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Adaptor molecules lack enzymatic and transcriptional activities. Instead, they exert their
function by linking multiple proteins into intricate complexes, allowing for transmitting and
fine-tuning of signals. Many adaptor molecules play a crucial role in T-cell signaling,
following engagement of the T-cell receptor (TCR). In this review, we focus on Linker of
Activation of T cells (LAT) and SH2 domain-containing leukocyte protein of 76 KDa (SLP-
76). Monogenic defects in these adaptor proteins, with known roles in T-cell signaling,
have been described as the cause of human inborn errors of immunity (IEI). We describe
the current knowledge based on defects in cell lines, murine models and human patients.
Germline mutations in Adhesion and degranulation adaptor protein (ADAP), have not
resulted in a T-cell defect.
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INTRODUCTION

Engagement of the T cell receptor (TCR) triggers a signaling cascade responsible for T-cell
activation, maturation and differentiation. Fine tuning of this complex multi-protein cascade
enables discriminating different signals based on strength and duration. In the thymus, this process
allows for positive selection. In the periphery, weak, self-peptide-MHC survival signals are
differentiated from strong foreign-peptide-MHC activating signals (1). Moreover, signaling
strength is crucial for determining T-cell fate (2).

Following engagement of the TCR, immunoreceptor tyrosine-based activation motifs (ITAMs)
on CD3 cytoplasmic tails and z chains are phosphorylated by LCK, leading to the phosphorylation
of ZAP70, which in turn phosphorylates LAT, SLP-76 and CD6 (1, 3–5) (Figure 1). Phosphorylation
of the 4 distal tyrosine residues of LAT leads to the assembly of the LAT signalosome, including
PLCg1, Itk, SLP-76, Gads and Grb-2 (5–7). This signalosome mediates downstream events which are
crucial for T-cell activation, including Calcium mobilization, Erk and NFAT activation, CD69
expression, and cytoskeletal organization (6).

Adaptor molecules lack both enzymatic and transcriptional activities. Through multiple
interaction domains they function as modular scaffolds for the formation of multiprotein
org August 2021 | Volume 12 | Article 7017041
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signaling complexes and have a vital role in transmitting and
fine-tuning of T-cell activation. It is not surprising, therefore, to
find human germline defects in these molecules that result in
immune dysregulation.

Newly recognized inborn errors of immunity (IEI) due to
monogenic mutations in several key adaptors in T-cell signaling
have shed light on their function in humans. In this review, we
summarize the current knowledge on adaptors in T-cell signaling
for which human monogenic defects have been described, and
discuss lessons learnt from comparison of cell lines, murine
models and humans.
LINKER FOR ACTIVATION OF T CELLS

LAT is expressed in T-, mast, NK- and immature B-cells, as well
as megakaryocytes and platelets (6). This protein, with a short
extracellular domain, a single transmembrane domain, and a long
intracellular region, serves as a crucial nucleating factor for
multiprotein signaling complexes. It plays a central role in T-
cell activation downstream of the TCR, by recruiting kinases,
effectors, and other adaptors into highly regulated signal
transduction pathways. Upon TCR engagement, LAT is
phosphorylated primarily by ZAP70, but also by Itk and Lck
(6) in 4 conserved tyrosine residues (Y132, Y171 Y191 and Y226).
Phosphorylated LAT binds to PLCg1, SLP-76 (via Gads) and
Grb-2, leading to the assembly of the LAT signalosomes (1, 5–7)
(Figure 1). Phosphorylated tyrosine residues show predilection
towards specific binding proteins. In this way, the Y132 residue
binds PLCg1 with greater affinity, while Grb2, Gads and Grap
Frontiers in Immunology | www.frontiersin.org 2
associate with the distal LAT phosphotyrosines Y171, Y191 and
Y226 (6, 8–11). Nevertheless, each binding site specificity is not
insulated, and the different SH2-containing LAT binding proteins
show cooperative interactions: while Gads-SLP-76 binding
stabilizes the LAT-PLCg1 association and PLCg1 activation
through recruitment of Itk (12, 13), PLCg1 stabilizes the
binding of Grb2 to LAT. The cooperative interaction of LAT,
Sos1 and Grb2, as well as LAT-Gads-SLP-76-ADAP allow for the
assembly of macromolecular LAT signaling complexes, which are
essential for T-cell signaling (6, 11, 14–16).

Once activated, PLCg1 hydrolyzes phosphatidylinositol 4,5-
bisphosphate (PIP2) to produce inositol 1,4,5-triphosphate (IP3)
and diacylglycerol (DAG). DAG stimulates RasGrp, which in
turn activates ERK1/2, and protein kinase C (PKC), leading to
activation of the NFkB pathway. IP3 promotes the release of
intracellular Ca2+ stores, leading to extracellular Ca2+ influx and
NFAT activation. Grb2, through its constitutive association with
Sos1 and Cbl, is involved in Ras and MAP kinase activation (6,
17). Moreover, by binding multiple Grb2 molecules to LAT, the
Grb2-Sos1-LAT interaction mediates oligomerization of LAT.
Importantly, LAT oligomerization was shown to be of greater
significance for T-cell signaling under limiting stimulating
conditions (14, 15).

SLP-76, another crucial adaptor, is recruited to the LAT
signalosome via its constitutive interactions with Gads. In
addition to its contribution to LAT- PLCg1 interaction and
PLCg1 activation, this adaptor is involved in integrin and
cytoskeletal function as well as downstream T-cell activation
through multiple interactions with Nck, Vav1, Rac1, ADAP, Shb
and p85 (5, 6, 17–19). Importantly, SLP-76 is also activated in a
FIGURE 1 | Proximal T-Cell Activation Signaling. The main proximal signaling events following engagement of the TCR are depicted, including the assembly of the
LAT and SLP-76 signalosomes and their downstream effects.
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LAT-independent manner by phosphorylated CD6 (1, 20), and
following integrin activation (21).

LAT Murine Models
A complete LAT knockout murine model exhibited early arrest of
thymocyte development in the double negative 3 (DN3) stage (6,
22). A LAT4YF knock-in model, deficient in the 4 distal tyrosines
showed a similar phenotype, indicating the importance of these 4
residues to pre-TCR signaling and T-cell development (23). In
contrast, a point mutation in the Y136 residue (LATY136F,
corresponding to human Y132 residue), impaired LAT binding to
PLCg1, Ca2+ flux and NFAT signaling, while the effect on ERK
phosphorylation was variable (17, 24–27). Affected T-cells show
severe, yet incomplete arrest in their development. Affected mice
developed a polyclonal, Th2 lymphoproliferative disorder, with
secondarymassive expansion of eosinophils andB cells,multiorgan
inflammation, autoimmune nephritis and fibrosis (24, 28–32).
Aberrant T-cells exhibited an effector phenotype, with reduced
proliferation in response to TCR stimulation, reduced FasL-
mediated apoptosis, and a TCRloCD5hi phenotype, indicative of
an abnormal survival and proliferation of autoreactive T-cells (24,
25, 30). In a knock-in murine model of the Y175, Y195 and Y235
residues (LATY7/8/9F corresponding to the human Y171, Y191 and
Y226 residues), a complete arrest of ab-T cell alongside partial
arrest of gd T-cell development caused a similar albeit slightly
delayed-onset lymphoproliferative Th2 disease (33). When the
LATY136F knock-in was crossed with TCRb-/- mice, a similar
phenotype to the LATY7/8/9F knock-in ensued, which
demonstrates the importance of the LAT- PLCg1 to both ab and
gd T-cell maturation (29). Since recruitment of Grb2 and Gads is
important for activation of PLCg1, the difference between the
LATY136F and LATY7/8/9F phenotypes can be attributed to
differences in signal strength and the lower level of signaling
required for gd T-cell maturation (17).

While LATY136F Tregs were non-functional, using adoptive
transfer experiments with floxed genes, autoimmune phenotype in
LAT mutated mice was proven to be intrinsic to effector CD4+ cells
(27, 32) and independent of thymic development and of the distal 3
LAT tyrosine residues (1, 25, 27). Presumably, both the peripheral
ablation of LAT in normally developed T-cells and the occurrence
of peripheral LATY136F T-cells enable a weak tonic TCR-dependent
signal, leading to continued positive LAT-independent signaling
events, including PI3K and SLP-76 activation, which is unopposed
by a normal negative-feedback loop. This results in the emergence
and expansion of an abnormal, autoreactive polyclonal Th2 subset
(17, 25). Such negative feedback signals include Gab2-dependent
SHP-2 activation and competitive inhibition of SLP-76 (34), Grap
inhibition of ERK activation (35), SHIP-1-Dok1/2 mediated
inhibition of Akt and Zap70 (36, 37), THEMIS-SHP1-Grb2
mediated regulation of proximal-TCR signaling, and LAT
negative feedback of ZAP70 and CD3z phosphorylation (38),
PTPN7 (38) and HPK-1 (39).

LAT Inborn Errors of Immunity
Recently, human inborn errors of immunity (IEI) caused by
monogenic defects in LAT have been described, with varying
Frontiers in Immunology | www.frontiersin.org 3
phenotypes: Bacchelli et al. (40) described 5 patients from a single
consanguineous pedigree with severe combined immunodeficiency
(SCID). All patients presented in early infancy with recurrent
infections and failure to thrive (FTT), extremely low (<300 cells/
mm3) T cell counts and absent T-cell proliferative response to
phytohemagglutinin (PHA) and normal B and NK-cell counts. In
one patient, increased gd T-cell count was suspected. While all
patients underwent hematopoietic stem cell transplantation (HSCT)
using various donor types and conditioning regimens, 3/5 (60%)
died of transplant related complications. A homozygous LAT
c.44_45insT p.Leu16AlafsX28 mutation, associated with a
complete loss of protein expression was found. Mutant LAT
reconstitution in Jurkat cell lines was unable to restore post-
stimulation CD69 expression, Ca2+ flux and downstream
phosphorylation of SLP-76 and Vav1. TCR-induced apoptosis
was severely reduced in LAT-deficient T-cell lines and was not
restored following reconstitution with the LAT-mutant.

Keller et al. (41) described 3 siblings of a consanguineous
family with a homozygous LAT c.268_269del mutation, which
resulted in a premature stop-codon eliminating all major
intracellular phosphorylation sites. While patients also
presented in early infancy with recurrent infection including
CMV viremia and recurrent pneumoniae resulting in
bronchiectasis, their phenotype was notable for severe
autoimmune cytopenias, anti-ADAMTS13+ microangiopathic
hemolytic anemia, lymphoproliferation and an expansion of
Th2-like effector T-cells, as well as elevated gd T-cell counts,
reminiscent of the partially deficient murine models (24, 33).
Patients developed progressive hypogammaglobulinemia and
CD4 and B cell lymphopenia with reductions in naïve CD4
and CD8 cells and reduced CD3 expression. TCR-dependent
proliferation and activation was abrogated. While 2 patients died
at 9 and 2 years of age of disseminated CMV infection and
thrombotic thrombocytopenic purpura (TTP), respectively, one
patient underwent a successful HSCT and is currently well.

Considering the elimination of all 4 major known
phosphorylation sites, and the complete block in T-cell
development in the equivalent murine model (23), it was
somewhat surprising that Ca2+ mobilization and IkBa
degradation, both downstream of PLCg1 activation were
normal in patients’ T cells, despite being affected in Jurkat cell
lines (8, 41). While ERK phosphorylation was absent in patients’
CD4CD45Ro cells, ITK phosphorylation was normal both in
patient’s cells and Jurkat-cell lines, in contrast to a previous
report (42). The authors attribute the difference to the presence
of a yet unknown LAT-replacing adaptor which is absent in
Jurkat-cell lines. Indeed, the importance of LAT-independent
TCR-signaling has been recognized previously (7, 20, 25, 38, 43–
46). CD6 is known to recruit SLP-76, Gads, Grb2, Vav1 and
SHIP1 independently of LAT (20, 47, 48), and is therefore a
potential candidate for LAT-independent Itk phosphorylation
and Calcium flux. While induced CD6 expression in Jurkat cell
lines did not rescue Ca2+ mobilization in LAT-mutated cell-line,
it is possible that this is because of lack of expression of the CD6
ligand (48). Possibly, CD6 or another LAT-substitute is
responsible for Ca2+ mobilization downstream of PLCg1, but is
August 2021 | Volume 12 | Article 701704
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unable to replace ERK activation, which requires both PLCg1
activation and an intact LAT-Grb2-Sos1 complex (6, 49).
Another possible explanation lies in the partial rescue of LAT-
dependent signaling via LCK binding to LAT upstream of the
mutation site (50). Possibly, the impact of such binding is
stronger in primary T-cells compared to Jurkat cell lines. Loss
of RasGrp-induced ERK activation in turn, may have resulted in
aberrant tonic T-cell signaling and basal TCRa levels in naïve
CD4 cell (51), affecting LAT’s regulatory role in maintaining T-
cell homeostasis. This is supported by the observation of low
CD3 expression in LAT-mutated mice, Jurkat cell lines and
human cells (41, 51, 52), as well as by the similar phenotype
observed in RasGrp deficient patients (53). In this way, we
postulate, that while LAT-independent signals are sufficient to
allow for partial ab and gd T-cell development in the thymus,
abnormally weak signal in the periphery results in aberrant tonic
T-cell signaling and the development of a population of
activated, dysregulated CD4+ cell.

The current concept for LAT function, is that LAT has both
positive and negative roles in T-cell signaling: in the thymus,
LAT is responsible for pre-TCR signaling and positive selection,
and so complete loss of protein expression results in arrest of T-
cell development. In the periphery, however, LAT has a dual role:
on one hand it acts as a positive regulator of T-cell activation,
including early T-cell activation, immune synapse development
and cytoskeletal changes. On the other hand, LAT-dependent
inhibition augments T-cell signaling and is involved in
maintaining T-cell homeostasis (6, 51). Moreover, it is known
that LAT functions as a central hub for the creation of multiple
microclusters which then assemble into condensates. Recently,
using affinity purification with mass spectrometry, LAT
microclusters were proven to be heterogeneous. Many abortive
or partially functional LAT signalosomes accompany the fully
functional, high order signalosome. As such, it was shown, that
30 seconds after TCR engagement, LAT-SHIP1 containing
signalosomes are much more abundant than LAT-SLP-76
signalosomes (47). Therefore, it is possible, that the different
LAT signalosome isoforms have distinct functions, and that the
net result of TCR-engagement depends on the combined output
of these higher order LAT-signalosome-containing condensates.
In this way, a partial deletion in LAT could potentially alter the
composition of LAT-microclusters and attenuate the TCR signal.
SH2 DOMAIN-CONTAINING LEUKOCYTE
PROTEIN OF 76 KDA

SLP-76 is expressed in T cells, platelets, neutrophils, mast cells,
macrophages and NK cells (54). It exerts its function through
four distinct domains: an amino-terminal sterile a motif (SAM)
domain is responsible for ACK1 binding and oligomerization
(55, 56), followed by three tyrosine phosphorylation motifs,
responsible for binding of multiple effectors, including Vav1,
Nck, Itk and p85, thus promoting signal transduction and
cytoskeletal organization (54). A central proline-rich domain
includes the binding site for Gads, Grb2 and PLCg1, and is
Frontiers in Immunology | www.frontiersin.org 4
responsible for the recruitment of PLCg1 to the LAT signalosome
and its activation by Itk (57). A C-terminal SH2 domain is
involved in integrin function and the formation of LAT
microclusters via ADAP (11, 16, 21, 58–60), as well as a
negative-feedback loop through binding of HPK1 (11), and
CD6 interaction (61).

An SLP-76 deficient Jurkat-cell line (denoted J14)
demonstrated the importance of SLP-76 in PLCg1 activation,
intracellular Ca2+ flux, activation of the Ras, NFAT and AP1
pathways and early T-cell activation events, such as CD69
expression (62). Mutations in the three N-terminal tyrosine
residues of SLP-76 (denoted SLP-76Y3F), as well as mutations
of the Gads-binding site, all showed reduced Ca2+-dependent
NFAT activation, ERK1/2 and PLCg1 phosphorylation. A
mutation in the SLP-76 SH2 domain, however, affected PLCg1
phosphorylation to the same extent, while NFAT activation was
variably affected and ERK phosphorylation was comparable to
wild type (60, 63).

While there is a 60% perinatal mortality rate among SLP-76
deficient mice, the remaining suffer from defects in T-cell
development, as well as mast cell, neutrophil, platelet and
vascular defects (54, 64–67). SLP-76 deficient T-cells show
arrested thymic development at the DN3 stage, in a similar
manner to LAT-deficient mice. An SLP-76-N-Terminal domain
depleted murine model showed a similar phenotype to the
SLP-76-/- model (68). On the other hand, knock-in mutations
in the N-terminal and proline-rich domains, including the SLP-
76Y3F, SLP-76Y112/128F, SLP-76Y145F knock-ins, and selective
deletions of the Gads-binding site all resulted in varying
degrees of aberrant, yet not obliterated thymic differentiation,
impaired calcium flux, actin polymerization and PLCg1 and ERK
phosphorylation (58, 68, 69). Deletion of the SH2 domain results
in a milder impairment in thymocyte development, near normal
Ca2+ flux and ERK activation, but defective T-cell proliferation
and activation, reminiscent of the ADAP-deficient murine model
(19, 68, 69).

SLP-76 Inborn Errors of Immunity
Recently, a single Palestinian patient was described with a novel
homozygous mutation c.957+1G>A; p.K309FSx17 in SLP-76,
affecting a donor splice site and resulting in skipping of exon 14
and deletion of the C-terminal domain (70). Clinically, the patient
presented in early infancy with a combination of autoimmune
and lymphoproliferative manifestations, CMV viremia, skin
disease, Aspergillus fumigatus brain abscesses and local BCGitis.
His immune phenotype included a skewed CD4:CD8 ratio, clonal
expansion of central memory CD4+ cells and terminally
differentiated CD8+ cells, and a skewed T-cell repertoire,
alongside a severe neutrophil defect, an NK functional defect
and arrest of B-cell development. A defect in platelet aggregation
led to a petechial rash. The patient underwent a haplo-identical
HSCT at the age of 10 months. However, he died in the
immediate post-HSCT period of transplant related complications.

While there was no protein expression in patient’s peripheral
blood mononuclear cells (PBMCs), there was somewhat lower
expression of the SLP-76 in J14 reconstituted with the mutant
protein. The differential expression between patient cells and
August 2021 | Volume 12 | Article 701704
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reconstituted Jurkat cell lines could be attributed to fixed
promoter-driven cDNA expression in Jurkat cell lines, as well
as lower expression of SLP-76 in patient’s clonally expanded,
terminally differentiated cells. The authors concluded that the
mutation results in a hypomorphic, unstable yet partially
functional protein, leading to reduced TCR-dependent ERK, S6
and PLCg1 phosphorylation, abnormal Ca2+ flux and poor
upregulation of CD69, CD25 and CD98. This hypothesis is
supported by the hypomorphic phenotype associated with
SH2-domain defects (54, 63). Partial T-cell developmental
arrest and immune dysregulation were also noted in a murine
model of ~90% reduced SLP-76 levels (71), pointing to the possible
association between reduced SLP-76 signaling and immune
dysregulation. Interestingly, in contrast to the murine phenotype,
B-cell arrest was evident in the patient. SLP-76 is known to be
involved in pre-B cell signaling (72). Other defects in pre-BCR
signaling also show a discrepancy between the mouse and human
phenotype,perhapspointing to themore stringent requirements for
human pre-BCR signaling as compared to mice (73).
ADHESION AND DEGRANULATION
ADAPTOR PROTEIN

ADAP, also termed FYB and SLP130, is expressed in T-cells and
myeloid cells. This protein contains a proline-rich region and an
SH3-l ike domain, both of which bind SKAP55. A
phosphotyrosine motifs rich domain is responsible for binding
FYN and SLP-76, and an Ena/VASP-homology1 (EVH1)-
binding domain binds Ena/VASP family proteins (74). Upon
T-cell activation, ADAP is phosphorylated at 3 tyrosine residues
by FYN, followed by binding to SLP-76 through its SH2 domain
(6, 59, 74). Through its association with SLP-76, ADAP
contributes to the cross-linking of LAT molecules into
microclusters and amplification of proximal signaling events
(11, 16). This protein has also been implicated in regulation of
Frontiers in Immunology | www.frontiersin.org 5
the assembly of the CBM (CARMA1/Bcl10/MALT1) complex,
leading to NFkB activation (19), as well as integrin activation (19,
21, 74, 75). In CD8+ cells, ADAP was associated with increased
PD1 expression and reduced anti-tumor immunity (76),
pointing to a possible regulatory role (77). ADAP-/- mice show
moderate thrombocytopenia and mildly decreased thymocyte
numbers (78). Despite normal proximal TCR-signaling events,
ADAP-/- T cells have abnormal activation and proliferation and
impaired LFA-1 clustering in response to TCR stimulation. It is
somewhat surprising then, that ADAP deficiency in humans,
which is associated with congenital autosomal-recessive small-
platelet thrombocytopenia (CARST) (79–82), has no known
immune defect. Activation-dependent, raft recruited ADAP-
like phosphoprotein (ARAP) shares sequence homology with
ADAP and activates integrin in a TCR- and SLP-76-dependent
manner (83). Therefore, it is a possible candidate for rescuing
ADAP function in T-cells.
CONCLUSION

The function of adaptor molecules in T-cell signaling has been
thoroughly investigated. However, recent discoveries of human
inborn errors of immunity have raised further questions
regarding the differential function and compensatory
mechanisms in T-cell signaling complexes between murine
models, Jurkat cells and patients. Further research is needed to
answer these questions.
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