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Abstract Craniofacial defects are among the most common phenotypes caused by ciliopathies, 
yet the developmental and molecular etiology of these defects is poorly understood. We inves-
tigated multiple mouse models of human ciliopathies (including Tctn2, Cc2d2a, and Tmem231 
mutants) and discovered that each displays hypotelorism, a narrowing of the midface. As early 
in development as the end of gastrulation, Tctn2 mutants displayed reduced activation of the 
Hedgehog (HH) pathway in the prechordal plate, the head organizer. This prechordal plate defect 
preceded a reduction of HH pathway activation and Shh expression in the adjacent neurectoderm. 
Concomitant with the reduction of HH pathway activity, Tctn2 mutants exhibited increased cell death 
in the neurectoderm and facial ectoderm, culminating in a collapse of the facial midline. Enhancing 
HH signaling by decreasing the gene dosage of a negative regulator of the pathway, Ptch1, 
decreased cell death and rescued the midface defect in both Tctn2 and Cc2d2a mutants. These 
results reveal that ciliary HH signaling mediates communication between the prechordal plate and 
the neurectoderm to provide cellular survival cues essential for development of the facial midline.

Introduction
Primary cilia are microtubule-based organelles present on diverse vertebrate cell types and critical 
for development. Primary cilia function as specialized cellular signaling organelles that coordinate 
multiple signaling pathways, including the Hedgehog (HH) pathway (Zaghloul and Brugmann, 2011). 
Defects in the structure or signaling functions of cilia cause a group of human syndromes, collectively 
referred to as ciliopathies, which can manifest in diverse phenotypes including cystic kidneys, retinal 
degeneration, cognitive impairment, respiratory defects, left-right patterning defects, polydactyly, 
and skeletal defects (Baker and Beales, 2009; Hildebrandt et al., 2011; Tobin and Beales, 2009). 
In addition to these phenotypes, craniofacial defects including cleft lip/palate, high-arched palate, 
jaw disorders, midface dysplasia, craniosynostosis, tongue abnormalities, abnormal dentition, and 
tooth number and exencephaly are observed in approximately one-third of individuals with ciliopa-
thies (Brugmann et al., 2010b; Zaghloul and Brugmann, 2011). The molecular and developmental 
etiology of these craniofacial abnormalities remains poorly understood.

HH signaling is intimately involved in forebrain and midface development (Hu and Helms, 1999; 
Rubenstein and Beachy, 1998). In humans, inherited mutations that compromise pathway activity 
impair forebrain development and cause hypotelorism (Fuccillo et al., 2006; Hu and Helms, 1999; 
Hu and Marcucio, 2009; Marcucio et al., 2005; Muenke and Beachy, 2000; Young et al., 2010). 
For example, mutations in SHH lead to holoprosencephaly (Chiang et al., 1996; Cohen and Shiota, 
2002). Meckel syndrome (MKS), a severe ciliopathy, is also characterized by holoprosencephaly and 
hypotelorism (Chih et al., 2011; Dowdle et al., 2011; Garcia-Gonzalo et al., 2011). MKS-associated 
genes encode proteins that form a complex that comprises part of the transition zone, a region of the 
ciliary base that controls ciliogenesis and ciliary membrane protein composition in a tissue-specific 
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manner (Chih et  al., 2011; Dowdle et  al., 2011; Garcia-Gonzalo et  al., 2011; Roberson et  al., 
2015). Disruption of this transition zone complex results in the impaired ciliary localization of several 
membrane-associated signaling proteins including smoothened (SMO), adenylyl cyclase 3 (ADCY3), 
polycystin 2 (PKD2), and ARL13B (Chih et al., 2011; Garcia-Gonzalo et al., 2011; Roberson et al., 
2015).

We investigated the molecular underpinnings of forebrain and midface defects in ciliopathies 
utilizing multiple mouse mutants affecting the transition zone. The mutants exhibited forebrain and 
midface defects by E9.5, which persisted throughout development. In these mutants, the prechordal 
plate, an organizer of anterior head development, displayed defects in HH pathway activation at E8.0. 
These early prechordal plate defects attenuated Shh expression in the adjacent ventral forebrain. 
Decreased HH signaling increased apoptosis in the ventral neurectoderm and facial ectoderm. Surpris-
ingly, reducing Ptch1 gene dosage rescued the apoptosis and its corresponding midface defect. Thus, 
investigating the function of the transition zone has revealed a key role of prechordal plate-activated 
HH signaling in forebrain and midface cell survival. Moreover, our genetic results reveal that inhibition 
of PTCH1 can prevent ciliopathy-associated midface defects. Based on these mouse genetic models, 
we propose that the etiology of hypotelorism in human ciliopathies is a failure of the prechordal plate 
to induce SHH expression in the overlying ventral neuroectoderm.

Results
The ciliary MKS transition zone complex is essential for midline facial 
development
Individuals affected by developmental ciliopathies, such as Meckel, orofaciodigital, and Joubert 
syndromes, often display craniofacial phenotypes including holoprosencephaly and hypotelorism 
(Baker and Beales, 2009; Dowdle et al., 2011; Garcia-Gonzalo et al., 2011). To explore the etiology 
of these craniofacial defects, we examined the craniofacial development in Tctn2 mouse mutants 
(Garcia-Gonzalo et al., 2011; Shaheen et al., 2011). TCTN2 is a component of the MKS transition 
zone complex critical for ciliary localization of several ciliary membrane proteins, including SMO, a key 
ciliary mediator of HH signaling (Chih et al., 2011; Corbit et al., 2005; Garcia-Gonzalo et al., 2011). 
Mutations in human TCTN2 cause Meckel and Joubert syndromes (Huppke et al., 2015; Sang et al., 
2011; Shaheen et al., 2011).

Tctn2+/- embryos were phenotypically indistinguishable from Tctn2+/+ embryos (Figure 1—figure 
supplement 1). In contrast, embryonic day (E) 10.5 Tctn2-/- embryos exhibited an approximately 50 % 
decrease in infranasal distance (the distance between the nasal pits, the nostril anlage) (Figure 1A). 
One day later in gestation (E11.5), Tctn2-/- embryos also exhibited midfacial narrowing, including 
hypoplasia of the frontonasal prominence and fusion of the two maxillary prominences at the midline 
(Figure 1A). Thus, TCTN2 is essential for development of the facial midline.

To assess whether this narrowing of the facial midline is specific to TCTN2, we examined the 
possible involvement of two other components of the MKS complex, TMEM231 and CC2D2A, in 
craniofacial development. Human CC2D2A mutations cause Meckel and Joubert syndromes, and 
TMEM231 mutations cause Meckel, Joubert, and Orofaciodigital syndromes (Noor et  al., 2008; 
Roberson et al., 2015; Shaheen et al., 2013; Srour et al., 2012; Tallila et al., 2008). Similar to Tctn2 
mutants, both E10.5 Cc2d2a and Tmem231 mutant embryos exhibited decreased infranasal distance 
(Figure 1B and C, respectively). The similarity of the midline hypoplasia in all three transition zone 
mutants suggested a common etiology.

We also examined the involvement of a fourth member of the MKS complex, TMEM67, in cranio-
facial development. Human mutations in TMEM67 also cause Meckel and Joubert syndromes (Otto 
et al., 2009; Smith et al., 2006). Mutation of mouse Tmem67 causes phenotypes that are less severe 
than Tctn2, Tmem231, or Cc2d2a (Garcia-Gonzalo et al., 2011). The mild phenotype of Tmem67 
mutants may be attributable to its dispensability for ciliary accumulation of HH pathway activator 
SMO (Garcia-Gonzalo et al., 2011). Unlike Tctn2, Tmem231, and Cc2d2a mutants, Tmem67 mutants 
did not exhibit altered infranasal distance (Figure 1D). Thus, some, but not all, MKS components are 
critical for early facial midline development.

Given the central role of the neural crest in craniofacial development as the main source of cranio-
facial mesenchyme (Santagati and Rijli, 2003), we tested whether transition zone disruption in neural 
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Figure 1. The ciliary Meckel syndrome (MKS) transition zone complex is essential for midline facial development. Frontal view images of Tctn2 (A), 
Cc2d2a (B), Tmem231 (C) wild-type and null embryos at embryonic day (E)10.5 and E11.5. Tmem67 null embryos (D) display normal midface width at 
E11.5. Quantification of midface width (denoted by yellow brackets) at respective timepoints was measured via one-way ANOVA followed by Tukey’s 
multiple comparisons test. Data are expressed as mean, and error bars represent the standard deviation (SD) with individual data points (N) representing 
biological replicates (biologically distinct samples). Scale bar indicates 500 μm. ns = not significant.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. The ciliary Meckel syndrome (MKS) transition zone complex is essential for midline facial development.

Figure supplement 2. Removing TCTN2 in the neural crest does not result in hypotelorism.

https://doi.org/10.7554/eLife.68558
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crest can account for the midline hypoplasia observed in Tctn2 mutants. More specifically, we gener-
ated E11.5 Wnt1cre;Tctn2fl/- embryos and quantified midface width (Figure 1—figure supplement 2A). 
Wnt1cre induces recombination throughout the neural crest, and conditional deletion of Tctn2 in the 
neural crest abrogated ARL13B localization to cilia (Figure 1—figure supplement 2B,C). Interestingly, 
removing TCTN2 from the neural crest did not cause hypotelorism. These results indicate that altered 
transition zone function in the neural crest is not the etiology of midline hypoplasia. Therefore, we 
investigated functions of TCTN2 in the prechordal plate, an early organizing center also critical for the 
development of anterior head structures.

Tctn2 mutants exhibit defects in prechordal plate differentiation soon 
after gastrulation
As Tctn2, Cc2d2a, and Tmem231 mutants all displayed facial midline defects at midgestation, we 
hypothesized that they shared a role in a patterning event early in craniofacial development. One 
organizing center critical for early forebrain and craniofacial development is the prechordal plate 
(Camus et  al., 2000; Kiecker and Niehrs, 2001; Muenke and Beachy, 2000; Rubenstein and 
Beachy, 1998; Som et al., 2014). The prechordal plate is the anterior-most midline mesendoderm, 
immediately anterior to the notochord and in contact with the overlying ectoderm. The homeobox 
gene Goosecoid (Gsc) is specifically expressed in the prechordal plate at E8.0 and is a marker of differ-
entiation in this organizing center (Belo et al., 1998; Izpisúa-Belmonte et al., 1993). In contrast, Shh 
and Brachyury (T) are expressed at E8.0 in both the prechordal plate and notochord and are critical 
for prechordal plate induction (Aoto et al., 2009). Previous work demonstrated that surgical removal 
of the rat prechordal plate results in midface defects (Aoto et al., 2009) that seemed similar to those 
of the mouse Tctn2, Cc2d2a, and Tmem231 mouse mutants.

Therefore, we analyzed the prechordal plate of Tctn2 mutants by examining the expression of 
prechordal plate differentiation marker Gsc and induction markers Shh and T. Gsc is expressed specif-
ically in the prechordal mesoderm, while Shh and T are expressed in both the prechordal mesoderm 
and notochord (Dale et al., 1997; Herrmann, 1991; Schulte-Merker et al., 1994). In situ hybridization 
analysis revealed that in Tctn2 mutants, Shh and T expression in the prechordal plate and notochord 
were unaffected (Figure 2A). Therefore, TCTN2 is not essential for prechordal plate specification. In 
contrast, Tctn2 mutants exhibited abrogated Gsc expression in the prechordal plate (Figure 2B), indi-
cating that TCTN2 is critical for prechordal plate differentiation.

The transition zone is critical for HH signaling, and one HH protein, SHH, is essential for Gsc expres-
sion in the prechordal plate (Aoto et  al., 2009; Chih et  al., 2011; Garcia-Gonzalo et  al., 2011). 
Therefore, we investigated whether TCTN2 is required for HH signaling in the prechordal plate by 
examining the expression of the transcriptional target Gli1. Tctn2 mutants exhibited reduced Gli1 
expression throughout the axial mesendoderm, including the prechordal plate (Figure 2B). These 
results indicate that TCTN2 is dispensable for the formation of the prechordal plate, but is required 
for midline signaling by SHH to induce Gsc expression in this organizing center.

TCTN2 and other members of the MKS complex are required for proper cilia formation in some 
tissues but not in others (Garcia-Gonzalo et al., 2011). Therefore, we examined whether TCTN2 is 
required for ciliogenesis in the prechordal plate. The prechordal plate expresses FOXA2 (Jin et al., 
2001; Figure 2C). Co-immunostaining embryos for FOXA2 and acetylated tubulin (TUBAc), a marker of 
cilia, revealed that Tctn2 mutants did not display decreased ciliogenesis in the E8.5 prechordal plate 
(Figure 2C, middle panel). Previous studies have shown that Tctn1 is expressed in the ventral epithe-
lium of the node of a six-somite stage embryo and in the neural tube, notochord, gut epithelium, 
and somites at E9.5 (Reiter, 2006). Tctn2 is similarly broadly expressed during mouse development 
(Diez-Roux et al., 2011; Magdaleno et al., 2006), and CC2D2A is broadly expressed during human 
development (Mougou-Zerelli et al., 2009).

In cell types in which the MKS complex is dispensable for ciliogenesis, like neural progenitors, it 
is required for localization of ARL13B to cilia (Garcia-Gonzalo et al., 2011). Therefore, we examined 
ARL13B localization in E8.0 control embryos and Tctn2 mutants and discovered that ARL13B localiza-
tion to prechordal plate cilia was attenuated without TCTN2 (Figure 2C, bottom panel). Thus, TCTN2 
is not required for ciliogenesis in the prechordal plate, but does control ciliary composition.

https://doi.org/10.7554/eLife.68558
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Figure 2. Tctn2 mutants exhibit defects in prechordal plate differentiation soon after gastrulation. (A) Whole mount in situ hybridization (WM-ISH) 
of embryonic day (E)8.0 embryos for axial mesendoderm markers Shh and Brachyury (T). (B) WM-ISH of E8.0 embryos for prechordal plate marker 
Goosecoid (Gsc) and Hedgehog (HH) pathway target Gli1. (C) Whole mount immunofluorecence staining for the prechordal plate transcription factor 
FOXA2, cilia marker acetylated tubulin (TUBAc), basal body marker gamma tubulin (γ-TUB), and ciliary membrane protein ARL13B in E8.0 embryos. 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.68558
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Tctn2 mutants display decreased HH signaling in the ventral 
telencephalon
The axial mesendoderm helps pattern the overlying neurectoderm (Anderson and Stern, 2016; 
Rubenstein and Beachy, 1998). In the rostral embryo, the prechordal plate patterns the overlying 
ventral telencephalon via SHH (Chiang et  al., 1996; Xavier et  al., 2016). As extirpation of the 
prechordal plate results in decreased SHH activity in the basal telencephalon (Aoto et al., 2009; Aoto 
and Trainor, 2015), we investigated whether the prechordal plate defects observed in Tctn2 mutants 
result in mispatterning of the ventral telencephalon. Although Shh expression in the notochord was 
unaffected in Tctn2 mutants at E8.75, it was severely reduced in the ventral telencephalon (Figure 3A). 
This reduced expression of Shh in the ventral telencephalon persisted at E9.5 (Figure 3A). These 
results are concordant with previous findings that mutations in genes encoding other transition zone 

Middle panel in C is magnified region in top panel highlighted by dotted rectangle and rotated 90 degrees. Scale bar in A–B indicates 0.2 mm, C (top 
panel) is 100 μm, C (middle and bottom panels) is 10 μm.

Figure 2 continued

Figure 3. Tctn2 mutants display decreased Hedgehog (HH) signaling in the ventral telencephalon. Whole mount in situ hybridization (WM-ISH) for 
Shh in Tctn2 control and mutant embryos at embryonic day (E)8.75 and E9.5 (A) show reduced expression in the ventral telencephalons (arrowheads) 
of mutant embryos . WM-ISH for HH pathway targets Ptch1 and Gli1 also show reduced expression in the ventral telencephalon in Tctn2 mutants (B, 
arrowheads). Quantitative real-time polymerase chain reaction (RT-qPCR) analysis of RNA transcripts isolated from E8.5 and E9.5 Tctn2 control and 
mutant heads (C and D, respectively) show reduced levels of Gli1, Ptch1, and Shh transcripts in the absence of TCTN2, consistent with WM-ISH results. 
Data in C, D represent mean, and error bar represents the standard deviation (SD). Sample size in C and D indicated with 3-4 biological replicates per 
assay. Student’s t test performed for statistical analysis. Scale bar indicates 0.5 mm.

https://doi.org/10.7554/eLife.68558
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components disrupt brain development, resulting in holoprosencephaly, reduced telencephalon size, 
or exencephaly (Dowdle et al., 2011; Garcia-Gonzalo et al., 2011; Reiter, 2006).

To assess whether HH pathway activity was compromised by the absence of TCTN2, we assessed 
the expression of the HH transcriptional targets Gli1 and Ptch1. Whole mount in situ hybridization 
(WM-ISH) of Tctn2 mutants revealed dramatically reduced or absent expression of both Gli1 and 
Ptch1, especially in the basal forebrain (Figure 3B). Consistent with the WM-ISH data, quantitative 
real-time polymerase chain reaction (RT-qPCR) analysis of E8.5 (Figure  3C) and E9.5 (Figure  3D) 
Tctn2 mutant heads also revealed decreased expression of Shh, Ptch1, and Gli1, revealing that Tctn2 
mutants exhibit both an early defect in prechordal plate differentiation and a defect in HH signaling 
in the adjacent neurectoderm.

TCTN2 protects neurectoderm and facial ectoderm from apoptosis
In the developing craniofacial complex, SHH induces cell proliferation (Hu and Helms, 1999; Hu 
et al., 2015). Therefore, we assessed if the reduction in facial midline width in Tctn2 mutants was 
due to decreased cell proliferation. More specifically, we measured cell proliferation by quantitating 
phospho-histone H3 (pHH3) in the components of the craniofacial complex – the forebrain, hindbrain, 
facial ectoderm, and mesenchyme (Figure 4A and B). Tctn2 mutants showed no differences in amount 
or spatial distribution of cell proliferation.

In other developmental contexts, HH signaling promotes cell survival (Ahlgren and Bronner-
Fraser, 1999; Aoto et al., 2009; Aoto and Trainor, 2015; Litingtung and Chiang, 2000). Therefore, 
we assessed apoptosis in the craniofacial complex of Tctn2 mutants. Quantification of TUNEL staining 
revealed that apoptosis was increased in the neurectoderm, facial ectoderm, and mesenchyme of 
Tctn2 mutants compared to controls, and most dramatically in the ventral telencephalon (Figure 4C 
and D). To further test whether apoptosis is increased in the absence of TCTN2, we stained for acti-
vators of the intrinsic apoptotic pathway, cleaved-caspase-3 and caspase-9 (activated CASP3 and 
CASP9). Both activated CASP3 and CASP9 were increased in the ventral telencephalon, facial ecto-
derm, and mesenchyme of Tctn2 mutants at E9.5 (Figure 4E). These data indicate that TCTN2 is 
required to protect against cell death, but does not affect proliferation, in the neurectoderm, non-
neural ectoderm and neural crest mesenchyme. As SHH also protects neurectoderm from apoptosis 
(Thibert et al., 2003), we propose that TCTN2 mediates cell survival by promoting HH signaling and 
that the increase in cell death in the neurectoderm, mesenchyme and facial ectoderm underlies the 
midline hypoplasia in transition zone mutants.

Our finding that selective disruption of transition zone function in the neural crest did not contribute 
to midline growth (Figure 1—figure supplement 2) coupled with increased apoptosis in the Tctn2 
mutant, neurectoderm and facial ectoderm (Figure  4C–D) led us to investigate where TCTN2 is 
required to coordinate midline facial development. Isl1Cre induced robust reporter recombination in 
the prechordal plate at E8.5 (Figure 4—figure supplement 1A) and Sox1Cre induced recombination in 
the neuroectoderm by E9.5 (Figure 4—figure supplement 1B). Using Isl1Cre and Sox1Cre, we removed 
Tctn2 from the prechordal plate or neurectoderm, respectively. Both Isl1Cre;Tctn2fl/- and Sox1Cre;Tctn2fl/- 
embryos displayed no decrease in midline width at E11.5 (Figure 4—figure supplement 1C and D).

Similarly, we investigated the function of TCTN2 in the facial ectoderm and telencephalon. 
Tcfap2aCre and Foxg1Cre activated recombination in the facial ectoderm or telencephalon and ecto-
derm, respectively (Figure 4—figure supplement 1E, F). Both Tcfap2aCre;Tctn2fl/- and Foxg1Cre;Tctn2fl/- 
embryos displayed no decrease in midline width at E11.5 (Figure 4—figure supplement 1G, H).

Analysis of ARL13B localization to cilia at E8.5 and E9.5 in the prechordal plate and neurectoderm in 
Isl1Cre;Tctn2fl/- and Sox1Cre;Tctn2fl/- embryos, respectively, revealed that there was no alteration in cilio-
genesis or ciliary localization of ARL13B (Figure 4—figure supplement 2A and B). Analysis of ciliary 
ARL13B localization in the ectoderm of E11.5 Tcfap2aCre;Tctn2fl/- mutants similarly revealed persistent 
ARL13B localization to cilia (Figure 4—figure supplement 2C). In contrast, Foxg1Cre;Tctn2fl/- mutants 
exhibited loss of ARL13B ciliary localization in the basal telencephalon at E11.5 (Figure 4—figure 
supplement 2D). These results indicate that Tctn2 conditional deletion in either the prechordal plate, 
neurectoderm, facial ectoderm, or forebrain individually fails to recapitulate the midline narrowing 
observed in Tctn2-/- embryos. However, the persistence of ARL13B at cilia suggests that TCTN2 func-
tion persists for some time after recombination or TCTN2 functions in the prechordal plate, neurecto-
derm and facial ectoderm may be important for facial development.

https://doi.org/10.7554/eLife.68558
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Figure 4. TCTN2 protects the neurectoderm and facial ectoderm from apoptosis. Immunostaining for proliferation marker phospho-histone H3 
(pHH3) in transverse sections of Tctn2 control and mutant embryonic day (E9.5) embryos (A) with corresponding quantification (B). (C) TUNEL staining 
for analysis of apoptosis in Tctn2 E9.5 embryos with corresponding quantification (D). (E) Immunostaining for intrinsic apoptotic pathway components 
cleaved-caspase-3 and cleaved-caspase-9 in Tctn2 control and mutant E9.5 embryos. Quantified data represent N = 3 biological replicates (biologically 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.68558
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Reducing Ptch1 gene dosage rescues the facial midline defect in 
transition zone mutants
To assess whether decreased HH signaling is not just correlated with midfacial hypoplasia in transition 
zone mutants, but is causative, we investigated whether modulating the HH pathway could rescue the 
midface defects. We employed a strategy targeting Ptch1, a negative regulator of the HH pathway, 
by generating Tctn2-/-;Ptch1+/- embryos and comparing them to Tctn2-/-;Ptch1+/+ embryos. Surprisingly, 
removing a single allele of Ptch1 in Tctn2 mutants restored midface width at E11.5 (Figure 5A and B).

To assess whether removing a single allele of Ptch1 restores midface width in other transition zone 
mutants, we generated Cc2d2a-/-;Ptch1+/- and Cc2d2a-/-;Ptch1+/+ embryos. As with Tctn2, removing a 
single allele of Ptch1 restored midface width in Cc2d2a mutants (Figure 5C and D). Thus, reducing 
Ptch1 gene dosage rescues midface expansion in both models of ciliopathy-associated hypoplasia.

As we had hypothesized that increased apoptosis underlay the midface hypoplasia of Tctn2-/-

;Ptch1+/+ embryos, we assessed apoptosis in Tctn2-/-;Ptch1+/- embryos via TUNEL staining. Tctn2-

/-;Ptch1+/- exhibited less apoptosis than Tctn2-/-;Ptch1+/+ embryos, with a restriction of apoptosis in 
the ventral telencephalon (Figure 5E–F). These results bolster the hypothesis that increased midline 
apoptosis accounts for the midline hypoplasia of transition zone mutants.

As genes encoding transition zone MKS components are epistatic to Ptch1 (Reiter, 2006), we 
pondered how reducing Ptch1 gene dosage restored facial midline development to transition zone 
MKS component mutants. The best studied role for PTCH1 is in repression of the HH signal transduc-
tion pathway. Therefore, we examined HH signal transduction pathway activity in Tctn2-/-;Ptch1+/+ and 
Tctn2-/-;Ptch1+/- embryos. WM-ISH revealed that expression of neither Shh nor Gli1 was increased in 
the ventral telencephalons of Tctn2-/-;Ptch1+/- in comparison to Tctn2-/-;Ptch1+/+ embryos (Figure 5G). 
Thus, the restoration of midface growth by reduction of Ptch1 gene dosage is not due to a restoration 
of HH signal transduction.

In addition to its role in regulating HH signal transduction, PTCH1 exhibits pro-apoptotic activity 
in vitro (Thibert et al., 2003). In the absence of ligand, PTCH1 C-terminal domain is cleaved and 
binds scaffolding proteins TUCAN1 and DRAL to recruit caspase-9 and activate caspase-3, resulting 
in apoptosis. The colocalization of another PTCH1-binding protein that regulates apoptosis, X-linked 
inhibitory apoptosis protein (XIAP), with PTCH1 at cilia (Aoto and Trainor, 2015), raises the possibility 
that PTCH1 cleavage occurs at the primary cilium to induce apoptosis. In addition, PTCH1 may induce 
apoptosis at the plasma membrane. As reducing Ptch1 gene dosage reduces apoptosis without 
increasing HH signal transduction in Tctn2 mutants, our data supports a model in which the PTCH1-
mediated death of the midline neurectoderm, facial ectoderm, and neural crest-derived mesenchyme, 
and not alterations in HH signal transduction within those cells, is the etiology of midface defects in 
transition zone mutants. Taken together, these results suggest a working model for how ciliary HH 
signaling regulates midface development.

In wild-type embryos, HH signaling within the prechordal plate is critical for Gsc expression and the 
induction of Shh in the adjacent neurectoderm and inhibition of apoptosis (Figure  6A). In transition 
zone mutants, defects in prechordal plate signaling cause reduced SHH in the neurectoderm, resulting 
in increased PTCH1-mediated cell death and midline collapse (Figure 6B). In transition zone mutants 
lacking a single allele of Ptch1, reduced SHH in the neurectoderm persists, but the attenuated PTCH1 
is no longer sufficient to induce extensive cell death, allowing for normal midline facial development 
(Figure 6C).

distinct samples) with a minimum of two sections analyzed per sample. Student’s t test performed for statistical analysis. Data in B, D represent the 
mean, and error bars represent the standard deviation (SD). Scale bar indicates 100 μm. ns = not significant.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Deletion of Tctn2 in the prechordal plate by Isl1Cre, neurectoderm by Sox1Cre, facial ectoderm by Tcfap2aCre, or forebrain and facial 
ectoderm by Foxg1Cre does not result in hypotelorism.

Figure supplement 2. Residual TCTN2 function through persistent ARL13B ciliary localization in TCTN2 conditional mutants.

Figure 4 continued

https://doi.org/10.7554/eLife.68558
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Discussion
Using a combination of genetic, developmental, and biochemical techniques, we have identified a 
mechanism by which disruption of MKS transition zone proteins (TCTN2, CC2D2A, and TMEM231) 
results in midline hypoplasia and hypotelorism. We traced the origin of the molecular defect contrib-
uting to the midline phenotype to the prechordal plate, defects in which resulted in reduced HH 
pathway activation and cell survival in the adjacent neurectoderm and facial midline collapse. We 
uncovered Ptch1 gene dosage as a key mediator of cell survival in the facial midline of transition zone 

Figure 5. Reducing Ptch1 gene dosage rescues the facial midline defect in transition zone mutants. (A) Frontal images of Tctn2 wild-type, mutant, and 
Ptch1+/- rescue embryonic day (E)11.5 embryos with corresponding midline width quantification (B). (C) Frontal images of Cc2d2a wild-type, mutant, 
and Ptch1+/- rescue E11.5 embryos with corresponding midline width quantification (D). (E) TUNEL assay sections of E9.5 Tctn2 wild-type, mutant, and 
Ptch1+/- rescue with corresponding quantification (F). (G) Whole mount in situ hybridization (WM-ISH) of E9.5 Tctn2 wild-type, mutant, and Ptch1+/- rescue 
embryos for Shh and Gli1. Quantified data represent N = 3 biological replicates (biologically distinct samples) with a minimum of two sections analyzed 
per sample. Data in B, D, F represent the mean, and error bars represent the standard deviation (SD). For statistical analysis, one-way ANOVA was 
performed with Tukey’s multiple comparison test. Scale bars indicate 500 μm (A, C, G) and 100 μm (E).

https://doi.org/10.7554/eLife.68558
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mutants, as loss of a single allele of Ptch1 rescued cell survival and midline development in Tctn2 and 
Cc2d2a mutants. Together, these results reveal a new paradigm whereby primary cilia mediate signal 
crosstalk from the prechordal plate to the adjacent neurectoderm to promote cell survival, without 
which the facial midline collapses and hypotelorism results.

Different ciliopathies are associated with either narrowing or expansion of the facial midline (hypo-
telorism or hypertelorism) (Schock et al., 2015; Zaghloul and Brugmann, 2011). Severe ciliopathies 
associated with perinatal lethality, such as MKS, can present with hypotelorism or hypertelorism while 
other ciliopathies such as Joubert syndrome typically present with hypertelorism (Brugmann et al., 
2010b; MacRae et al., 1972; Schock and Brugmann, 2017). How disruption of ciliary functions can 
give rise to these opposing phenotypes has been an active area of interest. Hypertelorism is attrib-
utable to roles for cilia in promoting GLI3 repressor formation in neural crest cells (Brugmann et al., 
2010a; Chang et al., 2014; Chang et al., 2016; Liu et al., 2014). Our work implicates a distinct 
etiology of hypotelorism: rather than involving neural crest, midline hypoplasia can be caused by 
defects in the ciliary transition zone in the prechordal plate.

The earliest alteration we detected in Tctn2-/- signaling centers that regulate craniofacial develop-
ment was in the prechordal plate at the end of gastrulation. TCTN2 was dispensable for the expres-
sion of Shh and T in the prechordal plate, indicating that induction and specification of the prechordal 
plate were not dependent on transition zone function. In contrast, TCTN2 was essential for prechordal 
plate expression of Gli1 and Gsc. In tissues such as the limb bud, TCTN2 is dispensable for ciliogenesis 

Figure 6. Model for transition zone coordination of facial midline development. (A) In wild-type embryos, the transition zone complex mediates 
signaling in the prechordal plate and Hedgehog (HH) pathway activation in the adjacent neurectoderm to at allow for cell survival and normal 
midline development. (B) In transition zone mutants, disrupted signaling in the prechordal plate results in reduced Shh and HH pathway activation 
in the neurectoderm resulting in increased cell death and corresponding collapse of the facial midline. (C) In transition zone mutants with Ptch1 
haploinsufficiency (Ptch1 rescue), reduced cell death allows for normal midface development despite persistent reduction of Shh and HH pathway 
activation in the neurectoderm.

https://doi.org/10.7554/eLife.68558
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but critical for ciliary HH signaling and the induction of HH target genes such as Gli1 (Chih et al., 
2011; Dowdle et al., 2011; Garcia-Gonzalo et al., 2011). We found that, similarly in the prechordal 
plate, TCTN2 is dispensable for ciliogenesis but critical for induction of Gli1.

In many developmental events, such as limb patterning, SHH signals to neighboring cells to induce 
a pattern (Panman and Zeller, 2003; Zhulyn et al., 2014). In other developmental events, such as 
notochord to neural tube signaling, SHH signals produced by the notochord induce the expression of 
Shh in the overlaying neural tube (Fuccillo et al., 2006). SHH produced by the prechordal plate may 
fall into the latter category, as the absence of Shh expression in Tctn2-/- embryos presages reduced 
Shh expression and reduced expression of HH pathway transcriptional targets Gli1 and Ptch1 in the 
region of the basal forebrain sometimes referred to as the rostral diencephalon ventral midline. Thus, 
in the posterior midline, the notochord induces Shh expression in overlying neuroectoderm, and in 
the anterior midline, the prechordal plate induces Shh expression in the overlying neuroectoderm. 
In the failure of the prechordal plate to induce Shh expression in the overlying neurectoderm, Tctn2 
mutants recapitulate previous observations of Lrp2 mutants which display attenuated responses to 
SHH (Christ et al., 2012). One possible mechanism by which SHH may activate expression of Shh 
in the basal forebrain is via the induction of the transcription factor SIX3. SIX3 is regulated by HH 
signaling and required for the induction of Shh in the developing forebrain (Geng et al., 2008; Jeong 
et al., 2008). However, our observation that Six3 expression is unaltered in the forebrains of Tctn2 
mutants diminishes support for this hypothesis.

In caudal neural tube and limb patterning, HH signals induce patterning. In hair follicles and cere-
bellar granule cells, HH signaling promotes proliferation. In addition to roles in patterning and prolif-
eration, HH signals can bind to PTCH1 to inhibit apoptosis (Aoto and Trainor, 2015; Borycki et al., 
1999; Thibert et al., 2003). Our data are consistent with a role of PTCH1 in promoting apoptosis in 
the neuroectoderm and facial ectoderm which is inhibited by prechordal plate-produced SHH. In the 
absence of TCTN2, the ventral telencephalon does not produce SHH, releasing PTCH1 to promote 
apoptosis in the midline and resulting in midface hypoplasia. This model is consistent with previous 
data demonstrating that surgical ablation of the prechordal plate reduces the forebrain (Aoto et al., 
2009). Increased cleaved-caspase-3 and caspase-9 staining in the basal forebrain and facial ectoderm 
of E9.5 Tctn2 mutants provides further support for apoptosis contributing to the associated midline 
hypoplasia.

We speculate that in tissues, such as the developing spinal cord where cilia are required for SHH 
expression in the floor plate, ciliary dysfunction will cause increased apoptosis. In other tissues, such 
as the limb bud where cilia are not required for SHH expression in the zone of proliferating activity, we 
predict that ciliary dysfunction will not cause increased apoptosis. Thus, ciliary dependence of SHH 
expression may etermine which tissues, like the craniofacial midline, increase apoptosis upon ciliary 
dysfunction.

To try to narrow down the tissues in which transition zone function is critical for midline facial devel-
opment, we used conditional mouse genetics to delete Tctn2 in different tissues that comprise the 
craniofacial complex. Deletion of Tctn2 in the prechordal plate (via Isl1Cre) or the neurectoderm (via 
Sox1Cre) did not recapitulate the midline hypoplasia observed in Tctn2-/- embryos (Figure 4—figure 
supplement 1). Similarly, deletion of Tctn2 in the facial ectoderm (via Tcfap2aCre) or in the forebrain 
and facial ectoderm (via Foxg1Cre) also failed to result in midline hypoplasia (Figure 4—figure supple-
ment 1). These results could reflect the dispensibility of TCTN2 in these tissues for facial development, 
or could reflect residual TCTN2 function after Tctn2 recombination. This latter possibility is supported 
by persistent ARL13B localization at the cilium in several tissues after conditional deletion of Tctn2. 
As the half-life of TCTN2 and the TCTN2 level required to sustain transition zone activity are unclear, 
residual TCTN2 activity may support normal ciliary signaling even after conditional gene ablation.

Surprisingly, removing one allele of Ptch1 fully rescues the midface defect in both Tctn2 and Cc2d2a 
transition zone cilia mutants. Even more surprisingly, this phenotypic rescue is not associated with 
restoration of either Shh expression or HH pathway activation in the basal forebrain. We propose that 
reducing Ptch1 levels attenuates the PTCH1-mediated pro-apoptotic program normally attenuated 
by SHH in the basal forebrain. However, it remains possible that reducing PTCH1 levels activates GLI 
effectors to induce an anti-apoptotic program that does not include general HH target genes or Shh.

In summary, we have identified the primary cilia transition zone as a critical regulator of facial midline 
development. The transition zone component TCTN2 was critical for SHH signaling in the prechordal 

https://doi.org/10.7554/eLife.68558
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plate and uncovered a signaling paradigm whereby the transition zone promotes cell survival by 
mediating crosstalk between the prechordal plate and neurectoderm to promote HH pathway acti-
vation. These results provide insights into how primary cilia mediate cell survival to promote facial 
development.

Materials and methods

 Continued on next page

Key resources table 

Reagent type 
(species) or 
resource Designation Source or reference Identifiers

Additional 
information

Antibody Anti-Arl13b (rabbit polyclonal) Proteintech 17711–1-AP (1:1000)

Antibody
Anti-cleaved-caspase-3 (Asp175) 
(rabbit polyclonal) Cell Signaling #9664 (1:400)

Antibody Anti-cleaved-caspase-9 (Asp353) Cell Signaling #9509 (1:100)

Antibody
Anti-phospho-histone H3 (Ser28) 
(rabbit polyclonal) Cell Signaling #9713 (1:400)

Antibody
Anti-acetylated tubulin (mouse 
monoclonal) Sigma-Aldrich T6793 (1:1000)

Antibody Anti-FoxA2 (rabbit monoclonal) abcam Ab108422 (1:400)

Antibody
Anti-Gamma tubulin (goat 
polyclonal)

Santa Cruz 
Biotechnology Sc-7396 (1:200)

Antibody Anti-GFP (chicken polyclonal) Aves Labs GFP-1020 (1:1000)

Antibody Anti-E-cadherin (rat monoclonal) Invitrogen 13–1900 (1:1000)

Commercial assay 
or kit RNAeasy Micro Kit QIAGEN 74004

Commercial assay 
or kit In Situ Cell Death Detection Kit Roche 11684795910

Commercial assay 
or kit iScript cDNA synthesis kit BioRad 1708891

Genetic reagent 
(Mus musculus) Tctn2tm1.1Reit PMID:21565611

MGI:5292130;
RRID:MGI:5292219

Genetic reagent 
(Mus musculus) Cc2d2aGt(AA0274)Wtsi PMID:21725307

MGI:4344514;
RRID:MGI:5292228

Genetic reagent 
(Mus musculus) Tmem231Gt(OST335874)Lex PMID:22179047

MGI:4284576;
RRID:MGI:5301844

Genetic reagent 
(Mus musculus) Tmem67tm1Dgen PMID:21725307

MGI:5292220;
RRID:MGI:5292226

Genetic reagent 
(Mus musculus) Wnt1Cre: H2az2Tg(Wnt1-cre)11Rth PMID:9843687

MGI:2386570;
RRIDSupplemental:IMSR_JAX:003829 Gift from Brian Black

Genetic reagent 
(Mus musculus) Isl1tm1(cre)Sev PMID:16556916

MGI:3623159;
RRID:IMSR_HAR:3351 Gift from Brian Black

Genetic reagent 
(Mus musculus) Sox1tm1(cre)Take PMID:17604725

MGI:3807952;
RRID:IMSR_RBRC05065 Gift from Jeff Bush

Genetic reagent 
(Mus musculus) Foxg1tm1(cre)Skm PMID:10837119

MGI:1932522;
RRID:IMSR_JAX:004337

Gift from Stavros 
Lomvardas

Genetic reagent 
(Mus musculus) Tg(Tcfap2a-cre)1Will PMID:21087601

MGI:4887352;
RRID:MGI:4887452

Gift from Trevor 
Williams

Sequence-based 
reagent Shh in situ probe PMID:7916661

Gift from Andrew 
McMahon

Sequence-based 
reagent Gsc in situ probe PMID:1352187

Gift from Edward De 
Robertis
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers

Additional 
information

Sequence-based 
reagent Ptch1 in situ probe PMID:10395791

Gift from Lisa 
Goodrich

Sequence-based 
reagent RT-qPCR primers This paper

*See Supplementary 
file 1

Sequence-based 
reagent Genotyping primers This paper

*See Supplementary 
file 1

Software, algorithm GraphPad Prism

GraphPad Prism 
(https://​graphpad.​
com) RRID:SCR_002798

Software, algorithm ImageJ ImageJ (http://​
imagej.​nih.​gov/​ij/)

RRID:SCR_003070

 Continued

Mouse strains
All mouse protocols were approved by the Institutional Animal Care and Use Committee (IACUC) at the 
University of California, San Francisco. Tctn2+/- (Tctn2tm1.1Reit), Cc2d2a+/- (Cc2d2aGt(AA0274)Wtsi), Tmem231+/- 
(Tmem231Gt(OST335874)Lex), and Tmem67+/- (Tmem67tm1Dgen) mouse allele references can be found in the 
Key Resources table (Garcia-Gonzalo et al., 2011). Wnt1Cre (Tg(Wnt1-cre)11Rth) and Islet1Cre (Isl1tm1(cre)

Sev) mice were obtained from Brian Black, Sox1Cre (Sox1tm1(cre)Take) mice were obtained from Jeff Bush, 
Foxg1Cre (Foxg1tm1(cre)Skm) mice were obtained from Stavros Lomvardas, and Tcfap2aCre (Tg(Tcfap2a-
cre)1Will) mice were obtained from Trevor Williams. The Ptch1tm1Mps allele was used in this study as a 
null allele. The Tctn2 conditional allele (Tctn2lox or Tctn2tm1cReit) was derived from the Tctn2tm1aReit allele 
from which the validated Tctn2tm1.1Reit null allele was previously derived (Garcia-Gonzalo et al., 2011; 
Sang et al., 2011). More specifically, we removed the puromycin resistance cassette of Tctn2tm1aReit by 
Cre-mediated recombination, leaving two loxP sites flanking the first three Tctn2 exons to generate 
Tctn2fl. All mice were maintained on a C57BL/6 J background. For timed matings, noon on the day a 
copulation plug was detected was considered to be 0.5 days postcoitus. Genotyping primers for all 
mouse strains used in this study can be found in Supplementary file 1.

Immunofluorescence
The antibodies used in this study were rabbit α-ARL13B (1:1000, Proteintech 17711–1-AP), rabbit 
α-cleaved-caspase-3 (Asp175) (1:400, Cell Signaling #9664), rabbit α-cleaved-caspase-9 (Asp353) 
(1:100, Cell Signaling #9509), rabbit α-phospho-histone H3 (Ser28) (1:400, Cell Signaling #9713), 
chicken anti-GFP (1:1000, Aves labs GFP-1020), goat gamma-tubulin (1:200, Santa Cruz sc7396), 
mouse acetylated-tubulin (1:1000, Sigma T6793), rat E-cadherin (1:1000, Invitrogen 13–1900), and 
rabbit FoxA2 (1:400 abcam ab108422). The In Situ Cell Death Detection Kit, Fluorescein (Roche) was 
used for TUNEL cell death assay. For immunofluorescence antibody staining of frozen tissue sections, 
embryos were fixed overnight in 4 % PFA/PBS, washed in PBS and cryopreserved via overnight incu-
bation in 30 % sucrose/PBS. Embryos were embedded in OCT and frozen at –80 °C. Frozen OCT 
blocks were cut into 10 μM sections. For immunostaining, frozen sections were washed 3 × 5’ in PBST 
(0.1%Tween-20/PBS) followed by blocking for 2 hr in blocking solution (5 % donkey serum in PBS + 
0.3 % Triton X-100 +0.2 % Na-azide). Slides were incubated overnight in primary antibody diluted 
in blocking solution at 4 degrees. The following day, slides were washed 3 × 10’ in PBST, stained 
with appropriate AlexaFluor 488, 568, or 647 conjugated secondary antibodies (Life Technologies) 
at 1:1000 and Hoecsht or DAPI nuclear stain in blocking buffer for 1  hr, rinsed 3 × 10’ with PBST 
and mounted using Fluoromount-G (Southern Biotech). All steps performed at room temperature 
unless otherwise noted. *Note: For gamma-tubulin antibody staining, antigen retrieval by incubating 
with 1%SDS/PBST for 5 min prior to blocking and primary antibody incubation is required for good 
staining. Stained samples were imaged on a Leica SP-5 confocal microscope. Images were processed 
using FIJI (ImageJ).
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In situ hybridization
WM-ISH was performed as previously described (Harrelson et al., 2012). DIG-labeled riboprobes 
were made using plasmids from the following sources: Shh (Echelard et al., 1993), Gsc (Blum et al., 
1992), Ptch1 (Goodrich et al., 1999), Foxa2 (Brennan et al., 2001), Gli1 (EST W65013).

RT-qPCR
For gene expression studies, RNA was extracted from E8.5/E9.5 embryo heads using an RNAeasy 
Micro Kit (QIAGEN), and cDNA synthesis was performed using the iScript cDNA synthesis kit (BioRad). 
RT-qPCR was performed using EXPRESS Sybr GreenER 2 × master mix with ROX (Invitrogen) and 
primers homologous to Shh, Ptch1, or Gli1 on an ABI 7900HT RT-PCR machine. Expression levels were 
normalized to the geometric mean of three control genes (Actb, Hprt and Ubc), average normalized 
Ct values for control and experimental groups determined, and relative expression levels determined 
by ΔΔCt. The RT-qPCR of each RNA sample was performed in quadruplicate with a minimum of N 
= 3 biological replicates (biologically distinct samples) per genotype. All primers used for RT-qPCR 
experiments can be found in Supplementary file 1.

Embryo processing for midface imaging
Embryos were harvested in ice-cold PBS, staged by counting somite number, and fixed o/n at 
4 degrees in 4%PFA/PBS. Embryo heads were removed and stained in 0.01 % ethidium bromide in 
PBS at room temperature for 15 min. Embryos were positioned using glass beads in PBS and imaged 
on a Leica MZ16 F fluorescence stereomicroscope.

Image Quantification
For 2D midface width quantification, the infranasal distance was measured using FIJI software by 
drawing a line between the center of each nasal pit. For quantification of cell death and prolifera-
tion assays, a minimum of two sections per embryo were quantified over three biological replicates 
(biologically distinct samples). Staining with epithelial marker E-cadherin was used for quantification 
of facial ectoderm while nuclear morphology was used to separate mesenchyme, hindbrain, and fore-
brain tissue compartments. For quantification, threshold was first set for each image followed by 
binary watershed separation to obtain accurate nuclei counts. The percentage of TUNEL+ or pHH3+ 
nuclei were compared between Tctn2 mutant and control samples.
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