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Abstract

Glutamate-gated chloride channels belong to the Cys-loop receptor superfamily. Glutamate-gated chloride channels are activated by
glutamate and form substrates for the antiparasitic drugs from the avermectin family. Glutamate-gated chloride channels are pentameric,
and each subunit contains an N-terminal extracellular domain that binds glutamate and 4 helical transmembrane domains, which contain
binding sites for avermectin drugs. In order to provide more insight into phylum-wide pattemns of glutamate-gated chloride subunit
gene expansion and sequence diversity across nematodes, we have developed a database of predicted glutamate-gated chloride subunit
genes from 125 nematode species. Our analysis into this dataset described assorted pattems of species-specific glutamate-gated chloride

gene counts across different nematodes as well as sequence diversity in key residues thought to be involved in avermectin binding.
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Introduction

Glutamate-gated chloride (GluCl) channels are pentameric iono-
tropic receptors belonging to the Cys-loop receptor superfamily.
Each of the 5 subunits contain an N-terminal extracellular do-
main that binds Glutamate (Glu) and 4 helical transmembrane
domains (TMs). The second TM domain (TM2) from each subunit
lines a single channel pore, which opens in response to Glu bind-
ing (Hibbs and Gouaux 2011; Althoff et al. 2014). In the free-living
nematode Caenorhabditis elegans 6 GluCl channel subunit genes
have been identified: glc-1 to glc-4 and avr-14 and avr-15; while
the ruminant parasitic nematode Haemonchus contortus has 5
GluCl channel subunit genes: Hco-glc-2, Hco-gle-3, Heo-avur-14, Heo-
glc-5, and Hco-gle-6. GluCl channels are also the substrate for the
antiparasitic drug, ivermectin (IVM). IVM is hydrophobic and can
reach the GluCl channel TMs to potentiate activity by binding
within TM1 and TM2 of adjacent GluCl channel subunits while
interacting with residues in the loop between TM2 and TM3
(Cully et al. 1994; Arena et al. 1995; Hibbs and Gouaux 2011,
Calimet et al. 2013; Althoff et al. 2014). IVM binding stabilizes the
TMs in an open configuration and increases the pore size, thereby
increasing channel permeability (Althoff et al. 2014). The genes
encoding distinct subunits are modulated differentially by both
Glu and IVM: for example, the AVR-15 subunit of C. elegans (Dent
et al. 1997), and the GluCla2B subunit of H. contortus (McCavera
et al. 2009) can form homomeric channels that are sensitive to
both IVM and Glu, while the C. elegans subunit GLC-1 forms
homomeric receptors that can be activated by IVM but not by

Glu, and conversely homomeric GLC-2 channels can be activated
by Glu but not by IVM (Cully et al. 1994; Vassilatis et al. 1997,
Daeffler et al. 2014). Interestingly, heteromeric channels compris-
ing GLC-1 and GLC-2 can be activated by both Glu and IVM inde-
pendently (Cully et al. 1994; Vassilatis et al. 1997; Daeffler et al.
2014). In addition to subunit stoichiometry modulating IVM
effects, the sensitivity of GluCl channels to IVM is also modulated
by differences in sequence. A naturally occurring 4-amino acid
deletion within the ligand-binding domain of GLC-1 in C. elegans,
has been shown to confer resistance to abamectin, an avermectin
class of anthelminthic (Ghosh et al. 2012). IVM resistance was
first reported in H. contortus in 1979 (van Wyk and Malan 1988),
and key residues have been identified within TM3 that are re-
quired for IVM sensitivity (Lynagh and Lynch 2010). These find-
ings in H. contortus highlight the selection potential placed on
GluCl subunit genes in response to IVM treatment, and more
GluCl gene sequence data are required to understand population
and phylum-wide patterns of sequence diversity. To get at this
question of phylum-wide GluCl sequence diversity, we have de-
veloped a database of predicted GluCl subunit genes from 125
nematode species. All of these data are freely available for users
to search and explore at the following URL: http://ohalloranlab.
net/nematode_glucl. Our analysis into this dataset described het-
erogeneous patterns of species-specific GluCl gene counts across
different nematodes as well as sequence diversity in putative
substrate residues for IVM binding.
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Materials and methods

Genomes used in this study were obtained from WormBase
ParaSite (ver. WBPS15) (Howe et al. 2017). GluCl subunits were
predicted from each genome using hidden Markov models
(HMMs) as described previously (Langeland et al. 2020, 2021;
Wheeler et al. 2020; Bode and O’Halloran 2021). The Pfam (Finn
et al. 2014) HMM, PF02932 (Neur_chan_memb), was used alongside
an HMM based on known GluCl proteins that was generated us-
ing hmmbuild (Mistry et al. 2013). Next, hmmsearch (-tblout -noali)
(Mistry et al. 2013) was used to compare HMMs against genomes
obtained from the WormBase Parasite ftp site at the European
Bioinformatics Institute (EBI: http://ftp.ebi.ac.uk/pub/databases/
wormbase/parasite/releases/WBPS15/species). This approach
yielded 983 predicted GluCl subunit genes across all 125 nema-
tode species (Supplementary Table 1). From this starting dataset,
alternative splice-forms were removed to get a more accurate
gene count per species. After filtering, 864 GluCl subunit genes
remained in the dataset and were used as queries in blastp
(Camacho et al. 2009) searches against a database of character-
ized GluCl subunits from C. elegans and H. contortus so as to con-
firm GluCl identity. Predicted GluCl subunits were then aligned
using MAFFT ver. 7.487 (Katoh et al. 2019). Phylogenetic relation-
ships for the aligned orthologous clusters were then recon-
structed using PhyML (Guindon et al. 2010) by employing an
appropriate model of selection determined using ProtTest3
(Darriba et al. 2011). Heatmaps and trees were rendered and an-
notated using R (ver. 4.0.5) pheatmap package (ver. 1.0.12) (Kolde
2019), ggtree package (ver. 2.4.2) (Yu et al. 2017), and ggtreeExtra
(ver. 1.0.4) (Xu et al. 2021). Orthologous clusters that were refined
using this phylogenetic approach were then used to make a data-
base (makeblastdb) which was interrogated using local blast exe-
cutables (Camacho et al. 2009) in order to assign orthology to
divergent sequences as well as partial sequences from within our
database that lacked a clear ortholog. Statistics were performed
using Python (ver. 3.9.6) scipy module (ver. 1.7.0) and R ver. 4.1.1.

Results and discussion

In order to predict GluCl subunit genes, our analyses included
genomes from 125 nematode species (Fig. 1; Supplementary
Table 1) that covered clades I (17 species), III (24 species), IV (32
species), V (51 species), and C (Plectus sambesii), and from this
analysis, 864 GluCl subunits genes were identified (Fig. 1). To as-
sess whether there were differences between GluCl subunit gene
counts across different Clades, we normalized the predicted
GluCl gene counts by dividing the total gene count per species by
the number of species within each clade and then compared the
normalized value with clade number (Supplementary Fig. 1).
From this statistical test, we could conclude that our observed
GluCl gene counts per clade were not different to what we would
expect for each clade (P=0.4918 Chi-Square Goodness-of-fit test;
note: this statistical test excluded clade C as it was represented
by only 1 species, and instead only included clades I, III, IV, and
V). Alack of discrepancy between our observed GluCl gene counts
and expected counts does not rule out possible finer resolution
differences, and in fact, we did observe differences in GluCl gene
counts across individual species: the species with the most pre-
dicted GluCl genes were Diploscapter pachys, a free-living clade V
nematode, and P. sambesii a free-living marine nematode within
clade C, while the species with the least predicted GluCl genes
were Soboliphyme baturini, a clade I intestinal parasite of mustelids
and Trichuris muris, a clade I intestinal parasite of mice (Fig. 1).

Next, we tested whether genome completeness influenced GluCl
gene counts. Benchmarking Universal Single-Copy Orthologs
(BUSCO) scores are the standard measure of genome quality.
BUSCO scores measure the completeness of an assembly by look-
ing for the presence or absence of highly conserved genes. By
comparing BUSCO scores for each species’ genome assembly
against predicted GluCl gene counts we did not observe a signifi-
cant correlation (Supplementary Fig. 2: R=0.0017, P=0.98), sug-
gesting that while genome improvement may alter some of the
final GluCl gene counts, genome quality was not a major driver
in the total GluCl gene count differences we observed. It is also
worth noting that the majority of assemblies that we used to pre-
dict GluCl subunit genes have good BUSCO scores
(Supplementary Fig. 3, median BUSCO score =86.2).

To organize the 864 GluCl subunits genes that we identified
across 125 species into orthologous groups, we performed blastp
(Camacho et al. 2009) searches of all 864 sequences against a
database of characterized GluCl subunits from C. elegans and H.
contortus. This approach revealed clear orthologous clusters for
365 of the GluCl sequences which resulted in blastp e-values
<5x 1073?* (which are typically rounded to 0 via local blastp exe-
cutables). The classification of these sequences was further
tested by examining their phylogenetic relationship; all 365
sequences were aligned using MAFFT (Katoh et al. 2019) and
from the alignment the best model of selection was determined
to be VT (Miller and Vingron 2000) using ProtTest 3 (Darriba et al.
2011). This information was then used to infer the phylogeny for
these conserved 365 GluCl sequences (Fig. 2). The phylogeny
revealed that GLC-2, GLC-4, and AVR-14 form separate clades
while GLC-1 and AVR-15 both group within the same clade and
form a sister clade to GLC-3 (Fig. 2; Supplementary Table 2).
These observations suggest that GLC-1 and AVR-15 may repre-
sent a more recent duplication event that may postdate a dupli-
cation event from GLC-3. This phylogenetic relationship is in
keeping with recent observations from another group
(Lamassiaude et al. 2021) and is further supported by the synteny
of GluCl genes within C. elegans in which both GLC-1 and AVR-15
are closely linked on chromosome V while GLC-3 is located to-
ward the other end of chromosome V (Supplementary Fig. 4).
Within the conserved group of 365 GluCl sequences that we iden-
tified, there was notable expansions within specific species be-
longing to clades IV and V such as Halicephalobus mephisto which
has an expansion of predicted aur-14 subunit genes and also D.
pachys, which has an expansion of predicted glc-2 subunit genes
(Fig. 3). The Meloidogyne species: M. arenaria, M. javanica, and M. in-
cognita displayed expansions of glc-3, glc-4, and avr-14 (Fig. 3). It is
interesting that 2 species of free-living nematodes as well as 3
plant-parasitic nematode species had specific expansions, and
this led us to test whether there were differences between nema-
tode lifestyle (animal parasitic, entomopathogenic, free-living,
human parasitic, or plant parasitic) and counts of the predicted
GluCl subunit type (glc-1, glc-2, glc-3, glc-4, avr-14, or avr-15) from
our conserved 365 sequences (Figs. 2 and 3). To test this, we nor-
malized the gene counts for each classification group by the
number of species within each lifestyle category (Supplementary
Fig. 5), and then performed a Chi-Square Goodness-of-fit test as
described above for our comparison between clade and GluCl
gene counts. From this analysis, we did not observe a significant
difference in our observed GluCl gene counts for each lifestyle
from what would be expected (P=0.8582), suggesting that pre-
dicted GluCl gene expansions in species such as H. mephisto and
D. pachys as well as the Meloidogyne species examined may reflect
specific lifestyle adaptations.
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Fig. 1. Radial tree representing the total predicted GluCl gene count per species (bar plot) and the corresponding phylum (interior color annotation). The
phylogenetic relationship between each species was based on the rpb-1 gene. Alignments were made using MAFFT (Katoh et al. 2019) while ProtTest 3
(Darriba et al. 2011) was used to determine the best model of selection, which was implemented within PhyML (Guindon et al. 2010) to reconstruct the
phylogenetic relationship. Rendering and annotation of the tree was done using the ggtree (Yu et al. 2017) and ggtreeExtra (ver. 1.0.4) (Xu et al. 2021)

packages.

To classify the remaining 499 GluCl subunit genes from the
864 total GluCl gene predictions into orthologous clusters, we
used the conserved 365 predicted GluCl subunit genes that we
described above alongside functionally characterized GluCl subu-
nits (Lamassiaude et al. 2021) to create a database which we in-
terrogated using blastp searches to cluster into orthologous
groups based on top blastp hits. These data alongside the con-
served 365 predicted GluCl subunit genes were converted into
JSON tables to build an online database that included all 864 pre-
dicted GluCl sequences. The database is available at the following
URL: http://ohalloranlab.net/nematode_GluCl and includes the
orthology evidence for each entry (i.e. phylogeny for the 365

conserved GluCl subunit genes and Blast for the 499 divergent
GluCl subunit genes)

The more divergent 499 predicted GluCl sequences that we
identified lacked significant conservation across all the
sequences which made model selection and phylogenetic
reconstructions difficult to interpret. Some of these more di-
vergent predicted GluCl genes exhibited sequence diversity
within putative IVM binding sites. While Glu binds the extra-
cellular N-terminal region of GluCl channels, IVM can pene-
trate to the TM domains and interact with a number of key
residues (Hibbs and Gouaux 2011; Althoff et al. 2014). We iden-
tified substitutions at a key Glycine residue within TM3 which
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Fig. 2. Phylogeny of conserved clusters of predicted GluCl genes inferred using
GLC-4, and AVR-14 while GLC-1 and AVR-15 clustered together forming a siste

was mutated to an Alanine within some of the divergent GluCl
gene sequences we identified (Supplementary Fig. 6). This
Glycine residue is referred to as M3-Gly (Lynagh and Lynch
2010), and has been studied in other species to characterize the
effect on drug binding. In H. contortus, wildtype GluCIR a3B
exhibited ECso = 39 * 6 nM, while mutation of M3-Gly to Serine
resulted in ECso = 620 + 140nM, and mutation of M3-Gly to
Alanine caused ECso = 1.2 +0.3uM (Lynagh and Lynch 2010).
Interestingly, these mutations also altered Glu sensitivity from
wildtype ECsq 15.3+1.8uM to ECsg 108 = 10uM when
M3-Gly is mutated to a Serine and ECso = 154 +21puM when
M3-Gly is mutated to Alanine (Lynagh and Lynch 2010).

The data described in this paper is available as a searchable
database at the following URL: http://ohalloranlab.net/nema
tode_GluCl. The search textbox at the top of the landing page

W GLc-2
HGLc3
WGLC4

[ AVR-14

I GLC-1/AVR-15

Gapt Scafflde20.go781.11 GLC:2
FLE? 08570 GLC-2
conosses gicz
SP26.919036.11 GLc-2
SSravgirsser Gic
scafo 02375
T 02322 0259651 ...
c2

HaaH

MSTRG.15328.4.p1 AVR 14

LAY LV PEOE

PhyML (Guindon et al. 2010). Sequences clustered into groups of GLC-2,
1 clade to GLC-3.

can be used to query the database for identifiers such as spe-
cies or GluCl subunit while the columns can be sorted by the
clicking the column headings. The raw protein sequence for
each entry can be viewed by clicking the green circle in the first
cell of a given row, and each entry also links out to WormBase
Parasite (Howe et al. 2017) for further exploration. The data-
base can also be searched for similar sequences using local
blast executables (Camacho et al. 2009) by simply entering a
protein sequence into the input field and clicking the submit
button to interrogate the nematode GluCl database. We plan to
include more species to the database as they become available,
and view this database as a platform for users to ask questions
related to GluCl evolution and function across diverse nema-
tode species while also providing molecular insights into GluCl
pharmacology.
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Data availability

The data underlying this article are available in the article, in its
online supplementary material, and at the following URL: http://
ohalloranlab.net/nematode_GluCl.

Supplemental material is available at G3 online.
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