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regulate diabetic wound healing in
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Background: Poor wound healing is a significant complication of diabetes, which is commonly caused by
neuropathy, trauma, deformities, plantar hypertension and peripheral arterial disease. Diabetic foot
ulcers (DFU) are difficult to heal, which makes patients susceptible to infections and can ultimately con-
duce to limb amputation or even death in severe cases. An increasing number of studies have found that
epigenetic alterations are strongly associated with poor wound healing in diabetes.
Aim of review: This work provides significant insights into the development of therapeutics for improv-

ing chronic diabetic wound healing, particularly by targeting and regulating DNA methylation and
demethylation in DFU.
Key scientific concepts of review: DNA methylation and demethylation play an important part in dia-

betic wound healing, via regulating corresponding signaling pathways in different breeds of cells, includ-
ing macrophages, vascular endothelial cells and keratinocytes. In this review, we describe the four main
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phases of wound healing and their abnormality in diabetic patients. Furthermore, we provided an in-
depth summary and discussion on how DNA methylation and demethylation regulate diabetic wound
healing in different types of cells; and gave a brief summary on recent advances in applying cellular
reprogramming techniques for improving diabetic wound healing.
� 2023 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Diabetes mellitus (DM) is a metabolic disorder having to do
with chronic microvascular and macrovascular complications that
poses a grave threat to human health. According to the IDF Dia-
betes Atlas, approximately 537 million adults were living with dia-
betes in 2021 and the number is estimated to amount to 783.2
million in 2045, demonstrating the increasing social burden caused
by diabetes [1]. If diabetes is not well controlled and treated, dia-
betic patients will suffer a number of serious complications, which
are important causes of death in diabetic patients. Diabetic foot
ulcers (DFU) are a serious complication of diabetes, with a preva-
lence of 15–25 % among diabetic patients [2]. Patients with DFU
face a higher economic burden and mortality than those with ordi-
nary diabetes [3]. The treatment of DFU is very challenging and fol-
lows three crucial principles: rapid debridement, offloading and
diabetic foot education. Currently, the available treatments for
DFU mainly include debridement, wound unloading, dressings,
glucose control, negative pressure wound therapy, skin grafting,
bioengineered skin and energy therapy. Unsuccessful treatment
of DFU can cause amputation or, in some severe cases, even death
in diabetic patients.

Hyperglycemia is a major contributing factor to poor diabetic
wound healing, but the underlying mechanism remains uncertain.
A growing number of research has discovered that the adverse
effects of diabetic complications persist for a long time after hyper-
glycemia is controlled and restored to an ideal level and that only
long-term intensive glycemic control can mitigate the risk of
developing diabetic complications[4,5]. This is thought to flow
from the epigenetic alterations in the body’s cells that are exposed
to a high-glucose environment for a long time, which ultimately
leads to the constant development of diabetic complications.
120
Epigenetics appertains to heritable changes in gene expression
and phenotype without altering the nucleotide sequence, mainly
including histone post-transcriptional modifications, DNA methy-
lation, non-coding RNA regulation and chromatin remodeling, all
of which are reversible and can individually or synergistically
affect gene expression and regulate disease states. DNA methyla-
tion is the main epigenetic regulation of gene silencing, which
occurs at the cytosine 5 carbon position of cytosine-phosphate-
guanine (CpG) dinucleotides, forming 5-methylcytosine (5mc)
[6,7]. Although DNA methylation is the most well-studied form
of epigenetic modification, the exact mechanism by which DNA
methylation is involved in the pathogenesis of DFU is unclear [8–
10]. This article reviews the regulation of DNA methylation and
demethylation in diabetic wound healing, to provide innovative
and valuable inspirations into the development of therapeutics
for DFU.
Four main phases of wound healing

As illustrated in Fig. 1, the wound healing process is usually
divided into four main steps: hemostasis, inflammation, prolifera-
tion and remodeling. During normal wound healing, multiple cell
types act in concert to promote wound healing, including fibrob-
lasts, endothelial cells (ECs), platelets, keratinocyte and phago-
cytes, and is governed by a series of growth factors.

The initial healing phase consists of hemostasis, vasoconstric-
tion, and coagulation system activation. In diabetic patients, meta-
bolic disturbances disrupt the physiological balance between
coagulation and fibrinolysis, resulting in a platelet hypersensitivity
reaction and impaired coagulation and hypofibrinolysis [11]. In the
inflammatory phase, the wound site is infiltrated by inflammatory
cells. Specifically, neutrophils arrive at the scene of tissue damage.

http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1. Four main stages of wound healing. Wound healing begins with hemostasis, during which phase platelets bind to fibrin to form a clot and a temporary matrix.
Inflammation then occurs to remove debris and prevent infection. Early inflammation is dominated by the neutrophil influx, followed by migration of monocytes into the
wound and their differentiation into tissue macrophages to engulf remaining cellular debris and dead neutrophils. In the proliferative phase, angiogenesis and re-
epithelialization occur, where keratinocyte migrate to bridge the wound gap, blood vessels form through neovascularization, and fibroblasts replace the initial fibrin clot with
granulation tissue. In the final remodeling phase, the tissue undergoes remodeling of the ECM, repair of the barrier by myofibroblasts and contraction of the wound.
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Then, monocytes enter the wound tissue, differentiate into macro-
phages, and operate as phagocytes to remove all stromal and cellu-
lar debris from the wound. After the inflammatory phase, wound
healing enters the proliferative phase, where granulation and re-
epithelialization occur, and extracellular matrix (ECM) is secreted.
However, diabetic skin wounds are in a state of persistent inflam-
mation; hence, it is not able to transmit from the inflammatory
phase to the proliferative phase; thus, it will result in poor wound
healing [12–14]. At the last remodeling phase of healing, the ECM
expands and newwounds are remodeled to form scar tissue, where
the tissue strength is restored to 80 % of the standard strength [15].
Hemostasis

Wound healing begins with hemostasis, where platelets engage
with tissue collagen, and vasoconstriction play an important part in
the clotting process. Specifically, the vessel wall constricts when
the skin is injured in response to hemostasis. Next, platelets are
rapidly recruited to the wound, and the coagulation cascade activa-
tion leads to the formation of a fibrin network. The fibrin network
andplatelets formaclot thatbinds thedamaged tissue, thus stopping
thewoundbleedingandprovidingatemporarymatrix for therecruit-
ment of inflammatory cells and subsequent fibroblasts [16–18].
Inflammation

Following the hemostasis phase, wound healing undergoes
inflammation. The initial stages of inflammation are dominated by
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neutrophils, which have three main functions: killing bacteria,
secreting proteolytic enzymes to clean wounds and engulfing dead
bacteria and stromal debris. Neutrophils usually undergo apoptosis
after completing their task and are phagocytosed by macrophages
[19]. Following the neutrophil influx, monocytes are induced by
chemokines and platelet derived growth factors to migrate to the
wound and to differentiate into macrophages, which then turn into
the supremely critical regulatory cells during inflammatory
response.

One of the crucial stages in wound healing is the removal of
apoptotic cells generated by the inflammatory environment [20].
Macrophages are essential participants in the progression from
the inflammatory phase to the proliferative phase in wound heal-
ing. The dynamic plasticity of macrophages allows them to medi-
ate tissue destruction and repair functions [21]. Based on the
type of stimulation, surface molecules, secreted cytokines patterns
and functional characteristics, macrophages are classified into two
types: classically activated macrophages (also known as M1
macrophages) and alternatively activated macrophages also
named M2 macrophages [22,23]. During wound healing, M1
macrophages function to destroy pathogens, secrete pro-
inflammatory factors, and participate in Th1-type responses. In
contrast, M2 macrophages usually accumulate at the wound site
during the repair phase of wound healing. They mainly secrete
anti-inflammatory and growth factors working at the critical pro-
cesses of wound healing, including angiogenesis, ECM remodeling
and inflammation regression [13,24]. Fig. 1 specifically depicts var-
ious cytokines secreted by macrophages and their roles in different
processes of wound healing [24,25].
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In diabetic wounds, macrophages overreact to inflammation,
secrete more-than-enough inflammatory factors, and are difficult
to convert to the M2 phenotype with repair capability, thus bring-
ing about a prolonged inflammatory phase [21]. In addition, due to
the compromised dead-cell-clearance activity, the capability of
macrophages in diabetic wounds to remove dead cells is impaired,
causing an increase in the apoptotic cell load in diabetic wounds
[26]. This increased apoptotic cell load produces higher levels of
pro-inflammatory cytokines, which can exacerbate wound inflam-
mation [27].
Proliferation

Theproliferativephaseofwoundhealing consistsof angiogenesis
and re-epithelialization. It is characterizedbyextensiveactivationof
keratinocyte, fibroblasts, macrophages and ECs. During this phase,
cells repopulate at the wounds and coordinate wound closure,
matrix deposition, angiogenesis and ultimately the formation of
new epithelial and dermal structures and vascular systems [15].
Control of these processes is under the strict regulation of biologi-
cally active factors, for instance growth factors/cytokines and the
ECM environment; biologically active factors mediate the cellular
adhesion/rejection interactions through degradation processes and
a delicate balance between biosynthesis and cell surface receptors
such as integrins. This balance is paramount, as disruption of this
balance results in poor wound healing [28]. Regulation of the prolif-
eration stage in wound healing by different types of cells and corre-
sponding growth factors is detailed in Fig. 1 [29,30].

Angiogenesis is a principal physiological process in wound heal-
ing. It provides the re-establishment of normal blood flow, thus pro-
viding adequate oxygen and nutrient exchange andmaintaining the
normalmetabolism of trabecular cells [31]. In healthy tissues, blood
vessels remain in the basement membrane surrounding quiescent
and mature vessels. During wound healing, vessels are regulated
by basic fibroblast growth factor (bFGF), granulocyte–macrophage
colony stimulating factor (GM-CSF) and vascular endothelial growth
factor (VEGF) to promote neovascularization, while adjacent ECs
begin to proliferate and migrate toward the tip cells (Fig. 1). In the
normal angiogenesis process, it is important tomaintain the delicate
balance between promoting vascular growth and proliferation and
promoting vascular maturation and quiescence. Diabetes can
severely disturb this balance and cause reduced wound angiogene-
sis, thus disrupting normal wound healing, tissue regeneration and
restoration of a healthy vascular system [32].

The wound healing process is a seriously regulated biochemical
event involving the granulation of tissue formation stages and the
re-epithelialization process [33]. Re-epithelialization is the re-
formation of epithelium in skin wounds, and keratinocytes, as
the main cell group of the epidermis, take the lead in epithelializa-
tion [34]. Migration and proliferation of keratinocytes are vital
steps in the wound healing process, which promotes an orderly
re-epithelialization process by integrating the complex cellular
processes of adhesion, migration, proliferation and differentiation
through integrins and their interactions with ligands in the tempo-
rary matrix and ECM [35]. Particularly, keratinocytes not merely
proliferate and migrate to cover wounds, but as well release some
biomolecules, such as growth factors, chemokines and inflamma-
tory cytokines, that regulate biologic wound healing [36,37]. The
function of keratinocytes in wound healing is shown in Fig. 1.
Notably, in diabetic wound healing, the proliferation and migration
of keratinocytes are significantly reduced, due to the pathological
state of hyperglycemia [38].

Fibroblasts are mesenchymal cells present in most tissues,
whose role during the proliferative phase is to promote granulation
tissue formation and replace the temporary stroma [39]. Through-
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out the wound healing process, fibroblasts are activated in
response to tissue injury after wound injury, where fibroblasts of
various origins are recruited to the wound and proliferate to fill
the wound gap, thus providing new ECM and subsequently closing
the wound [40]. In addition, some fibroblasts are stimulated by
transforming growth factor-b (TGF-b) to differentiate into myofi-
broblasts, which are the main source of ECM-degrading enzymes.
Myofibroblasts play a crucial role in maintaining the dynamic bal-
ance of ECM, as it promotes wound closure and tissue regeneration
during wound healing [41,42]. In addition to building granulation
tissue and remodeling the ECM, fibroblasts take a part in wound
healing by acting as immunomodulators of wound healing [43].
In diabetic wounds, the high-glucose environment affects fibrob-
last differentiation, alters fibroblast apoptosis, and enhances
hypoxic injury, contributing to an impaired microenvironment
for myofibroblast formation, ECM regulatory disorders, and dimin-
ished wound contraction [44]. Unlike normal fibroblasts, fibrob-
lasts in diabetic wounds exhibit premature senescence, which
leads to increased levels of pro-inflammatory cytokines and type
III collagen coupled with decreased levels of type I collagen and
fibronectin, which further contribute to a nonhealing state [45].
Remodeling

In the final remodeling phase of wound healing, the prolifera-
tively deposited ECM is remodeled and type I collagen replaces
type III collagen, as characterized by wound contraction and scar
maturation [46]. Remodeling aims to restore the normal structure
of the dermis and is achieved through a delicate balance of colla-
gen synthesis, bundling and degradation, where the matrix metal-
loproteinases (MMPs) and tissue inhibitor of matrix
metalloproteinases (TIMPs) play a crucial role [47]. Detailed regu-
lation of the remodeling process in wound healing by various types
of cells and growth factors is summarized in Fig. 1 [48].

In diabetic wounds, the remodeling phase is prolonged owing to
persistent inflammation. As confirmed by single-cell transcrip-
tomic analysis of skin samples from non-DM patients, DM patients
without DFU, and DM patients with DFU (Healers and Non-
healers), coordinated actions in wound healing in DFU patients
require many types of cells, including macrophages, fibroblasts,
ECs and keratinocyte [49,50]. These studies also found more M1
macrophages in diabetic healing patients and more M2 macro-
phages in non-healing diabetic patients. This further demonstrates
that delayed healing in diabetic wounds is associated with a dys-
regulation of the balance between M1/M2 macrophage polariza-
tion status, rather than being determined by the pro-
inflammatory phenotype M1 or the anti-inflammatory phenotype
M2 alone. In conclusion, poor diabetic wound healing is induced
by a synergistic effect of multiple factors, and the exact mechanism
is not yet clear.
DNA methylation and DNA demethylation

DNAmethylation is the most abundant epigenetic modification.
In mammals, it occurs almost exclusively in CpG dinucleotides, cat-
alyzed by enzymes of the DNA methyltransferase (DNMT) family
that incorporate a methyl group to the 5-C of cytosine to produce
5-methylcytosine (5mc) [51]. The main methyltransferases that
regulate DNA methylation in mammals are DNMT1, DNMT3A
and DNMT3B. DNMT1 was the first purified and cloned DNA
methyltransferase that favors the hemimethylated CpG site and
has a role in maintaining methylation in organisms. As opposed
to, DNMT3A and DNMT3B are methyltransferases active on
unmethylated DNA and are expressed at lower levels than DNMT1
in adult tissues. These two methyltransferases are primarily
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responsible for establishing methylation patterns during early
development of methylation and are involved in the maintenance
of methylation sites missed by DNMT1 [52–55].

In mammals, DNA methylation can undergo both passive and
active demethylation. In the absence of DNA methylation mainte-
nance, DNA methylation is not maintained through continuous
DNA replication, a phenomenon known as passive demethylation
of DNA methylation. Notably, the product of DNA methylation,
5mc, can be oxidized to 5-hydroxymethylcytosine (5hmc) medi-
ated by the ten-eleven translocation (TET) protein family, which
can be further oxidized to 5-formylcytosine (5fc) and 5-
carboxycytosine (5cac) catalyzed by TET proteins [56,57]. In base
excision repair (BER), 5fc and 5cac can be excited and be actively
reversed by thymine DNA glycosylase (TDG) to unmodified cyto-
sine (C), a process known as active DNA demethylation [58]. TET
proteases can be classified into three types: TET1, TET2 and TET3,
which have a common catalytic activity but are expressed at differ-
ent levels at different stages of organism development [59]. Specif-
ically, TET1 is highly expressed in embryonic stem cells (ESCs) and
primordial germ cells (PGCs), and TET2 is widely expressed in var-
ious adult tissue cells, while TET3 is the only TET enzyme present
in oocytes and zygote [60,61]. Detailed schematic diagrams of DNA
methylation and demethylation processes of cytosine, as well as
the corresponding catalytic enzymes are illustrated in Fig. 2.

In mammals, DNA methylation and demethylation, which can
co-occur in the same genomic region, are involved in various pro-
cesses of tissue growth and development [62,63]. DNAmethylation
is often considered to be a marker of gene silencing, whereas DNA
demethylation is an indicator of gene activation. DNA methylation
and demethylation dynamically change within organisms, main-
taining a balance in the DNA methylation status of the organism.
In organisms, a normal DNA methylation status is of great impor-
tance for healthy growth and development, whereas abnormal
DNAmethylation is usually bound up with the development of dis-
eases [64]. Therefore, uncovering the dynamic changes in DNA
Fig. 2. DNA methylation and demethylation processes. The 5th carbon position of th
methylcytosine (5mc). The methyl group of 5mc can be oxidized by the 10–11 translocat
be further oxidized by TET to 5-formylcytosine (5fc) and 5-carboxycytosine (5cac). 5mc,
maintained, a demethylation process called passive demethylation. In addition, 5fC a
combination with base excision repair (BER), also known as active demethylation.

123
methylation and demethylation is of great importance in under-
standing the development of diseases.
Regulation of DNA methylation and demethylation in diabetic
wounds

Due to prolonged metabolic disorders, epigenetic alterations
occur in diabetic patients [65]. There are considerable variations
in the status of DNA methylation and demethylation between dia-
betic patients and normal subjects. As DNA methylation and
demethylation status can vary remarkably with one another differ-
ent cell types, it is challenging to study the relationship between
diabetes and DNA methylation abnormalities [66,67]. However,
DNA methylation status has been demonstrated to be inextricably
linked with the presence and expression of diabetes risk genes;
allele-associated differential DNA methylation at CpG sites was
observed in all of the 45 type 1 diabetes susceptibility genes
[68,69]. Fig. 3 shows an in-depth overview of how DNA methyla-
tion and demethylation regulate diabetic wound healing, by
involving in many cellular processes such as inflammation, prolif-
eration and migration of keratinocyte, angiogenesis and MMPs
secretion et al. [70–73]. Notably, both DNA methylation and
demethylation are abnormal in diabetic wound healing under
high-glucose conditions, resulting in the emergence of metabolic
memory [74]. Table 1 summarizes the aberrant DNA methylation
and demethylation status in different diabetic wound environment
and their impacts on diabetic wound healing and the genes
involved.
DNA methylation and macrophage polarization in diabetic
wound healing

Chronic inflammation in diabetic wounds is a crucial contribu-
tor to poor diabetic wound healing. In vivo analysis of inflamma-
e cytosine can be methylated by DNA methyltransferase (DNMT) to produce 5-
ion (TET) family of enzymes to produce 5-hydroxymethylcytosine (5hmc). 5hmc can
5hmc, 5fc and 5cac are reduced during DNA replication due to their inability to be
nd 5caC can be actively demethylated by thymidine DNA glycosylase (TDG) in



Fig. 3. Regulation of DNA methylation and demethylation in diabetic wound healing, by mediating cellular processes in different types of cells. In diabetic ischemic muscle,
DNA methylation is upregulated in the promoter of M1 gene and is downregulated in the promoter of M2 gene, causing delayed wound healing. In bone marrow-derived
hematopoietic stem cells (HSCs) of diabetic mice, oxidative stress induced by NOX-2 causes DNA hypermethylation in Notch1, PU.1 and kruppel-like factor (Klf4) genes,
resulting in upregulated M1 macrophages and delayed wound healing. Methylation of the promoter of TLR2 gene downregulates the protein level of TLR2, which causes poor
diabetic wound healing. Alu (B1 in rodents) hypomethylation, commonly found in diabetes mellitus patients, increases DNA damage and delays the healing process. In bone
marrow mesenchymal stem cells (BMSCs), high-glucose condition was found to destabilize TET2, which in turn impairs wound healing. TET2, whose expression is negatively
regulated by mTORC1, can modify and regulate the activity of promoters of key genes in smooth muscle cells (SMCs), thus enhancing SMC differentiation and improving
vascular repair in wound healing. In human umbilical vein endothelial cells (HUVECs), due to elevated DNMT1, Ang-1 gene is hypermethylated and its protein level is
downregulated, causing sustained activation of nuclear factor-jB (NF-jB) and subsequent endothelial dysfunction. However, overexpression of DNMT1 downregulated the
expression levels of miR-126-3p and Flt1, thus impairing angiogenesis. In keratinocytes, DNA methylation and demethylation regulate diabetic wound healing via modifying
promoters of various factors, such as MMP-9, E2F1 and TSP1.
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tory cells has demonstrated that the predominant phenotype of
macrophages in the early inflammatory phase of wound healing
is the M1 phenotype, which is polarized to the M2 phenotype from
late inflammatory to pro-repair phase [75]. However, in diabetic
wounds environment, macrophage phenotype polarization is aber-
rant, and the ability of macrophages to switch from the pro-
inflammatory M1 phenotype to the pro-repair M2 phenotype is
severely compromised, thus leading to impaired diabetic wound
healing [76,77]. Interestingly, macrophage expression is regulated
by DNA methylation and affects diabetic wound healing [78].
Specifically, by analyzing a model of diabetic hindlimb ischemia
with whole-genome DNA methylation sequencing, Bahu et al.
found that the promoter of the pro-inflammatory M1 gene was
hypomethylated in diabetic ischemic muscle, whereas the pro-
moter of the anti-inflammatory, pro-angiogenic M2 gene was
hypermethylated [79]. This further suggests that abnormal DNA
methylation status in patients with DFU results in more pro-
inflammatory M1 phenotypes than anti-inflammatory, pro-
angiogenic and tissue repair M2 phenotypes in diabetic damaged
tissues, which leads to diminished angiogenesis, impaired tissue
repair in the diabetic state and delayed wound healing.

DNA methylation also has a role in regulating the differenti-
ation of hematopoietic stem cells into macrophages. As a
124
member of the nitrogen oxide family of NADPH oxidases, NOX-
2 contributes significantly to reactive oxygen species (ROS) pro-
duction, whose overexpression causes oxidative stress in tissue
cells and can have a negative impact on wound healing [80].
For example, Yan and co-authors found that increased oxidative
stress induced by NOX-2 in bone marrow-derived hematopoietic
stem cells (HSCs) of diabetic mice suppressed microRNA let-7d-
3p, which in turn directly upregulated DNMT1, leading to DNA
hypermethylation in Notch1, PU.1 and kruppel-like factor (Klf4)
and hence downregulated expression of these genes in HSCs
(Fig. 3; Table 1) [81]. As a widespread classical pathway, Notch
signaling is closely associated with the regulation of the differen-
tiation and development of cells, tissues and organs. Particularly,
Notch1 was found to take a leading role in wound healing and in
the recruitment of macrophages with both M1 and M2 pheno-
types [82]. PU.1 is a transcription factor, which can determine
macrophages’ fate by binding to their regulatory regions
[83,84]. As a downstream target gene of PU.1 and Notch 1, Klf4
regulates the differentiation of bone marrow-derived HSCs into
mononuclear macrophages, promotes macrophage M2 polariza-
tion, and suppresses the M1 phenotype. This is justified by the
fact that Klf4 deficiency in bone marrow cells leads to delayed
wound healing and increased M1 macrophages[85,86]. Taken



Table 1
Impacts of DNA methylation and demethylation on diabetic wound healing and the involved genes under specific diabetic conditions.

Factor Diabetic condition Cell
lines

DNA methylation/
demethylation status ()

Related genes Impacts References
(PMID)

NA diabetic ischemic muscle M1 Methylation (;) Cfb, Serping1, Tnfsf15 Delayed wound healing 26,085,133
[79]M2 Methylation (") Nrp1, Cxcr4, Plxnd1, Arg1,

Cdk18, Fes
NA Patients with DFU NA Methylation (") TLR2 Poor diabetic wound healing 25,541,252

[89]
DNMT1 T2DM, Oxidant stress HSCs Methylation (") Nox-2, Notch1, miR-let-7d-

3p, PU.1, Klf4
Increased M1 macrophages Delayed
wound healing

29,295,997
[81]

Transient high glucose HUVECs Methylation (") Ang-1/NF-jB Endothelial cell dysfunction 33,259,831
[97]

Nitric oxide MSCs Methylation (;) Flt1 Endothelial differentiation 30,997,675
[99]

T1DM, Hydrogen sulfide HUVECs Methylation (;) miR-126-3p Improved angiogenesis 36,078,059
[100]

Wound-edge from patients
with DFU

HaCaT Methylation (") TGF-b, WAKMAR1, E2F1 Impaired re-epithelialization 31,019,085
[119]

NA Type I diabetic rat model NA Methylation (;) Alu Genomic instability Poor wound
healing

35,127,718
[130]

NA High-glucose, Decitabin HaCaT Methylation (;) TSP1 Impaired angiogenesis 26,678,678
[121]

TET2 Healthy tissue SMCs Demethylation (") mTORC1, MYOCD, SRF,
MYH11

Improved vascular repair 24,077,167
[103]

Ascorbic acid 2-glucoside BMSCs Demethylation (") PI3K/AKT Promoted angiogenesis Accelerated
wound healing

35,313,962
[104]

AGEs HaCaT Demethylation (") MMP-9 Imbalance between ECM synthesis
and degradation

26,913,994
[112]

Skin, wound fluids HaCaT Demethylation (") MMP-9 Imbalance between ECM synthesis
and degradation

26,921,880
[113]

AGEs HaCaT Demethylation (") TETILA, MMP-9 Imbalance between ECM synthesis
and degradation

31,653,825
[117]

NA AGEs HaCaT Demethylation (") Ras / ERK, MMP-9 Imbalance between ECM synthesis
and degradation

25,916,956
[114]

NA TNF-a, Decitabine HaCaT Demethylation (") MMP-9 Imbalance between ECM synthesis
and degradation

23,417,766
[116]

TDG AGEs HaCaT Demethylation (") GADD45a, MMP-9 Imbalance between ECM synthesis
and degradation

29,244,109
[115]

NA, Not available; AGEs, Advanced glycation end products; ECM, Extracellular matrix; T2DM, type 2 diabetes mellitus; Cfb, Complement Factor B; Tnfsf15, Tumor
Necrosis Factor Ligand Superfamily Member 15; Nrp1, Neuronilin-1; Cxcr4, CXC receptor 4; Plxnd1, Plexin D1; Arg1, Arginase 1; Cdk18, Cyclin-dependent kinase-18;
TLR2, Toll-like receptor 2; Klf4, Kruppel-like factor; SRF, Serum response factor; TSP1, Thrombospondin-1, TNF-a, Tumor necrosis factor-a; TDG, Thymidine-DNA
glycosylase.
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together, targeting and regulating DNA methylation and macro-
phage polarization can promote diabetic wound healing.

DNA methylation and role of TLR2 in diabetic wound healing

Toll-like receptor 2 (TLR2) belongs to the mammalian toll fam-
ily of leucine-rich proteins, mainly functions to regulate immune
cells, including monocytes and granulocytes among others [87].
TLR2 has been demonstrated to promote endothelial cell migra-
tion, angiogenesis and wound healing [88]. By analyzing the
methylation status of the 50-proximal region of the human TLR2
gene, Singh et al. found that most patients with DFU had complete
or partial methylation of the CpG site of the TLR2 gene promoter,
suggesting that DNA methylation of the TLR2 promoter may lead
to downregulation of TLR2, which in turn causes poor wound heal-
ing in diabetic patients (Fig. 3) [89]. In contrast, Dasu et al. con-
cluded that increased expression of TLR2 in diabetic wounds
would lead to excessive wound inflammation, whereas lack of
TLR2 might reduce inflammation and promote wound healing
[90]. This is consistent with the previous finding that TLR2 expres-
sion levels increase with the severity of diabetic wounds [91].
Notably, TLR2 plays different roles in different stages of diabetic
wound healing. Specifically, in the inflammatory phase, TLR2 is
downregulated to improve inflammation, due to full or partial
methylation of the CpG site in the TLR2 promoter. In contrast, dur-
ing the angiogenic phase, TLR2 downregulation impairs endothe-
lial cell migration and angiogenesis as TLR2 methylation persists.
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DNA methylation and demethylation mediate angiogenesis in
diabetic wound healing

An important cause of poor wound healing in diabetes is
impaired angiogenesis. DNMT1 plays a key role in angiogenesis,
and several studies have shown that inhibition of DNMT1 expres-
sion is beneficial for angiogenesis [92,93]. Angiopoietin-1 (Ang-1)
and angiopoietin-2 (Ang-2) are key regulators of angiogenesis
and maintenance of vascular stability, which promote the forma-
tion of mature and functional microvessels and maintain endothe-
lial integrity [94]. In diabetic mice wounds, the expression of Ang-1
and Ang-2 is dysregulated, and the imbalance of Ang-1 and Ang-2
regulation is associated with vascular dysfunction in diabetic
patients [95,96]. Particularly, Zhao et al. discovered that DNMT1
expression and activity were increased in vascular ECs after tran-
sient hyperglycemia and that elevated DNMT1 led to Ang-1 hyper-
methylation and downregulation of Ang-1 expression, which in
turn resulted in sustained activation of nuclear factor-jB (NF-jB)
and subsequent endothelial dysfunction [97]. In vivo studies have
further shown that inhibition of DNMT1 can regulate the Ang-1/
NF-jB signaling pathway to promote angiogenesis and accelerate
diabetic wound healing [97]. Nitric oxide (NO) has been exten-
sively studied as a gaseous drug commonly used in the treatment
of diabetic wound healing [98]. A study by Bandara found that NO
was able to inhibit DNMT1 expression, thereby inhibiting VEGF
receptor Flt-1 promoter methylation and promoting the differenti-
ation of mesenchymal stem cells to endothelial cells [99]. A recent
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study of hydrogen sulfide (H2S), an emerging gaseous drug to pro-
mote wound healing, found that H2S was able to downregulate
high glucose-induced DNMT1while promotingmiR-126-3p expres-
sion and improving angiogenesis in diabetic mice [100]. These
results emphasize the long-term effects that hyperglycemia-
induced DNA methylation has on poor wound healing, and advise
that targeting DNMT1 has therapeutic potential in the treatment of
poor diabetic wound healing.

In the wound healing process, smooth muscle cells (SMCs) have
potential capabilities in pro-angiogenic and wound healing
[101,102]. TET2 and 5hmc are high in mouse and human vascular
mature SMCs, whereas their expression is decreased in response to
vascular injuries. TET2, whose expression is negatively regulated
by mTORC1, binds and modify CArG-rich regions of active SMCs’
contractile promoters (MYOCD, SRF, and MYH11), thus enhancing
SMCs’ differentiation and improving vascular repair [103].

A recent study found that the antioxidant ascorbic acid 2-
glucoside (AA2G) could enhance the demethylation process of
bone marrow mesenchymal stem cells (BMSCs) by activating the
PI3K/AKT signaling pathway and promoting TET2 expression,
which in turn promotes the angiogenic capacity of BMSCs and
accelerates wound healing [104]. Notably, sustained hyper-
glycemia in a high-glucose environment destabilizes TET2 and
reduces 5hmc levels [105]. This is thought to originate from the
inhibition of AMPK in a high-glucose environment and the inability
of serine 99 (S99) in TET2 to be activated by AMPK phosphoryla-
tion, which protects TET2 from calpain-mediated degradation
[105]. In terms of angiogenesis, AMPK activation has a bidirectional
role in angiogenesis: on one hand, AMPK attenuates PI3K/Akt/
mTOR-induced angiogenesis; on the other hand, AMPK activation
mediates the stress response to promote autophagy, thereby stabi-
lizing HIF-1a and thus increasing VEGF expression [106]. Interest-
ingly, PI3K/AKT is also able to activate HIF-1a, which promotes
proliferation and migration of adipose-derived stem cells (ADSCs),
furthermore ADSC-induced angiogenesis in human umbilical vein
endothelial cells (HUVECs) [107]. In sum, wound healing can be
promoted by improving DNA demethylation process in bone mar-
row mesenchymal stem cells (BMSCs), which can be achieved by
upregulating or stabilizing TET2 and by activating PI3K/AKT signal-
ing pathway.
DNA methylation and demethylation in fibroblasts and
keratinocytes in diabetic wound healing

In a genome-wide DNA methylation profile of foot fibroblast
cell lines from patients with DFU, DNA methylation was signifi-
cantly reduced in foot fibroblasts from patients with DFU than in
those from non-diabetic patients and diabetic non-ulcer patients
[108]. Particularly, differential methylation of several genes related
to redox, myogenic fiber contraction, angiogenesis and ECM func-
tion was identified [108]. It was found that: i) DNA hypermethyla-
tion was more common than DNA hypomethylation at chronic
wound margins; ii) downregulation of DNA hypermethylated
genes inhibited epithelial-mesenchymal transition and impaired
wound healing; and that iii) correction of DNA hypermethylation
was effective in improving wound closure [72]. This demonstrates
that targeting DNA hypermethylation has a therapeutic potential
in promoting wound healing.

Keratinocytes are the primary cells in the epidermis, which
are important in the wound healing process, especially in re-
epithelialization. Matrix metalloproteinase-9 (MMP-9), a type
IV collagenase expressed by keratinocyte at the wound’s leading
edge, controls wound healing by altering the wound matrix and
enabling cell migration and tissue remodeling. Notably, the effect
of MMP-9 on wound healing is bidirectional; epithelialization is
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delayed when normal levels of MMP-9 expression are inhibited,
and healing is impaired when MMP-9 is overexpressed [109]. In
diabetic patients, MMP-9 is highly expressed in keratinocytes,
leading to impaired epithelialization, and consequently impaired
diabetic wound healing [110]. High expression of MMP-9 is
mainly produced by the induction of advanced glycosylation
end products (AGEs) [111]. In human primary keratinocytes,
AGEs upregulate TET2 gene expression, thus making DNA
demethylation upregulated in specific regions of the MMP-9 pro-
moter and elevating the expression level of MMP-9 [112]. This
agrees with the fact that TET2 expression is significantly higher
in epidermal cells of diabetic patients than those in normal skin.
Interestingly, the tricarboxylic acid (TCA) cycle metabolite ɑ-
ketoglutarate (ɑ-KG) is an important cofactor in regulating
TET2 regulation, whose elevation is associated with local hypox-
ia, ischemic states and poor systemic glycemic control [113].
This suggests that DNA demethylation and wound healing may
be also regulated by cell metabolism.

Various CpG sites were identified in MMP-9, and their methyla-
tion and demethylation status were reported to mediate the activ-
ity of MMP-9. Specifically, the methylation status of the �562 bp
CpG site closely regulates the activity of MMP-9 promoter, which
can be inhibited by administration of the mevalonate pathway
inhibitor simvastatin [114]. Furthermore, significantly reduced
DNA methylation of three CpG sites (–233, –223 and �36 bp) were
identified in MMP-9, which upregulated growth arrest and DNA-
damage-inducible protein GADD45 alpha (GADD45a) to activate
MMP-9 transcription, through demethylation of thymidine-DNA
glycosylase (TDG)-dependent BER promoter [115]. Moreover, the
�36 bp site of MMP-9 promoter was found to be the key site for
demethylation of MMP-9 promoter, which is regulated by lncRNAs,
in human keratinocytes treated with tumor necrosis factor-a (TNF-
a) [116]. Additionally, significant reductions in methylation were
observed at three CpG sites (-712, –233 and �36 bp) of the
MMP-9 promoter during the demethylation process [117]. In the
diabetic environment, the promoter of MMP-9 undergoes
demethylation, is hypomethylated in keratinocytes, and its overex-
pression impairs the balance of ECM synthesis and degradation
[117]. BER-mediated MMP-9 promoter demethylation requires a
TET2-interacting long noncoding RNA (TETILA), which recruits
thymine-DNA glycosylase (TDG) to form a TET2-TDG-TETILA com-
plex [117].

Apart from mediating diabetic wound healing via regulating
MMP-9, DNAmethylation in keratinocytes impacts diabetic wound
healing by controlling the expression of other factors such as E2F1
and thrombospondin-1 (TSP1). For example, inhibiting promoter
methylation of E2F1 contributes to normal and timely wound heal-
ing by increasing the expression level of E2F1, which is engaged in
maintaining the proliferation of epidermal keratinocytes [118].
Promoter methylation of E2F1 can be inhibited by a skin-specific
lncRNA (LOC105372576), named ‘‘wound and keratinocyte
migration-associated LncRNA1 (WAKMAR1)”, via isolating DNMTs
[119]. WAKMAR1 is induced by TGF-b signaling and expressed in
keratinocytes, with a function of regulating keratinocytes’ prolifer-
ation, adhesion and migration[120] Therefore, WAKMAR1 can pro-
mote diabetic wound healing by inhibiting the DNA methylation of
E2F1 [119,120]. In contrast, DNA hypomethylation in the promoter
region of TSP1 in keratinocytes, induced by increased oxidative
stress in a high-glucose environment, impairs wound healing via
upregulating the expression of TSP1 [121]. Overexpression of
TSP1 inhibits skin tissue repair and granulation tissue formation,
by impairing fibroblasts’ migration and wound angiogenesis
[122]. Early and timely administration of antioxidants normalizes
TSP1 expression and the overall DNAmethylation status in the skin
of diabetic rats, further consequently improves wound healing
in vivo [121].
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Aberrant DNA methylation in other proteins involved in wound
healing

In the innate immune response to tissue injury, complement
activation is a crucial effector mechanism. Previous studies have
mainly focused on its activation being beneficial to wounds
[123,124]. Following negative pressure wound therapy (NPWT)
for DFU, genes for proteins that play a major part in complement
system activation, such as complement protein 2 (C2), complement
protein 3 (C3), complement protein 4A (C4A) and complement pro-
tein 4B (C4B), were found to be hypermethylated. This suggests
that DNA hypermethylation of complement proteins inhibits the
complement system and may promote diabetic wound healing
[125]. However, it has recently been found that sustained activa-
tion of the complement system in chronic wounds causes delayed
wound healing [126,127]. Therefore, activation of the complement
system promotes wound healing, but excessive activation can
delay wound healing.

The Alu element in humans (B1 element in rodents) is a mem-
ber of the short retrotransposon (SINE) family in the mammalian
genome, which is located in a noncoding region. Alu is predomi-
nantly methylated as Alu (B1) methylation, forming heterochro-
matin to maintain genomic stability [128]. In diabetes, Alu
hypomethylation levels are significant and are associated with
hypertension, a degenerative disease of aging [129,130]. Adminis-
tration of Alu siRNA increases Alu element methylation and pre-
vents DNA damage [129,130]. Notably, use of B1 siRNA not only
restored B1 methylation status and improved genomic stability,
but also promoted wound healing in diabetes [131]. This suggests
that genomic instability caused by Alu element hypomethylation
also leads to poor diabetic wound healing, and can be targeted
for improving diabetic wound healing.
Cellular reprogramming and epigenetic remodeling in diabetic
wound healing

The process of poor diabetic wound healing is associated with
abnormal cellular progression. In recent years, cellular reprogram-
ming has attracted more and more attention of researchers in the
field of diabetic wound healing. During cellular reprogramming,
epigenetic alterations caused by the disease state are simultane-
ously eliminated, which helps normalize their cellular phenotype
and broadens research ideas to develop therapeutics for promoting
diabetic skin wound healing [132,133]. Cell reprogramming tech-
niques have been explored mostly in somatic cell reprogramming
induced multifunctional stem cells (iPSCs). Senescent fibroblasts
can be reprogrammed into iPSCs and differentiated into young
fibroblasts to regulate wound healing [134]. For example, Kaspur
and his colleagues improved diabetic wound healing by generating
iPSCs from primary DFU-derived fibroblasts and then differentiat-
ing them into fibroblasts [135]. In addition, through cellular repro-
gramming, the epigenetics of the re-differentiated fibroblasts can
be altered, eliminating the miRNA-mediated epigenetics of poor
diabetic healing [133].

Since reprogrammed iPSCs often lose somatic cell properties,
Gill and his team developed the ‘‘maturation transient reprogram-
ming technique (MPTR)”, which terminates fibroblasts before they
are reprogrammed into stem cells, allowing the cells to maintain
fibroblast function [136]. In addition to reprogramming to iPSCs
for re-differentiation, somatic cells can be directly reprogrammed
into healing-associated cells. For instance, Kurita et al. promoted
the regeneration of skin ulcer surfaces by directly reprogramming
traumatic mesenchymal stem cells (MSCs) to epithelial cells, to re-
epithelialize all areas of the wound [137]. Moreover, MSCs to ECs
and reprogramming ECs enhance the neovascularization of
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diabetic wounds and accelerate wound healing [138]. Additionally,
through induction, M1 macrophages can be directly repro-
grammed into M2 macrophages, thus promoting fibroblast prolif-
eration, migration and endothelial cell vascularization to improve
diabetic wound healing [139,140].

DNAmethylation, which is themost stable epigenetic alteration,
is a significant obstacle to iPSC cell reprogramming. The efficiency of
iPSC cell generation canbe improvedby thedemethylating agents 5-
azacytidine and demethylase [141]. Moreover, although the epige-
netic memory is reset after reprogramming cells into iPSC, the
DNA methylation profile of their parent cells remains in the repro-
grammed iPSC, and the residualmethylationprofile affects the func-
tion of the re-differentiated cells [142]. By controlling DNA
methylation status, Katz et al. reprogrammed fibroblasts into islet-
like cells, which were able to secrete insulin in response to glucose
from human dermal fibroblasts [143]. In sum, we propose that
DNAmethylation regulates cellular reprogramming, and can be tar-
geted to promote diabetic wound healing.
Conclusion

Diabetes is becoming more and more prevalent in the world.
Diabetic patients suffer numerous complications, among which
DFU is one of the most common and serious. DFU can give rise to
limb amputation or even death, if it is not treated well. This
imposes huge financial and health burden on patients with DFU
worldwide. Hence, there is an urgent need for the development
of therapeutics to improve the challenging treatment of DFU. This
review provides an overview of the pathobiological and molecular
mechanisms of DFU, focusing on the abnormality of DFU in the four
main stages of wound healing, in-depth regulation of DNA methy-
lation and demethylation in DFU, as well as the cellular reprogram-
ming in DFU.

Disappointingly, diabetic patients fail to pass through the four
phases of wound healing and undergo impaired wound healing,
due to the prolonged inflammatory phase of skin wounds, abnor-
mal growth factor secretion, impaired ECM, impaired microvascu-
lar function and angiogenesis, and impaired epithelialization and
remodeling. Under diabetic conditions, DNMT1 and TET2 are often
upregulated to methylate and demethylated gene promoters
respectively, which mediates their protein expression levels and
consequently causes poor wound healing. Moderate expression of
proteins is often beneficial for wound healing, while excessive or
lack of expression of key proteins may impair diabetic wound heal-
ing. Upregulation of DNMT1 and TET2 were found in different cells
under different diabetic wound conditions, which regulates differ-
ent signally pathways by methylating/demethylating correspond-
ing genes (Table 1). Therefore, targeted drugs can be developed
to improve the treatment of DFU, by regulating the DNA methyla-
tion and demethylation activity of DNMT1 and TET2, and by nor-
malizing the expression levels of DNMT, TET2 and the
corresponding proteins that cause or are affected by the abnormal
DNA methylation and demethylation. In the past few years, the
medical field has increasingly focused on predictive, preventive
and personalized medicine (PPPM) strategies through which we
can effectively reduce the incidence of disease and improve the
quality of life of patients [144–147]. DNA methylation has been
used in preclinical trials to screen for cervical lesions (ClinicalTri-
als.gov Identifier: NCT03960879), advanced colorectal adenoma-
tous polyps and cancers (ClinicalTrials.gov Identifier:
NCT04221854), but DNA methylation has been used in wound
healing for a number of reasons. methylation in wound healing
has not been studied.

This work highlights the importance of epigenetic, particularly
DNA methylation and demethylation modifications, in diabetic

http://ClinicalTrials.gov
http://ClinicalTrials.gov
http://ClinicalTrials.gov
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wound healing, and provides precious insights into the develop-
ment therapeutics targeting diabetic wound healing. Given that
regulation of DNA methylation and demethylation varies signifi-
cantly among different types of cells under different diabetic con-
ditions, it is challenging to uncover the molecular-level
mechanisms that define how abnormality in DNA methylation sta-
tus impact diabetic wound healing. Urgent research is quired to
overcome this challenge for the improvement of the DFU
treatment.
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