercise execution based on the therapeutic recommendations; for example,
when the patient repeats the original exercise, the algorithm starts to speed up the exercise.
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