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Abstract

Defects in the cilium, a once thought vestigial organelle, have recently been implicated in many human diseases, including a
number of cystic kidney diseases such as polycystic kidney disease (PKD), Bardet Bieldl Syndrome, and Meckel-Gruber
Syndrome. In a forward genetic screen, qilin was identified as a novel gene important in the pathogenesis of kidney cysts in
zebrafish. In this paper we characterized qilinhi3959A mutant’s phenotypes in detail, investigated cilia formation in this mutant
and performed structural and functional analysis of the Qilin protein. Results reveal Qilin’s essential role in cilia assembly and
maintenance in multiple organs, including the kidney, the lateral line organ, and the outer segment of the photoreceptor
cell. In addition, rescue experiments suggest that defective pronephric cilia correlate with the formation of kidney cysts in
qilinhi3959A mutants. Further, genetic analysis suggests that qilin interacts with multiple intraflagellar transport (IFT) complex
B genes, which is supported by the striking phenotypic similarities between qilinhi3959A and IFT complex B mutants. Finally,
through deletion analysis we provide evidence that the well-conserved N-terminus and the coiled-coil domain of Qilin are
both essential and sufficient for its function. Taken all the observations together, we propose that Qilin acts in a similar role
as IFT complex B proteins in cilia assembly, maintenance and kidney development in zebrafish.
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Introduction

The cilium, an organelle projecting from the cell surface, had

long been believed to be vestigial in vertebrates; however, in the

past decade it has been shown to play a critical role in both

vertebrate physiology and development. Defects in cilia are being

linked to an increasing list of human diseases, including polycystic

kidney disease (PKD), Bardet-Biedl Syndrome (BBS) and Joubert

syndrome, as well as developmental defects such as situs inversus

and polydactyl [1–11]. Despite the growing awareness of the

functional importance of cilia, our understanding of the regulation

of cilia biogenesis and maintenance remains incomplete.

In a forward genetic screen in zebrafish, a group of cystic kidney

mutants were identified [12]. Consistent with a central of cilia in

PKD pathogenesis, three of the identified genes encode compo-

nents of complex B of intraflagellar transport (IFT) particles. First

identified in the green algae Chlamydomonas, IFT particles are

multi-protein complexes believed to carry cargos essential for cilia

biogenesis, maintenance and signaling [13,14]. They are com-

posed of complex A and complex B subunits, with complex A

more associated with retrograde transport [15,16] and complex B

involved in anterograde transport [13,17]. Interestingly, despite

phenotypic similarities, some mutants isolated in the screen

exhibited cilia biogenesis defects while others were able to

assemble cilia [12]. Qilin (also later named as Cluap1 as its encoded

protein was identified as a Clusterin-associated protein, [18]) was a

novel gene identified in this screen, and qilinhi3959A mutants

develop kidney cysts but are capable of cilia assembly [12].

However, although Qilin was not among the IFT particle

components biochemically purified from Chlamydomonas, subse-

quent studies involving Qilin homologues in other organisms

suggest a link between Qilin and cilia. In C. elegans, the Qilin

homologue DYF-3 was observed to move along the cilia at exactly

the same biphasic anterograde rate as those reported for known

IFT particles and IFT motors in C. elegans, providing strong

evidence that DYF-3 is part of the IFT machinery [19,20]. In

addition, dyf-3 mutants develop truncated sensory cilia, suggesting

that dyf-3 plays a role in cilia formation or maintenance in C.

elegans [19,21]. A connection between Qilin and cilia is also

implicated by the identification of its human homologue as part of

the human cilia proteome, as well as the observation that its

homologue in Chlamydmonas is highly upregulated during flagella

regeneration [22,23].

Although implicated in cilia biogenesis, the precise role of Qilin

in cilia formation, maintenance and embryonic development,

particularly in vertebrates, remains unclear. In this study, we

characterized the zebrafish qilinhi3595A mutant in detail. We show

that qilin is a maternally supplied gene and the maternal

contribution masks the essential function of Qilin in cilia

biogenesis and maintenance during early development in zebra-

fish. Further, in addition to almost identical morphological

phenotypes, qilinhi3595A mutants display similar cilia biogenesis

defects as IFT complex B mutants. Moreover, we provide evidence

that qilin genetically interacts with multiple IFT B complex genes.

Together, these results suggest that Qilin functions in the same

pathway as IFT B complex genes in cilia biogenesis. Finally,
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through deletion analysis we show that the N-terminus together

with the coiled-coil domain of the Qilin protein is both necessary

and sufficient for Qilin’s function.

Highlights

N qilin is essential for cilia formation and maintenance in

zebrafish

N qilin functions in similar processes as intraflagellar transport

(IFT) genes

N N-terminal and coiled-coil domains of Qilin are essential and

sufficient for its functions

Materials and Methods

Zebrafish husbandry
Standard protocols were used for maintaining zebrafish

colonies. Embryos were obtained through natural spawning. All

lines were maintained in the TAB background.

All zebrafish works have been conducted according to protocols

approved by Institutional Animal care and Use Committee

(IACUC) of Yale University (Protocol number: 2009–10778).

RT-PCR
RNA was extracted from embryos at different developmental

stages using Trizol reagent (Invitrogen) according to manufactur-

er’s instructions. Total RNA was reverse-transcribed using an

oligo-dT primer and the Superscript II RT-PCR system (Invitro-

gen). Subsequent Qilin-specific PCR was performed with the

following primers: 59-TACAACTAAAACGGTGACAGT-39 and

59-AACCCTCTCAAACTCACAAATTAAC-39.

Genotyping qilinhi3959A mutants
To genotype progeny from qilinhi3959A carrier in-crosses, three

primers were used. One primer is specific to the proviral insertion,

close to the insertion site (59-ACTTGTGGTCTCGCTGTTC-

39). The rest two (59-GTGACGAACACAGCAACAGACG-39

and 59-CCAGTAAACACACAACTGTCACC-39) are specific for

genomic regions flanking the proviral insertion. In the absence of

the proviral insertion, amplification would take place between the

genomic pair. In contrast, the presence of the 10 kb proviral

insertion will disrupt the amplification between the genomic pair.

Instead, amplification would occur between the proviral-specific

primer and one of the genomic primers.

Histological analysis
Embryos were fixed in Bouin’s fixative overnight at room

temperature, washed three times in PBS with 0.1% Tween-20

(PBT), embedded in JB-4 resin (Polysciences) following manufac-

turer’s instructions and cut at 4 mm with a microtome. Slides were

then stained with hematoxylin and eosin.

Generation of Qilin constructs
The qilin coding sequence was PCR amplified from a zebrafish

cDNA pool and cloned into the pCS2+ vector. pCS2-qilin tagged

with eGFP on the N-terminus end was generated via PCR cloning.

Different qilin deletion constructs were generated via PCR cloning.

In situ hybridization
Embryos were fixed in diluted formalin (1:2.7 in PBT) at room

temperature for an hour or at 4uC overnight. Digoxigenin-UTP

labeled RNAs synthesized in vitro were used as probes. Alkaline

phosphatase-coupled anti-digoxigenin (Roche) was used to localize

hybridized probes. NBT/BCIP (Roche) was used as the chromo-

genic substrate to produce blue precipitates.

Assay for rescue activity
mRNA was synthesized in vitro using the mMESSAGE

mMACHINE kit (Ambion) following the manufacturer’s instruc-

tions. 174 pg mRNA of eGFP-qilin, as well as other deletion

constructs were injected into zebrafish embryos. Embryos were

scored for body curvature at 2 dpf (days post-fertilization), and for

pronephric cysts at 4–5 dpf.

Immuno-staining
Embryos were anaesthetized with MESAB and fixed in Dent’s

fixative (80% methanol and 20% DMSO). The following

antibodies were used: mouse monoclonal anti-U tubulin antibody

(1:200 dilution, Sigma T5326), mouse monoclonal anti-acetylated

tubulin antibody (1:5000 dilution, Sigma clone 6-11b-1), rabbit

polyclonal anti-Scorpion antibody (1:2000 dilution, [24]) and

rabbit polyclonal anti-Cdh17 (1:200, [24]). Secondary antibodies

from Jackson Immuno Research Laboratories Inc were used at

1:200 dilutions. DAPI (Invitrogen D3571) was used at 1:10,000

dilution.

Morpholino Oligos
Morpholino oligonucleotides were purchased from Gene Tools

and injected into zebrafish embryos at the one- to four-cell stages.

59-CATGATTGCTGTCCTTTAATCCAGT-39 was used to

block the translation of qilin. Previously described morpholino

oligo was used to block the translation of ift172 [25]. 59-GG-

AGGTAATAGTGTGTGTCTACGTG-39 was used to block the

translation of ift27 and 59- GGACGTAATACTGTCTGTGTA-

CCTG -39 was used as the mismatch control.

Statistical Analysis
Microsoft Excel was used to derive standard deviation and to

perform student’s t-tests.

Results

qilinhi3959A mutants develop kidney cysts and ventrally
curved body axis

qilinhi3959A was identified in an insertional mutagenesis screen for

cystic kidney in zebrafish [12]. Similar to other group II mutants

identified in this screen, qilinhi3959A mutants develop ventrally

curved bodies, visible at the end of 1 dpf, followed by bilateral

kidney cysts, detectable by 2 dpf (Fig. 1A, B). In addition, by 5 dpf,

we observed pericardial edema in 40–60% of qilinhi3959A mutants

(data not shown).

To analyze kidney cysts in greater detail, we examined the

kidney in qilinhi3959A mutants using histological analysis. Cross

sections of qilinhi3959A mutant embryos at 5 dpf revealed large,

bilateral cysts in the glomerular-tubular region not seen in wild

type sibling embryos (Fig. 1C, 1D). In addition, mutant kidney

ducts are grossly enlarged compared to their wild type siblings

(Fig. 1E, 1F). Kidney duct dilation in qilinhi3959A mutants was

further confirmed by immunofluorescent staining of whole-mount

embryos using a kidney epithelium-specific marker, Cdh17

(Fig. 1G, 1H).

Disruption of qilin is responsible for phenotypes
observed in hi3959A mutants

qilin is a novel gene with twelve exons (Fig. 2A). In hi3959A

mutants, a proviral insertion is located in the 59 UTR of
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the gene (Fig. 2A). RT-PCR using 2 dpf embryos revealed

that full-length qilin transcript is absent in hi3959A mutants

(Fig. 2B).

To provide further support for our hypothesis that disruption of

qilin resulted in the body curvature and kidney cyst phenotype

observed in hi3959A mutants, we designed morpholino oligo

against the AUG translational start site of qilin. Wild type embryos

injected with qilin morpholino displayed similar phenotypes to

those observed in the hi3959A mutants, with ventrally curved

bodies and kidney cysts (data not shown).

Figure 1. qilinhi3959A mutant develops body curvature and kidney cysts. (A, B) Side view of embryos at 3 dpf. Inset in B is a zoomed in view
of the kidney cyst in the mutant. (C–D) Cross section through the glomerular-tubular region of embryos at 5 dpf. Red arrow in C points to the fused
glomeruli, while red dotted lines in D outline the cysts. (E–F) Cross sections of the duct of embryos at 5 dpf. Solid green lines outline the duct. Green
arrows point to the duct. (G–H) Side view of the pronephric duct in whole-mount embryos at 5 dpf stained with Cdh-17. Yellow dotted lines outline
the duct. WT: wild type; MUT: mutant. Scale bars in C–F: 20 mm, in G and H; 5 mm.
doi:10.1371/journal.pone.0027365.g001

Figure 2. hi3959A is a zygotic null allele of qilin. (A) Graphic representation of qilin gene. Blue squares represent exons. Red triangle indicates
the proviral insertion site. Arrows indicate the direction and location of the genotyping primers used. (B) qilin transcript in embryos at 5 dpf shown
by RT-PCR of cDNA from hi3959A embryos (lane 2) and wild type siblings (lane 1). Lane 3 and 4 are beta-actin loading controls for hi3959A (Lane 4)
and wild type siblings (Lane 3). (C) Genotyping PCR of embryos from hi3959A carrier in-crosses injected with eGFP-qilin mRNA. All embryos
genotyped exhibited wild type phenotypes. Lower band is specific for the mutant allele, while the upper band is specific for the wild type allele. From
left to right, the three embryos are heterozygous, homozygous mutant and homozygous wild type, respectively. (D) Graph displaying percent
embryos with the curved body phenotype in hi3959A carrier-in crosses that are uninjected (n = 3, with an average of 140 embryos per experiment)
and injected with eGFP-qilin mRNA (n = 3, with an average of 120 embryos per experiment). * p, 0.05.
doi:10.1371/journal.pone.0027365.g002
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Finally, we performed rescue experiment using mRNA

synthesized in vitro. Embryos from hi3959A heterozygous carrier

in-crosses were injected with eGFP-qilin mRNA, encoding Qilin

tagged with eGFP at the N-terminus. In three different

experiments, an average of 4% of the injected embryo displayed

the body curvature phenotype, compare to 20% of the uninjected

siblings (Fig. 2D). To confirm that Qilin over-expression rescues

the qilinhi3959A mutant phenotype, we genotyped phenotypically

wild-type embryos from those injected with the eGFP-qilin mRNA.

Of seventeen embryos genotyped, three were homozygous for the

hi3959A proviral insertion (Fig. 2C). The rescuing capacity of

untagged qilin mRNA is similar to that of eGFP-qilin (data not

shown). Taken together, these data indicate that the hi3959A

mutant phenotypes are due to the lack of wild type Qilin.

qilin is ubiquitously and maternally expressed
To examine the function of qilin during embryonic develop-

ment, we first analyzed the expression profile of qilin using in situ

hybridization. Results showed that qilin mRNA is distributed

ubiquitously throughout the embryo across different developmen-

tal stages, from as early as the 8-cell stage to 24 hpf (Fig. 3A–F).

The specificity of the result is verified by the complete lack of

signal in embryos hybridized with a sense control probe (Fig. 3D,

F). RT-PCR analysis further verified the presence of qilin

transcript at both the 16-cell and the 2 dpf stages in wild-type

embryos (Fig. 3G). In zebrafish, zygotic expression initiates when

embryos reach approximately the one thousand-cell stage.

Therefore these observations suggest that qilin mRNA is

maternally supplied.

qilinhi3959A mutants exhibit cilia biogenesis defects in the
pronephric duct

To investigate whether Qilin is required for cilia assembly or

maintenance, we examined cilia morphology at various develop-

mental time points in the pronephric duct of qilinhi3959A mutants

using the anti-Sco/Arl13b antibody, a cilia-specific marker we

established in a previous study [24,26]. In the pronephric duct,

there are two populations of ciliated cells: the multi-ciliated cells

(MCCs) that produce bundled cilia, and the single-ciliated cells

(SCCs) that display only a single cilium per cell [27,28]. Both

populations are present in the anterior to middle regions of the

pronephric duct, while only the SCC population is present in the

posterior region of the duct. On 1 dpf, cilia in the anterior

pronephric duct of qilinhi3959A mutants are already visibly defective

(Fig. 4A, B): while individual cilia from SCCs are still present in

the mutants, cilia bundles from MCCs are absent. Consistently,

cilia of the posterior pronephric duct, which contains SCCs but

not MCCs, appear unaffected in qilinhi3959A mutants (Fig. 4C, D).

In comparison, by 5 dpf, the entire pronephric ducts of qilinhi3959A

mutants lack cilia, whereas the ducts of wild type embryos have

abundant cilia (Fig. 4E, F). Cilia displayed by SCCs that were

initially present in the mutants are no longer detectable (Fig. 4E,

F). Because bundled cilia never form in qilinhi3959A mutant, Qilin

appears to be necessary for the assembly of cilia in MCCs.

Meanwhile, since single cilia develop normally but become

defective over time, Qilin seems to be required for the

maintenance, not initial biogenesis, of cilia in SCCs.

Formation of single cilia in the pronephric duct precedes
the formation of cilia bundles in multi-ciliated cells

The differential cilia phenotypes in the kidney duct of

qilinhi3959A mutants may suggest a cell-type specific function of

Qilin. Alternatively, in light of the maternal contribution of Qilin

transcript, this phenotypic difference may simply be caused by

differential developmental timing of the formation of single cilia

and bundles of multi-cilia in the pronephric duct. To test this

hypothesis, we performed a careful time course analysis on the

formation of cilia in the pronephric duct. At the 24-somite stage, in

none of the wild-type embryos analyzed from three independent

experiments can bundled cilia be detected, while individual cilia

are clearly visible (Fig. 5A, B). At 24 hpf, single cilia are visible in

all analyzed wild-type embryos, but multi-cilia are only detected in

22% of the embryos (Fig. 5A, C). At 30 hpf, the percent of

embryos with detected multi-cilia increases to 75% (Fig. 5A, D).

Figure 3. qilin is expressed maternally and ubiquitously. (A–F)
In situ hybridization for qilin on embryos at the 8- cell stage (A), the
shield stage (B), the 3–5 somites stage (C), and the 24 hours-post-
fertilization (hpf) stage (E). D and F are sense controls at the 3–5 somites
stage (D) and the 24 hpf stage (F). (G) qilin transcript shown by RT-PCR
from 16 cell (Lane 1) and 2 dpf (Lane 2) wild type embryos. Lane 3 and 4
are elf1a loading controls for 16-cell (Lane 3) and 2 dpf (Lane 4) samples
with matching dilutions of cDNA used in PCR reactions.
doi:10.1371/journal.pone.0027365.g003
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These observations suggest that single cilia indeed develop earlier

than multi-cilia in the developing pronephric duct, consistent with

the hypothesis that maternally contributed qilin mRNA was

sufficient to support the formation of single cilia, but not bundled

multi-cilia (Fig. 5E).

qilin hi3959A mutants exhibit cilia biogenesis defect in
multiple sensory organs

Given our finding that Qilin is important in the assembly and

maintenance of both populations of pronephric cilia, we were

interested in whether Qilin is required for the assembly of cilia in

other ciliated cells. We chose to examine ciliated organs formed

later in development to eliminate the possibility of maternally

contributed qilin masking its requirement in cilia assembly. The

lateral line organ usually displays long cilia in wild-type embryos

by 2 dpf (Fig. 6A). In qilinhi3959A mutants, however, there are no

visible cilia in this organ (Fig. 6B). Notably, the structure of the

lateral line organ structure is not affected in qilinhi3959A mutants,

suggesting that the lack of Qilin results in a very specific defect in

cilia assembly.

qilinhi3959A mutants also display cilia biogenesis defects in the

eye. In the retina, the outer segments (OSs) of photoreceptor cells

are modified cilia, which appear as a lightly stained layer between

the retinal pigment epithelium (RPE) and the out nuclear layer

(ONL) in histological sections (Fig. 6C). We found that in

qilinhi3959A mutants, the entire outer segment is missing and the

number of nuclei in the outer nuclear layer, which is comprised of

the cell bodies of photoreceptor cells, is much reduced. By

Figure 4. Pronephric cilia in qilin hi3959A mutants are defective. (A–D) Epifluorescent projections showing the pronephric cilia in a wild-type
sibling (A, C) and a mutant (B, D) at the 1 dpf; in both anterior (A, B) and posterior (C,D) portions of the duct. Yellow arrowheads in A and B point to
rows of basal bodies in MCCs. (E, F) Epifluorescent projections showing the pronephric cilia in a wild-type embryo (E) and a mutant (F) at 5 dpf in the
posterior portion of the duct. All embryos were stained with anti-c-tubulin (red), anti-Sco (green), and DAPI (blue).
doi:10.1371/journal.pone.0027365.g004

Figure 5. Single cilia form earlier in development than multi-cilia in the pronephric duct. (A) Graphical representation of multi-cilia
observed in embryos at 24 somite, 24 hpf, and 30 hpf. Single cilia were observed at all time points analyzed. Bars represent percentage of embryos
that developed multi cilia in the pronephric ducts. Each bar represents data from three independent experiments with at least 8 embryos each. (B–D)
Representative images of cilia at 24-somite (B), 24 hpf (C) and 30 hpf (D). Yellow arrowheads point to basal bodies of multi-cilia. (E) A model of how
different developmental timing of single cilia and multi-cilia could contribute to the pronephric cilia phenotypes observed in hi3959A mutants.
doi:10.1371/journal.pone.0027365.g005
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contrast, the inner nuclear layer (INL) is intact (Fig. 6D). Together,

these results suggest that Qilin is required for cilia biogenesis and

maintenance in multiple sensory organs in zebrafish.

qilin genetically interact with ift172 and ift27. qilinhi3959A

mutants display many of the phenotypes reported for IFT complex

B mutants, including similar body curvature and kidney cyst

formation [12]. On the cellular level, qilinhi3959A mutants also show

similar cilia phenotypes to that of IFT complex B mutants, but

distinct from other cystic kidney mutants in zebrafish [24,25,26].

These observations led us to test whether qilin genetically interacts

with genes encoding IFT complex B components. Using a

morpholino-based assay we first titrated morpholino oligos

against qilin, ift172 and ift27 to their suboptimal dosages and

then combined two different morpholinos to test whether they act

synergistically by assessing the percentage of embryo developing

the body curvature phenotypes (Fig. 7A, 7B). Specifically, when

wild-type embryos were injected with 2.0 ng ift172 morpholino

together with 6.7 ng control morpholino, or 6.7 ng qilin

morpholino together with 2.0 ng control morpholino, only 2%

and 6.7% displayed the body curvature. However, when wild-type

embryos were injected with 2.0 ng ift172 morpholino together

with 6.7 ng qilin morpholino, 46.4% developed body curvature

(Fig. 7C).

The same assay was performed between qilin and another IFT

complex B gene, ift27. We designed a morpholino oligo against the

translational initiation site of ift27. At the optimal dosage of 8.0 ng,

this oligo causes the development of body curvature, kidney cyst,

and laterality defect as shown by the position of the heart.

Importantly, all three phenotypes can be rescued by expressing a

full length ift27 mRNA in the morphants (Fig. 7 E–G), validating

the specificity of the ift27 morpholino. When wild-type embryos

were injected with the suboptimal 4.0 ng ift27 morpholino

together with 6.7 ng of a general control morpholino, or 6.7 ng

qilin morpholino together with 4 ng ift27 mismatch-control

morpholino, only 14% and 3.0% of the embryos developed the

curved body phenotype, respectively. However when wild-type

embryos were injected with 4.0 ng ift27 morpholino together with

6.7 ng qilin morpholino 88.2% of the embryos developed body

curvature (Fig. 7D). These results, together with the phenotypic

similarities between qilinhi3595A mutants and multiple IFT complex

B mutants, support our hypothesis that Qilin functions with the

IFT B complex in similar processes.

Structural and functional analysis of the Qilin protein
The Qilin protein (Q7ZVC2.2) is predicted to have a coiled-coil

domain and an aspartic acid rich domain (Fig. 8A). The zebrafish

Qilin is fairly conserved with its mouse and human homologue

with an overall identical percent of 64% and 62% respectively

(Table S1). The N-terminus and the coiled-coil domain are

especially well conserved, with an identical percent of 80% and

79% respectively. To delineate the functional significance of the

structural features of Qilin, we generated a series of deletion

constructs and tested their ability to rescue qilinhi3595A mutant

phenotypes. To ensure that the deletion proteins were stably

expressed, we tagged each of them with eGFP to the N-terminus

and verified the presence of eGFP signal in ensuring assays.

Importantly, similarly tagged full length Qilin was able to rescue

qilinhi3595A mutants (Fig. 2).

We started with the construct that encodes Qilin without the

coiled-coil domain (eGFP-DCC). qilinhi3595A heterozygote in-

crosses injected with DCC mRNA developed curvature and

kidney cysts at an average of 18.9% from three experiments, not

significantly different from uninjected embryos where an average

of 24.7% of the embryos developed curvature and kidney cysts

(Fig. 8B), suggesting that the coiled-coil domain is necessary for

Qilin’s functions. We further tested if the coiled-coil domain itself

is sufficient to rescue the qilinhi3595A mutant phenotype by over-

expressing the coiled-coil domain (eGFP-CC) in embryos from

heterozygote in-crosses. Injecting embryos with the eGFP-CC

mRNA does not result in significant rescue of the mutant

phenotype, where an average of 23.2% of the embryos from

three independent experiments developed body curvature and

cysts, compared to an average of 21.6% of the uninjected embryos.

Taken these results together, we conclude that the coiled-coil

domain is necessary but not sufficient for Qilin’s function.

Next we systematically deleted the rest of the regions in Qilin,

and results suggest that both Qilin without the aspartic acid rich

region (eGFP-DAR) and Qilin without the C-terminal tail (eGFP-

Figure 6. Sensory cilia in qilin hi3959A mutants are defective. (A–B) Epifluorescent projections showing the lateral line organ in a wild type (A)
and a mutant embryo (B) at 3 dpf. Embryos were stained with rodamine-phalloidin (red), anti- acetylated tubulin (green) and DAPI (blue). Scale bars:
10 mm. (C–D) The absence of the outer segment of photoreceptors in the eye as shown through cross sections of a wild type (C) and a mutant
embryo (D) at 5 dpf. WT: wild type; MUT: mutant; RPE: retinal pigment epithelium; OS: outer segment; ONL: the outer nuclear layer; INL: the inner
nuclear layer; OPL: the outer plexiform layer. Scale bars: 20 mm.
doi:10.1371/journal.pone.0027365.g006

Qilin Is Essential for Cilia Assembly
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DCT) can still rescue mutant phenotypes, where an average of

3.2% and 1.0% of the embryos injected with the respective mRNA

developed curvature and cysts. These results suggest that the

aspartic acid rich domain, as well as the C-terminal tail, is

dispensable for Qilin’s function.

Lastly we tested the rescuing ability of mRNA encoding both

the N-terminal region and the coiled-coil domain (eGFP-NT+CC),

and we discovered that an average of 3.6% of the heterozygous in-

cross embryos injected with this mRNA developed body curvature

and cysts, compared to an average of 30.0% of the embryos

developed these phenotypes in uninjected siblings. These results,

combined with the observation that neither the coiled-coil domain

nor the N-terminal domain alone can significantly rescue mutant

phenotypes, lead us to conclude that the N-terminal tail and the

coiled-coil domain together are sufficient for the function of Qilin.

Discussion

Qilin in vertebrate cilia biogenesis and maintenance
Qilin is a novel protein we isolated in a previous genetic screen

for cystic kidney mutants in zebrafish [12]. Consistent with the

critical role of cilia in kidney cyst formation, Qilin was

Figure 7. qilin genetically interacts with ift172 and ift27. (A–B) Side view of a representative uninjected control embryo (A) and a phenotypic
embryo injected with qilin and/or ift172, ift27 morpholino (B) at 2 dpf. (C, D) Graph displaying the percent of embryos that develop curved bodies. In
C, embryos are either injected with qilin morpholino and the control morpholino; ift172 morpholino and the control morpholino; or qilin morpholino
with ift172 morpholino. In D, embryos are either injected with qilin morpholino and the ift27 mismatched-control morpholino; ift27 morpholino and
the ift27 mismatched-control morpholino; or qilin morpholino with ift27 morpholino. (E–G)Graphical representation of the effectiveness of ift27:GFP
in rescuing body curvature (E), kidney cysts (F), and laterality defects (G) observed in ift27 morphants. Embryos are either injected with ift27
morpholino and myc:GFP mRNA (blue bars), or ift27 morpholino with ift27:GFP mRNA (pink bars). Laterality defects in (G) is presented as the
percentage of embryos developed hearts positioned on the right or center. N = 3 for all experiments, with at least 40 embryos per experiment per
condition. *: p, 0.05, **: p, 0.01. MO: morpholino.
doi:10.1371/journal.pone.0027365.g007

Figure 8. The N-terminus together with the coiled-coil domain
is sufficient for Qilin’s function. (A) Diagram of Qilin structure. NT:
N-terminal region; CC: coiled coil domain; AR: aspartic acid rich region;
CT: C-terminal tail. Numbers are amino acid coordinates in the protein.
All constructs were tagged with eGFP at the N-terminus. (B) Table
summarizing the rescuing ability of different deletion constructs
assayed in three independent experiments for each construct, with at
least 45 embryos per sample per experiment.
doi:10.1371/journal.pone.0027365.g008
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subsequently linked to cilia. In the nematode C. elegans, mutants of

qilin’s homologue dyf-3 show truncated cilia projections [21]. In

addition, dyf-3 transcription is regulated by DAF-19, a transcrip-

tion factor that regulates multiple ciliary genes in C. elegans [29,30].

In the green alga Chlamydomonas, Qilin is present in the flagellum

proteome and the expression of qilin is highly up regulated during

flagellum regeneration[23]. In this study, for the first time in an in

vivo vertebrate system, we provide clear evidence that Qilin plays

an essential role in both cilia biogenesis and maintenance.

We showed that qilin3959A mutants display cilia biogenesis

defects in multiple cell types, including MCCs in the pronephric

duct, photoreceptors of the eye, and hair cells in the lateral line

organ. Further, the maternal contribution of qilin and the

differential development timing of cilia biogenesis allowed us to

uncover Qilin’s role in cilia maintenance. Specifically, we found

that single cilia and bundled cilia in the pronephric duct form at

different developmental stages: while single cilia can be detected as

early as the 24 somite stage, bundled cilia are not visible in a

majority of embryos until 30 hpf. Interestingly, in qilin3959A

mutants, single cilia initially assemble normally, but degenerate

as embryos develop, and by 5 dpf single cilia are no longer visible

in mutant embryos. By contrast, bundled cilia never form. One

possible interpretation is that Qilin’s function is cell type specific.

However, given that qilin transcript is maternally supplied, we

postulate that maternally expressed Qilin is able to support the

biogenesis of single cilia in the pronephric duct and the gradual

degradation of the maternal protein reveals Qilin’s role in cilia

maintenance. The failure of cilia formation in photoreceptors in

the eye and hair cells in the lateral line organ, both of which form

single cilia later in development, supports our hypothesis.

Interestingly, the phenotype of the qilin mutant we observed is

different from previously observed in a qilin morphant [31]. It is

possible that the published oligo was able to block the translation

of maternally deposited qilin mRNA, thus revealing more severe

phenotypes. Alternatively, off-target effect of the morpholino oligo,

which is different from the one used in this study, could contribute

to the reported morphant phenotypes. The generation and

analysis of maternal zygotic qilin mutants in the future should be

able to provide definitive results to distinguish between these two

possibilities.

Qilin and IFT
In this study, we show that partial reduction of Qilin synergize

with partial reduction of IFT B complex components, suggesting

that qilin genetically interacts with IFT B complex genes. Further,

despite the similar morphological phenotypes displayed by Group

II mutants isolated from our previous mutagenesis screen for cystic

mutants, careful analysis revealed distinct ciliary defects in these

mutants. For example, In scorpion/arl13b mutants, pronephric cilia

are severely shortened and reduced in number at 50 hpf, but a

significant number of cilia manage to form by 5 dpf [24]. In

seahorse mutants, neither cilia density nor length is significantly

different from those in wild type embryos [26]. Interestingly, both

ift57 and ift172 mutants show cilia maintenance defect in SCCs of

the pronephric duct and cilia biogenesis defect in MCCs of the

pronephric duct, photoreceptors and the lateral line organ [25].

The almost identical cilia biogenesis and maintenance defects in

qilin and IFT B-complex mutants suggest that Qilin’s function is

more closely associated with IFT B complex, among other cilia-

associated proteins.

This hypothesis is also supported by other studies. Qilin

homolog was seen to travel in the cilium in a pattern and velocity

precisely as those observed for the anterograde movement of IFT

particles and IFT motors in C. elegans [19,23]. Further, in C. elegans,

loss of BBSome leads to the separation of the IFT-B/OSM-3

complex and the IFT-B/OSM-3 complex. Importantly, under this

condition, the Qilin homologue travels specifically with the latter,

providing strong support for the association of Qilin with IFT B

complex [32]. Finally, Qilin was pulled down together with Ift27,

Ift57 and Ift172 from zebrafish embryo lysate [33]. Whether Qilin

is a core component of IFT B complex or it functions as a

peripheral regulator of this complex remains unclear at this stage.

Biochemical purification of IFT complexes, as those done in

Chlamydomonas [34], in both zebrafish and C. elegans, will provide

direct evidence for the role of Qilin in IFT complexes.

Structural features of Qilin protein
Similar to many cilia associated proteins, structure of Qilin

reveals little regarding its function. The only recognizable domain

in Qilin is a coiled-coil domain followed by an aspartic acid rich

region in the middle of the protein. Through serial deletion

analysis, we showed that the N-terminal region and the coiled-coil

domain are both required for Qilin’s function in normal body axis

and kidney development, while both the aspartic acid-rich region

and the C-terminal tail are dispensable for these functions. This

result is consistent with our observation that the N-terminal region

and the coiled-coil domain are highly conserved between multiple

species, whereas the aspartic acid-rich region and the C-terminal

end of the protein are less well conserved. Identification of proteins

that directly interact with the N-terminal region and the coiled-coil

region of Qilin will provide critical insight to mechanisms

underlying Qilin’s function.

Supporting Information

Table S1 Sequence conservation of Qilin protein. The

names and accession numbers of Qilin’s homologue in C. elegans,

Drosophila Melanogaster, Mus musculus, and Homo sapiens are listed.

The percentages of protein sequence identity of the different

homologues to zebrafish Qilin are also listed.

(PDF)
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