CRYSTALLOGRAPHIC COMMUNICATIONS

Received 27 November 2015
Accepted 10 December 2015

Edited by A. Van der Lee, Université de Montpellier II, France

Keywords: crystal structure; organic-inorganic hybrid; iodidoplumbate(II); piperazine; 1-D hybrid compound

CCDC reference: 1429047
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of a new hybrid compound based on an iodidoplumbate(II) anionic motif

Oualid Mokhnache and Habib Boughzala*

Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia. *Correspondence e-mail: habib.boughzala@ipein.rnu.tn

Crystals of the one-dimensional organic-inorganic lead iodide-based compound catena-poly[bis(piperazine-1,4-diium) [[tetraiodidoplumbate(II)]- μ-iodido] iodide monohydrate], $\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{H}_{12}\right)_{2}\left[\mathrm{PbI}_{5}\right] \mathrm{I} \cdot \mathrm{H}_{2} \mathrm{O}$, were obtained by slow evaporation at room temperature of a solution containing lead iodide and piperazine in a 1:2 molar ratio. Inorganic lead iodide chains, organic $\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{H}_{12}\right)^{2+}$ cations, water molecules of crystallization and isolated I^{-}anions are connected through $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O} W$ and $\mathrm{O} W-\mathrm{H} \cdots \mathrm{I}$ hydrogen-bond interactions. Zigzag chains of corner-sharing $\left[\mathrm{Pb}_{6}\right]^{4-}$ octahedra with composition $\left[\mathrm{Pb}_{4 / 1} \mathrm{I}_{2 / 2}\right]^{3-}$ running parallel to the a axis are present in the structure packing.

1. Chemical context

Organic-inorganic hybrid materials offer the opportunity to combine the desirable properties of the organic moiety such as processability, toughness and impact strength with the typical properties of the inorganic part such as high temperature stability and durability. The opto-electronic characteristics of hybrid materials are closely related to the metal cluster size. In recent years, a significant number of organic-inorganic hybrid materials based on lead halide units have been prepared and studied (Billing \& Lemmerer, 2006; Rayner \& Billing, 2010), in particular with self-organized low-dimensional families of lead iodide-based crystals where the $\left[\mathrm{PbI}_{6}\right]$ octahedra form one-, two- or three-dimensional networks (Elleuch et al., 2007; Trigui et al., 2011). In one-dimensional lead halide hybrid compounds, the inorganic chains may be formed by one, two or three bridging halides, referred to as corner-, edge- and face-sharing polyhedra, respectively. Thanks to their anticipated electroluminescence, photoluminescence and nonlinear optical properties, these compounds are the most desired ones (Lemmerer \& Billing, 2006). Lead iodide-based hybrid materials are studied extensively for their excitonic and magneto-optical properties. In this work we report the synthesis and crystal structure determination of a new lead iodide hybrid, $\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{H}_{12}\right)_{2}\left[\mathrm{PbI}_{5}\right] \cdot \mathrm{I} \cdot \mathrm{H}_{2} \mathrm{O}$, (I).

2. Structural commentary

The structural units of (I) consist of one piperazine molecule, one water molecule, one isolated iodine and one $\left[\mathrm{PbI}_{6}\right]$ unit

Figure 1
Structural units of the title compound, showing the atom-numbering scheme. Atomic displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius. [Symmetry codes: (i) $x, \frac{1}{2}-y, z$; (ii) $-\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}-z$.]
(Fig. 1). The electrical neutrality is ensured by two organic molecules of doubly protonated piperazine.

The main part of the inorganic moiety is composed by the lead Pb^{2+} cation which adopts a distorted octahedral coordination. The angles between cis-related I^{-}ions range from 85.022 (12) to $96.89(3)^{\circ}$ at most, whereas the trans angles deviate from 180° by 12.95 (3) ${ }^{\circ}$ (Table 1). Two adjacent corners connect the $\left[\mathrm{PbI}_{6}\right]$ octahedron to its neighbours, leading to zigzag chains running parallel to the a axis (Fig. 2). This one-dimensional anionic network leaves empty spaces in which the organic cations are located. The $\left[\mathrm{PbI}_{6}\right]$ octahedra establish two strong hydrogen bonds (Table 2), $\mathrm{N} 2-\mathrm{H} 4 \mathrm{~N} \cdots \mathrm{I} 3$ and $\mathrm{N} 2^{\mathrm{i}}-\mathrm{H} 4 N^{\mathrm{i}} \cdots \mathrm{I} 3$, via the I3 corners [symmetry code: (i) x, $\left.\frac{1}{2}-y, z\right]$ as illustrated in Fig. 3.

The second part of the inorganic moiety contains a water molecule and the iodide anion I5 linked by a strong hydrogenbond interaction (Table 2). Both are located in the same layers in which the $\left[\mathrm{PbI}_{6}\right]$ octahedra are located. As shown in Fig. 4, the anion 55 is linked to one water molecule by I5 $\cdots \mathrm{HW} 1^{\text {i }}$

Figure 2
The $\left[\mathrm{PbI}_{4 / 1} \mathrm{I}_{2 / 2}\right]^{3-}$ chain of (I) running parallel to the a-axis direction and exhibiting a zigzag conformation.

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$\mathrm{Pb}-\mathrm{I} 2$	$3.0689(9)$	$\mathrm{Pb}-\mathrm{I} 4$	$3.2396(9)$
$\mathrm{Pb}-\mathrm{I} 3$	$3.1511(9)$	$\mathrm{Pb}-\mathrm{I} 4^{\mathrm{ii}}$	$3.3535(9)$
$\mathrm{Pb}-\mathrm{I} 1$	$3.2173(8)$	$\mathrm{I} 4-\mathrm{Pb}^{\mathrm{iii}}$	$3.3535(9)$
$\mathrm{Pb}-\mathrm{I} 1^{\mathrm{i}}$	$3.2173(8)$	$\mathrm{OW}-\mathrm{H} W 2$	$0.86(2)$
$\mathrm{I} 2-\mathrm{Pb}-\mathrm{I} 3$	$96.06(3)$	$\mathrm{I} 1-\mathrm{Pb}-\mathrm{I} 4$	$87.185(13)$
$\mathrm{I} 2-\mathrm{Pb}-\mathrm{I} 1$	$85.021(12)$	$\mathrm{I} 1^{\mathrm{i}}-\mathrm{Pb}-\mathrm{I} 4$	$87.185(13)$
$\mathrm{I} 3-\mathrm{Pb}-\mathrm{I} 1$	$93.943(13)$	$\mathrm{I} 2-\mathrm{Pb}-\mathrm{I} 4^{\mathrm{ii}}$	$179.99(3)$
$\mathrm{I} 2-\mathrm{Pb}-\mathrm{I} 1^{\mathrm{i}}$	$85.022(12)$	$\mathrm{I} 3-\mathrm{Pb}-\mathrm{I} 4^{\mathrm{ii}}$	$83.95(3)$
$\mathrm{I} 3-\mathrm{Pb}-\mathrm{I} 1^{\mathrm{i}}$	$93.944(13)$	$\mathrm{I} 1-\mathrm{Pb}-\mathrm{I} 4^{\mathrm{ii}}$	$94.978(12)$
$\mathrm{I} 1-\mathrm{Pb}-\mathrm{I} 1^{\mathrm{i}}$	$167.89(2)$	$\mathrm{I} 1^{\mathrm{i}}-\mathrm{Pb}-\mathrm{I} 4^{\mathrm{ii}}$	$94.977(12)$
$\mathrm{I} 2-\mathrm{Pb}-\mathrm{I} 4$	$96.89(3)$	$\mathrm{I} 4-\mathrm{Pb}-\mathrm{I} 4^{\mathrm{ii}}$	$83.105(14)$
$\mathrm{I} 3-\mathrm{Pb}-\mathrm{I} 4$	$167.05(3)$	$\mathrm{Pb}-\mathrm{I} 4-\mathrm{Pb}^{\mathrm{iii}}$	$178.91(3)$

Symmetry codes: (i) $x,-y+\frac{1}{2}, z$; (ii) $x-\frac{1}{2}, y,-z+\frac{1}{2}$; (iii) $x+\frac{1}{2}, y,-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{OW}^{\text {iv }}$	0.90	2.05	$2.874(5)$	155
$\mathrm{~N} 1-\mathrm{H} 2 N \cdots 5^{v}$	0.90	2.69	$3.543(4)$	160
$\mathrm{~N} 2-\mathrm{H} 4 N \cdots \mathrm{I} 3$	0.90	2.85	$3.656(4)$	151
$\mathrm{O} W-\mathrm{H} W 1 \cdots 5^{\text {vi }}$	0.86	2.74	$3.477(5)$	145

Symmetry codes: (iv) $-x+1, y+\frac{1}{2},-z+1 ; \quad$ (v) $x-\frac{1}{2},-y+\frac{3}{2},-z+\frac{1}{2}$; (vi)
$-x+1, y-\frac{1}{2},-z+1$.
$\mathrm{O} W^{\mathrm{i}}$ [symmetry code: (i) $\left.1-x, \frac{1}{2}+y, 1-z\right]$ and two organic cations via $\mathrm{I} 5 \cdots \mathrm{H} 2 N^{i \mathrm{i}}-\mathrm{N} 1^{\mathrm{ii}}$ and $\mathrm{I} 5 \cdots \mathrm{H} 2 N^{\mathrm{iii}}-\mathrm{N} 1^{\mathrm{iii}}$ [symmetry codes: (ii) $\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}-z$; (iii) $\left.\frac{1}{2}+x, y, \frac{1}{2}-z\right]$. On the other hand, the water molecule is associated to one iodine (I5) via $\mathrm{O} W-\mathrm{H} W 1 \cdots I 5^{\mathrm{iii}}$ [symmetry code: (iii) $1-x,-\frac{1}{2}+y, 1-z$) and to two piperazinium cations via $\mathrm{O} W \cdots \mathrm{H} 1 N^{\mathrm{ii}}-\mathrm{N} 1^{\mathrm{ii}}$ and $\mathrm{O} W \cdots \mathrm{H} 1 N^{\mathrm{i}}-\mathrm{N} 1^{\mathrm{i}}$ (Fig. 5). In this configuration, no acceptor was found for HW 2 and H 3 N .

Figure 3
Linkage around one $\left[\mathrm{PbI}_{6}\right]$ octahedron formed by two similar octahedra and two protonated piperazine cations. Hydrogen bonds are drawn as dashed green lines. [Symmetry codes: (i) $x, \frac{1}{2}-y, z$; (ii) $-\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}-z$.]

Figure 4
Hydrogen-bonding interactions with isolated iodide in (I). [Symmetry codes: (i) $1-x, \frac{1}{2}+y, 1-z$; (ii) $\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}-z$; (iii) $\frac{1}{2}+x, y, \frac{1}{2}-z$.]

The six-membered piperazinium cation ring adopts a chair conformation. It interacts with the inorganic chain via strong $\mathrm{N} 2-\mathrm{H} 4 N \cdots \mathrm{I} 3$ hydrogen bonds with a $2.85 \AA$ bond length (Table 2 and Fig. 6). In the crystal structure, the piperazinium cations are also linked to the water molecule by an N1$\mathrm{H} 1 N \cdots \mathrm{O} W^{\text {iii }}$ hydrogen bond and to the iodine anion by $\mathrm{N} 1-$ $\mathrm{H} 2 N \cdots \mathrm{I} 5^{\mathrm{iii}}$ hydrogen bonds.

Compared to its homologous hybrids, the structure of the title compound exhibits an original arrangement of the inorganic layers. It is composed by two parts: the first are the $\left[\mathrm{PbI}_{6}\right]$ octahedra sharing adjacent corners and so assembling into chains running along the [100] direction. The second original feature is the structural cohesion by water molecules and isolated iodide anions. This structural arrangement will probably have an impact on the dielectric behavior of the material. Luminescence and UV-visible spectroscopy

Figure 5
Water molecule hydrogen bonding interactions in (I). [Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $1-x,-\frac{1}{2}+y, 1-z$.]

Figure 6
The hydrogen bonding environment of the cation of the title compound. [Symmetry codes: (i) $-\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}-z$; (ii) $-\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}-z$; (iii) $1-x$, $\frac{1}{2}+y, 1-z$.]
measurements of this compound, coupled to theoritical calculation of the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) electronic transitions are in progress.

As shown in Fig. 7, the structure of (I) is self-assembled into alternating organic and inorganic layers parallel to the ac plane. The organic part is made up of $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)^{2+}$ cations located in the voids around the corner-sharing $\left[\mathrm{PbI}_{6}\right]^{4-}$ octahedra. The iodine anions and the water molecules connect the organic and inorganic sheets by strong hydrogen-bond interactions.

Figure 7
A packing diagram of (I), viewed along the a axis showing the alternating organic and inorganic layers. Hydrogen bonds are omitted for clarity.

Table 3
Experimental details.

Crystal data
Chemical formula M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)

Data collection

Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$


```
1162.92
Orthorhombic, Pnma
298
8.7477 (10), 13.488 (2), 20.336 (3)
2399.4 (6)
4
Mo K\alpha
14.75
0.45 }\times0.14\times0.1
```

Enfar-Nonius CAD-4
ψ scan (North et al., 1968)
0.622, 0.999
3601, 2729, 1941
0.034
0.638
0.037, 0.086, 1.05
2729
105
3

H atoms treated by a mixture of independent and constrained refinement
$2.00,-1.28$

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), XCAD4 (Harms \& Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

3. Database survey

Using the piperazine-1,4-diium cation scheme in the similarity option of the WEBCSD interface (Groom \& Allen, 2014), more than 90 records are found in the CCDC database. Only 24 are inorganic-organic hybrid compounds with several metals $\mathrm{Cu}, \mathrm{Zn}, \mathrm{Co}, \mathrm{Bi}, \mathrm{Cd}, \mathrm{Sb}, \mathrm{Au}$ etc. The closest chemical composition found is a bismuth-based compound (II): $\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{H}_{12}\right)_{2}\left[\mathrm{BiCl}_{6}\right] \cdot \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$ (Gao et al., 2011). In spite of the chemical formula similarity, it seems that the orthorhombic (Pnma) title structure is much more regular than the monoclinic ($P 2_{1} / c$) compound (II) with approximately the same cell volume, where the small difference is probably due to the chlorine/iodine substitution. In contrast to the structure of (I), the anionic network in the structure of (II) is 0-D, built up by
isolated $\left[\mathrm{BiCl}_{6}\right]$ octahedra. The water molecule and the isolated halogen play, in both cases, the same crucial role in the structural cohesion, linking the anionic part to the organic moieties.

4. Synthesis and crystallization

Crystals of the title compound were prepared by slow evaporation at room temperature by mixing 1,4-diazacyclohexane $\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}_{2}\right)(2 \mathrm{~mol})$ with a solution of lead iodide PbI_{2} (1 mol) in an equimolar mixture of ethanol and DMF. After several weeks, the obtained crystals were isolated and dried.

5. Refinement

Data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were placed using geometrical constraints using adequate HFIX instructions (SHELXL) and refined with AFIX instructions. Water hydrogen atoms were found in Fourier difference maps and $\mathrm{O}-\mathrm{H}$ distances were restrained using DFIX ($0.86 \AA$) and DANG instructions.

References

Billing, D. G. \& Lemmerer, A. (2006). Acta Cryst. C62, m264-m266. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Elleuch, S., Boughzala, H., Driss, A. \& Abid, Y. (2007). Acta Cryst. E63, m306-m308.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Gao, Y.-H., Liu, X.-J., Sun, L. \& Le, W.-J. (2011). Acta Cryst. E67, m1688.
Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662671.

Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Lemmerer, A. \& Billing, D. G. (2006). Acta Cryst. C62, m597-m601.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Rayner, M. K. \& Billing, D. G. (2010). Acta Cryst. E66, m660.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Trigui, A., Boughzala, H., Driss, A. \& Abid, Y. (2011). Acta Cryst. E67, m458-m459.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2016). E72, 56-59 [doi:10.1107/S2056989015023786]

Crystal structure of a new hybrid compound based on an iodidoplumbate(II) anionic motif

Oualid Mokhnache and Habib Boughzala

Computing details

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf-Nonius, 1994); data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
catena-Poly[bis(piperazine-1,4-diium) [[tetraiodidoplumbate(II)]- μ-iodido] iodide monohydrate]

Crystal data

$\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{PbI}_{5}\right] \mathrm{I} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1162.92$
Orthorhombic, Pnma
$a=8.7477$ (10) \AA
$b=13.488$ (2) \AA
$c=20.336$ (3) \AA
$V=2399.4(6) \AA^{3}$
$Z=4$
$F(000)=2040$

Data collection

Enfar-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
$\omega / 2 \tau$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min }=0.622, T_{\text {max }}=0.999$
3601 measured reflections
2729 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.086$
$S=1.05$
2729 reflections
105 parameters
3 restraints
Primary atom site location: heavy-atom method
$D_{\mathrm{x}}=3.219 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=13.7-14.7^{\circ}$
$\mu=14.75 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Prism, yellow
$0.45 \times 0.14 \times 0.10 \mathrm{~mm}$

1941 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=27.0^{\circ}, \theta_{\text {min }}=2.0^{\circ}$
$h=-11 \rightarrow 2$
$k=-1 \rightarrow 17$
$l=-1 \rightarrow 25$
2 standard reflections every 120 min
intensity decay: -1%

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0358 P)^{2}+1.6589 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$

supporting information

$\Delta \rho_{\max }=2.00 \mathrm{e}_{\AA^{-3}}$

$$
\Delta \rho_{\min }=-1.28 \mathrm{e} \AA^{-3}
$$

Special details

Experimental. Number of psi-scan sets used was 4 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
Pb	$0.70782(5)$	0.2500	$0.37128(2)$	$0.02909(13)$
I1	$0.74558(6)$	$0.48720(5)$	$0.37511(3)$	$0.03537(16)$
I2	$0.94306(9)$	0.2500	$0.48324(4)$	$0.0367(2)$
I3	$0.41658(9)$	0.2500	$0.46247(4)$	$0.0410(2)$
I4	$0.95081(10)$	0.2500	$0.25107(4)$	$0.0421(2)$
I5	$0.54190(11)$	0.7500	$0.19255(5)$	$0.0489(3)$
N1	$0.3401(9)$	$0.5979(6)$	$0.3685(3)$	$0.0430(19)$
H1N	0.2673	0.6433	0.3635	0.052^{*}
H2N	0.4301	0.6287	0.3680	0.052^{*}
N2	$0.1611(9)$	$0.4232(6)$	$0.3784(3)$	$0.0407(19)$
H3N	0.0691	0.3951	0.3792	0.049^{*}
H4N	0.2305	0.3754	0.3828	0.049^{*}
C1	$0.3329(10)$	$0.5257(8)$	$0.3131(4)$	$0.039(2)$
H1A	0.3455	0.5604	0.2716	0.046^{*}
H1B	0.4151	0.4779	0.3172	0.046^{*}
C2	$0.1836(9)$	$0.4737(7)$	$0.3138(4)$	$0.035(2)$
H2A	0.1805	0.4252	0.2787	0.042^{*}
H2B	0.1019	0.5210	0.3066	0.042^{*}
C3	$0.3199(10)$	$0.5469(8)$	$0.4320(4)$	$0.041(2)$
H3A	0.4040	0.5012	0.4389	0.050^{*}
H3B	0.3214	0.5953	0.4672	0.050^{*}
C4	$0.1744(10)$	$0.4919(8)$	$0.4337(4)$	$0.046(3)$
H4A	0.1677	0.4552	0.4746	0.055^{*}
H4B	0.0900	0.5386	0.4325	0.055^{*}
OW	$0.4301(11)$	0.2500	$0.6369(5)$	$0.051(3)$
HW1	$0.393(13)$	0.2500	$0.676(2)$	0.080^{*}
HW2	$0.352(9)$	0.2500	$0.612(4)$	0.059^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pb	$0.0224(2)$	$0.0364(3)$	$0.0284(2)$	0.000	$0.00002(19)$	0.000

I1	$0.0287(3)$	$0.0386(4)$	$0.0388(3)$	$0.0019(2)$	$-0.0011(2)$	$0.0008(3)$
I2	$0.0322(4)$	$0.0408(6)$	$0.0372(4)$	0.000	$-0.0079(4)$	0.000
I3	$0.0296(4)$	$0.0498(6)$	$0.0435(4)$	0.000	$0.0088(4)$	0.000
I4	$0.0353(4)$	$0.0420(5)$	$0.0491(5)$	0.000	$0.0180(4)$	0.000
I5	$0.0525(5)$	$0.0392(6)$	$0.0550(5)$	0.000	$0.0114(5)$	0.000
N1	$0.030(4)$	$0.042(5)$	$0.058(5)$	$-0.007(4)$	$-0.009(4)$	$0.002(4)$
N2	$0.044(4)$	$0.032(4)$	$0.046(4)$	$-0.009(4)$	$-0.008(4)$	$0.006(4)$
C1	$0.039(5)$	$0.051(6)$	$0.025(4)$	$-0.002(5)$	$-0.001(4)$	$0.005(4)$
C2	$0.031(4)$	$0.035(5)$	$0.040(5)$	$0.002(4)$	$-0.004(4)$	$-0.005(4)$
C3	$0.035(5)$	$0.046(6)$	$0.043(5)$	$0.000(5)$	$0.001(4)$	$-0.015(5)$
C4	$0.029(5)$	$0.067(8)$	$0.041(5)$	$-0.009(5)$	$0.008(4)$	$-0.012(5)$
OW	$0.046(6)$	$0.038(6)$	$0.068(6)$	0.000	$-0.003(5)$	0.000

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Pb}-\mathrm{I} 2$	3.0689 (9)	N2-H4N	0.8900
$\mathrm{Pb}-\mathrm{I} 3$	3.1511 (9)	$\mathrm{C} 1-\mathrm{C} 2$	1.483 (11)
$\mathrm{Pb}-\mathrm{I} 1$	3.2173 (8)	C1-H1A	0.9700
$\mathrm{Pb}-\mathrm{I} 1^{\text {i }}$	3.2173 (8)	C1-H1B	0.9700
$\mathrm{Pb}-\mathrm{I} 4$	3.2396 (9)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700
$\mathrm{Pb}-\mathrm{I} 4{ }^{\text {ii }}$	3.3535 (9)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9700
$\mathrm{I} 4-\mathrm{Pb}^{\text {iii }}$	3.3535 (9)	C3-C4	1.473 (12)
N1-C1	1.490 (11)	C3-H3A	0.9700
N1-C3	1.474 (11)	C3-H3B	0.9700
N1-H1N	0.8900	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9700
N1-H2N	0.8900	C4-H4B	0.9700
N2-C4	1.462 (11)	OW-HW1	0.86 (2)
N2-C2	1.493 (10)	OW—HW2	0.86 (2)
N2-H3N	0.8900		
$\mathrm{I} 2-\mathrm{Pb}-\mathrm{I} 3$	96.06 (3)	$\mathrm{H} 3 \mathrm{~N}-\mathrm{N} 2-\mathrm{H} 4 \mathrm{~N}$	107.9
$\mathrm{I} 2-\mathrm{Pb}-\mathrm{I} 1$	85.021 (12)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	109.8 (7)
$\mathrm{I} 3-\mathrm{Pb}-\mathrm{I} 1$	93.943 (13)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.7
$\mathrm{I} 2-\mathrm{Pb}-\mathrm{Il}{ }^{\text {i }}$	85.022 (12)	N1-C1-H1A	109.7
$\mathrm{I} 3-\mathrm{Pb}-\mathrm{I1}{ }^{\text {i }}$	93.944 (13)	C2-C1-H1B	109.7
$\mathrm{I} 1-\mathrm{Pb}-\mathrm{I} 1^{\text {i }}$	167.89 (2)	N1-C1-H1B	109.7
$\mathrm{I} 2-\mathrm{Pb}-\mathrm{I} 4$	96.89 (3)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.2
$\mathrm{I} 3-\mathrm{Pb}-\mathrm{I} 4$	167.05 (3)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	110.0 (7)
$\mathrm{I} 1-\mathrm{Pb}-\mathrm{I} 4$	87.185 (13)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.7
$\mathrm{I} 1{ }^{\mathrm{i}}-\mathrm{Pb}-\mathrm{I} 4$	87.185 (13)	N2-C2-H2A	109.7
$\mathrm{I} 2-\mathrm{Pb}-\mathrm{I} 4{ }^{\text {ii }}$	179.99 (3)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.7
$\mathrm{I} 3-\mathrm{Pb}-\mathrm{I} 4^{\text {ii }}$	83.95 (3)	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.7
$\mathrm{I}-\mathrm{Pb}-\mathrm{I} 4^{\text {ii }}$	94.978 (12)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.2
$\mathrm{I} 1^{\mathrm{i}}-\mathrm{Pb}-\mathrm{I} 4^{\text {ii }}$	94.977 (12)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 1$	111.1 (7)
$\mathrm{I} 4-\mathrm{Pb}-\mathrm{I} 4{ }^{\text {ii }}$	83.105 (14)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.4
$\mathrm{Pb}-\mathrm{I} 4-\mathrm{Pb}^{\text {iii }}$	178.91 (3)	N1-C3-H3A	109.4
C1-N1-C3	110.7 (7)	C4-C3-H3B	109.4
C1-N1-H1N	109.5	N1-C3-H3B	109.4

supporting information

$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	109.5	$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.0
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N}$	109.5	$\mathrm{~N} 2-\mathrm{C} 4-\mathrm{C} 3$	$111.6(7)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N}$	109.5	$\mathrm{~N} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.3
$\mathrm{H} 1 \mathrm{~N}-\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N}$	108.1	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.3
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 2$	$112.1(7)$	$\mathrm{N} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.3
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 3 \mathrm{~N}$	109.2	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.3
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 3 \mathrm{~N}$	109.2	$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	108.0
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 4 \mathrm{~N}$	109.2	$\mathrm{HW} 1-\mathrm{OW}-\mathrm{HW} 2$	$104(3)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 4 \mathrm{~N}$	109.2		

Symmetry codes: (i) $x,-y+1 / 2, z$; (ii) $x-1 / 2, y,-z+1 / 2$; (iii) $x+1 / 2, y,-z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{O} W^{\text {iv }}$	0.90	2.05	$2.874(5)$	155
$\mathrm{~N} 1 — \mathrm{H} 2 N \cdots \mathrm{I} \mathrm{v}^{\mathrm{v}}$	0.90	2.69	$3.543(4)$	160
$\mathrm{~N} 2 — \mathrm{H} 4 N \cdots \mathrm{I} 3$	0.90	2.85	$3.656(4)$	151
$\mathrm{O} W — \mathrm{H} W 1 \cdots \mathrm{I} 5^{\text {vi }}$	0.86	2.74	$3.477(5)$	145

Symmetry codes: (iv) $-x+1, y+1 / 2,-z+1$; (v) $x-1 / 2,-y+3 / 2,-z+1 / 2$; (vi) $-x+1, y-1 / 2,-z+1$.

