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1  | INTRODUC TION

Next to dealing with the consequences of climate change, biological 
diversity conservation has become one of the most important chal-
lenges for humanity (Díaz et al., 2006). The total loss of some spe-
cies and the rapid decline of others have taken on a so far unknown 
dynamic (Hooper et al., 2012). Some species will probably not be 
described at all before they become extinct (Costello et al., 2013). 
Therefore, we should make every effort to use new technological 
solutions in ecological research in such a way that the knowledge 
gained thereby can be effectively used in nature conservation (Arts 
et al., 2015). In a rapidly changing world, we need ecological research 
methods that are fast, effective, and minimally invasive, so that we 

will be able to react dynamically to negative changes in the environ-
ment (Díaz-Delago et al., 2017).

Large vertebrates, especially birds, have been regarded as indi-
cators of the state of the environment (Amat & Green, 2010), and 
numerous long-term bird monitoring programs have been set up in 
many places around the world (e.g. Farina et al., 2011; Niemi et al., 
2016; Reif, 2013). New initiatives are constantly emerging, and be-
cause of this ever-denser network of research programs, we are 
acquiring an increasingly precise model of ecological processes on 
Earth (Gregory & Strien, 2010). To meet this challenge, we need new, 
more effective methods and tools.

The use of Unmanned Aerial Vehicles (hereafter drones) in 
ecological research has already been described in research on 
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Abstract
1.	 The use of a drone to count the flock sizes of 33 species of waterbirds during the 

breeding and non-breeding periods was investigated.
2.	 In 96% of 343 cases, drone counting was successful. 18.8% of non-breeding birds 

and 3.6% of breeding birds exhibited adverse reactions: the former birds were 
flushed, whereas the latter attempted to attack the drone.

3.	 The automatic counting of birds was best done with ImageJ/Fiji microbiology soft-
ware – the average counting rate was 100 birds in 64 s.

4.	 Machine learning using neural network algorithms proved to be an effective and 
quick way of counting birds – 100 birds in 7 s. However, the preparation of images 
and machine learning time is time-consuming, so this method is recommended 
only for large data sets and large bird assemblages.

5.	 The responsible study of wildlife using a drone should only be carried out by per-
sons experienced in the biology and behavior of the target animals.
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breeding (e.g. Chabot et al., 2015; Corregidor-Castro et al., 2021; 
Ratcliffe et al., 2015) and non-breeding birds (e.g. Hodgson et al., 
2018; Jarrett et al., 2020), as well as marine (e.g. Adame et al., 
2017; Koski et al., 2015) and terrestrial mammals (Hu et al., 2020; 
Vermeulen et al., 2013). This has turned out to be an effective 
method for studying not only larger vertebrates, mainly birds and 
mammals, but also reptiles (Elsey & Trosclair, 2016), as well as for 
other ecological studies (Michez et al., 2016; Puttock et al., 2015). 
Nonetheless, research using drones is still at an early stage, and 
further studies are needed in order to establish both methodolog-
ical standards and the actual effectiveness of working with this 
tool (Barnas et al., 2020). Apart from efficiency and time saving, 
an important issue is the invasiveness of this method and the 
safety of the studied object. Initial research in this area has already 
been carried out on a limited group of species (e.g. Jarrett et al., 
2020; Vas et al., 2015). Traditional methods of counting waterbirds 
in breeding colonies involve human entry into the colony (Bibby 
et al., 2000), and the accurate counting of nests in such a situation 
requires extensive experience on the part of the observer and is 
prone to errors in estimation (Afán et al., 2018; Brisson-Curadeau 
et al., 2017; Magness et al., 2019). An additional important factor 
is the disturbance of birds during a human visit to the colony, as 
this can cause birds from the entire colony or a large part of it 
to leave their nests, which may lead to brood losses (Fuller et al., 
2018; Sardà-Palomera et al., 2017).

Waterbirds often make use of hard-to-reach habitats, such 
as islands in water bodies or wetlands (Bibby et al., 2000; Valle & 
Scarton, 2019). Being bioindicators of environmental quality, they 
are also a frequent object of monitoring studies (Amano et al., 2017; 
Amat & Green, 2010). Therefore, the use of a drone for research on 
this group of animals should be doubly beneficial because (1) areas 
hard to reach on foot are easily and quickly accessed, and (2) dis-
turbance of birds is limited, as there is no need to enter a breeding 
colony or disturb a flock of non-breeding birds.

The next step in drone research is the analysis of photographs 
(Descamps et al., 2011; Hollings et al., 2018). Various approaches to 
this stage have been used, ranging from manual counting (Afán et al., 
2018), through various types of semi-automatic techniques, to ad-
vanced methods using artificial intelligence (Corregidor-Castro et al., 
2021; Descamps et al., 2011; Jarrett et al., 2020; Magness et al., 
2019). As regards modern techniques of gathering ecological data, 
we are starting to face analytical issues (Shin & Choi, 2015) compa-
rable to those in other fields, such as microbiology or biochemistry. 
The principle of similarities of natural structures, such as the similar-
ities of a river network to a blood vessel network (e.g. LaBarbera & 
Rosso, 1989; Neagu & Bejan, 1999), may be applicable. Bird assem-
blages can resemble microbial assemblages, and the use of medical 
software to count birds has already been attempted (Pérez-García, 
2012). Since such software is commonly used for counting microor-
ganisms, it has been tested many times and its precision confirmed 
(Barbedo, 2012). In the case of aerial photos, it seems justified to 
use analytical methods previously reserved for areas, such as mi-
crobiology, such as the ImageJ/Fiji open software platform used for 

automatic object counting (Schindelin et al., 2012) or the Passing 
Bablok regression, used to compare methods in clinical laboratory 
work (Bilić-Zulle, 2011). Therefore, the present study utilized soft-
ware dedicated to the study of microorganisms or tissues (ImageJ/
Fiji) in order to compare its effectiveness with the manual method 
and other semi-automatic bird counting techniques.

I thus focused on the effectiveness of a population censusing 
method using a drone, its invasiveness, the automated analysis of 
the data obtained by the drone, and the application of Artificial 
Intelligence (AI) for interpreting the results. The field study was car-
ried out on colonial breeding waterbirds and gregarious waterbirds 
forming flocks during the non-breeding period. I selected various 
species that occupy different habitats: these can be divided into four 
categories – open water, arable fields and meadows, wetlands, and 
islets.

My research questions were as follows: (1) Will it be possible/
safe to count nests/incubating birds/individuals using a drone over 
a colony or a flock? (2) Will it be possible to identify similar species 
from a distance without endangering the birds? (3) Will the appear-
ance of a drone over the breeding colony or flock cause the birds to 
react and, if so, in what way do they react? (4) Is automatic counting 
using dedicated software and Machine Learning applicable to bird 
censusing?

2  | METHODS

2.1 | Study area and species

The study was carried out on colonial and gregarious species of water-
birds in northern Poland (Europe). Most of the observations were 
made in the lower course and estuary of a large lowland river – the 
Lower Oder Valley (site-center location in decimal degrees: Longitude 
– 14.413200, Latitude – 53.085000). The observations were made in 
areas known for their importance for waterbirds, during the breed-
ing season, migration, and the wintering period. (Ławicki et al., 2010; 
Marchowski et al., 2018).

The study covered a total of 33 waterbird species, including 15 
breeding and 28 non-breeding species. The responses of 10 species 
to the drone in both the breeding and non-breeding periods were 
compared.

2.2 | Drone parameters

A DJI Phantom drone (version 4 Pro V2.0) was used for the field-
work. This is a remotely controlled quadcopter device with a total 
weight of 1388 g, equipped with a camera capable of taking both 
still photographs (max quality: 5472 × 3648 pixels) and videos (max 
quality: 4096 × 2160 pixels), with the option of continuous track-
ing of unrecorded images transmitted to the display coupled with 
the remote control. Each photo records the geographic location and 
altitude in the metadata.
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2.3 | Species identification

To assess the possibility of accurate species identification using 
a drone, series of photos were taken at different heights from 5 
to 100 m of gulls in a non-breeding flock consisting of two spe-
cies – Black-headed Gull Chroicocephalus ridibundus and Herring 
Gull Larus argentatus sensu lato. An experienced ornithologist was 
then asked to identify the birds in the photos. The number of pix-
els each bird covered at each height was calculated. Generalized 
Linear Models from a binominal distribution were then analyzed to 
determine the influence of distance on species identification and 
the critical distance at which similar species could not be identi-
fied. The analysis was performed in the R environment (R Core 
Team, 2021).

2.4 | Behavioral study

The distance from the observer to the surveyed sites was usually 
several hundred meters, but never less than 100 m. This precluded 
any influence on the part of the observer on the birds’ behavior. 
But if birds were scared away because of the observer's presence, 
no attempt was made to fly the drone. The flight height was set at 
about 100 m – the same as recommended for bird counts from air-
craft (Meissner, 2011). From this height, the planned census area 
was scanned for birds. If a flock or individual birds were spotted 
on the remote controller display, a photo was taken, and the birds 
were approached. Up to a height of 30 m, birds were approached 
diagonally. If after reaching 30 m, when the birds were still not re-
sponding to the drone, and the species was not known or a flock 
contained birds of several similar-looking species, the drone was 
moved over the birds in order to identify the species. The distance 
was shortened while maintaining the height, after which the drone's 
height was lowered, usually to about 15–20 m (less often to about 
10 m, exceptionally even less; see Table S1 for the details). The birds’ 
reactions (if the terrain permitted them to be seen) were recorded 
by a second observer using a spotting scope mounted on a tripod. 
The birds’ reactions were also monitored in real time via the display 
on the drone's remote controller. The reaction of the birds was re-
corded throughout the drone's approach to the birds or the colony, 
so that it should have been possible to identify species-specific reac-
tion distances. The behavior of the birds was observed on a sample 
plot of approximately 40,000 m² (200 × 200 m), but if the site was 
smaller (e.g., a small lake, pool or islet), the entire area was treated 
as one sample plot.

Studies were carried out at 27  locations from 2017 to 2021, 
and 92 drone missions were flown, from 1 to 12 at each location. 
The locations were divided into five habitat types: 1 – open water 
(41 missions), 2 – wetland (28 missions), 3 – island (17 missions), 4 – 
farmland/meadow (18 missions), and 5) other (Grey Heron colony in 
a forest, two missions). During a single mission (drone departure and 
return), the birds were counted and their reaction to the drone was 

determined. From one to eight bird species were recorded during 
one drone flight. From 1 to 39 repeated drone missions took place 
per species, so as 33 species were recorded, a total of 343 separate 
records were obtained (Table 1, Table S1).

My main research question was whether it would be possible/
safe to conduct bird research using a drone. How do birds react to a 
drone: do they ignore it, attack it, or does the drone flush them? The 
birds’ reactions to the drone were first divided into two basic cate-
gories: reaction and no reaction (code: no reaction = 0). The reaction 
category comprised the following subcategories – a bird: 1 – moved 
slowly away; 2 – dived; 3 – was flushed over a short distance but re-
mained in the sample plot or quickly returned; 4 – was scared away, 
exhibited a panic reaction, left the sample plot, and did not return; 
5 – attacked the drone. Whenever a bird was observed to react, the 
drone was immediately withdrawn.

Reactions 4 and 5 were classified as “unfavourable”, that is, sit-
uations where the study of birds using a drone would not be rec-
ommended. No reaction (0) and non-invasive reactions (1–3) were 
placed in a separate category. Statistical significance was tested 
using the chi-square goodness of fit. The statistical analyses were 
carried out using the software program R (R Core Team, 2021).

The second aim was to test the ability to count birds in non-
breeding aggregations or nests in breeding colonies using a drone. 
After initially ascertaining from a long distance whether the birds 
were responding to the drone's presence, attempts were made to 
approach the colony, with photos being taken continuously. If it was 
noticed that the drone had disturbed the birds in any way, it was 
recalled beyond the disturbing distance. The dates of drone flights 
over the breeding colonies were adjusted to take place when the 
colony was at the egg incubation stage. As a result, most of the nests 
in the colony, represented by an incubating bird, were visible.

2.5 | Postprocessing – counting birds on photos

Photos from a Black-headed Gull colony were used to assess the ef-
fectiveness of bird counting using various methods. In colonies of 
this species, Common Tern Sterna hirundo and other gull species – 
Herring Gull Larus argentatus sensu lato, Common Gull Larus canus, 
and Mediterranean Gull Ichthyaetus melanocephalus – also nested in 
smaller numbers. However, for the purposes of assessing the effec-
tiveness of various counting methods, birds were not divided into 
species, so the basic unit in this assessment was the bird.

2.6 | Manual and semi-automatic counting

2.6.1 | Layer method

The primary method, regarded as a proxy method (see below for 
more details), uses Photoshop software to apply a layer to the 
counted object. This can be an unfilled ellipse or rectangle. The layer 
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is then duplicated and moved to the next object. When a layer is 
duplicated, a sequential copy number is assigned to it so that the last 
layer number plus one (the first layer) gives the number of individuals 
in the count.

2.6.2 | Manual method

This involves printing an image of the colony or part of it and 
then marking off the counted birds or nests. The marked birds are 

grouped into tens; with larger colonies, supergroups multiplied by 10 
are formed into sets of 100 individuals.

2.6.3 | Count tool method

Another approach is to use the object counting tool in Adobe 
Photoshop (Adobe Photoshop PS 2020: Image >Analysis >Count 
Tool). With this software, the clicks are counted automatically, with 
the consecutive number being displayed next to the clicked object.

TA B L E  1   List of species surveyed using a drone, broken down into breeding and non-breeding birds, and the number of repeated drone 
missions for each species

No. Species Breeding Non-breeding
Number of repeated 
drone missions

1 Mute Swan Cygnus olor Y Y 25

2 Whooper Swan Cygnus cygnus N Y 13

3 Greater White-fronted Goose Anser albifrons N Y 6

4 Bean Goose Anser fabalis/serrirostrisa N Y 20

5 Greylag Goose Anser answer Y Y 39

6 Mallard Anas platyrhynchos Y Y 39

7 Northern Pintail Anas acuta N Y 3

8 Eurasian Teal Anas crecca N Y 1

9 Eurasian Wigeon Mareca penelope N Y 3

10 Gadwall Mareca strepera Y Y 6

11 Pochard Aythya ferina N Y 10

12 Greater Scaup Aythya marila N Y 24

13 Tufted Duck Aythya fuligula N Y 22

14 Common Scoter Melanitta nigra N Y 5

15 Long-tailed Duck Clangula hyemalis N Y 6

16 Common Goldeneye Bucephala clangula N Y 22

17 Goosander Mergus merganser N Y 6

18 Red-breasted Merganser Mergus serrator N Y 6

19 Great Crested Grebe Podiceps cristatus Y Y 6

20 Great Cormorant Phalacrocorax carbo N Y 8

21 Grey Heron Ardea cinerea Y Y 7

22 Great Egret Ardea alba N Y 2

23 Eurasian Coot Fulica atra N Y 4

24 Common Crane Grus grus Y Y 15

25 Black-headed Gull Chroicocephalus ridibundus Y Y 12

26 Common Gull Larus canus Y Y 8

27 Mediterranean Gull Ichthyaetus melanocephalus Y N 3

28 Larus argentatus sensu latob Y Y 7

29 Great Black-backed Gull Larus marinus N Y 3

30 Little tern Sternula albifrons Y N 3

31 Common Tern Sterna hirundo Y N 12

32 Black Tern Chlidonias niger Y N 10

33 Whiskered Tern Chlidonias hybrida Y N 3

aBean Goose complex (two species: Tundra Bean Goose Anser fabalis and Taiga Bean Goose Anser serrirostris).
bThe group of closely related large gulls in the study area are Herring Gull Larus argentatus and Caspian Gull Larus cachinnans.
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2.7 | Automatic counting

2.7.1 | Photoshop automatic count method

One method of automatic counting uses the Adobe Photoshop (PS 
2020) software tool for the automatic counting of objects (Image 
>Analysis > Select Data Points >Custom > Object Counting). The 
image must be prepared so that the software knows what to count. 
Using image processing tools, such as contrast, brightness, exposure, 
and threshold, the counted objects need to be exposed against the 
background. The best results are achieved when the objects to be 
counted can be seen against a completely uniform background. 
Then, using the Wand tool, the background is selected, and the se-
lection inverted. The next step is to open the Measurement Log and 
record the measurements. The software will automatically count the 
selected objects.

2.7.2 | ImageJ/Fiji method

Another automatic counting method is the one used for count-
ing microorganisms or cell structures – the Analyze Particles tool 
in the open-source Java image processing software – ImageJ 
(Grishagin, 2015; Schroeder et al., 2020) and its extended version 
of Fiji (Schindelin et al., 2012). This method requires image pro-
cessing each time before automatic counting is applied. Tools such 
as contrast, brightness, exposure, threshold, etc. should be used in 
such a way that the counted objects are clearly visible against the 
background.

2.7.3 | Machine learning + ImageJ/Fiji method

This is a similar method to the above as it uses the Analyze Particle 
tool in the ImageJ/Fiji platform at the final stage. The manual stage 
of processing the image is skipped and a neural network-based algo-
rithm is used to display the objects in the background. This method 

was applied using the ImageJ/Fiji platform, the DenoiSeg tool from 
the CSBDeep plug-in – the neural network algorithm for instance 
segmentation (Buchholz et al., 2020). The machine learning process 
requires an appropriate graphics card and the installation of several 
drivers and software that operate in the background of the main 
software (CUDA Toolkit, GPU support, TensorFlow, cuDNN SDK, 
Phyton etc.; see https://imagej.net/plugi​ns/denoiseg and Buchholz 
et al., 2020 for more details). Having set up the computer, I fol-
lowed these three steps. (1) Creating manual segmentations for six 
of the images – labelling (requiring several hours of manual work). 
(2) Training the neural network – this was based on 70 noisy images 
and six labelled ones. I created two folders for training and two for 
validation (X_train, Y_train, X_val, and Y_val), which were then up-
loaded to the DenoiSeg software (the technical details are described 
step by step in Buchholz et al., 2020 and are available at: https://
imagej.net/plugi​ns/denoiseg). The network training process took 
about 36 h (computer RAM 8 GB; processor: Intel (R) Core (TM) i5-
7300HQ CPU @ 2.50GHz; graphics adapter: NVIDIA GeForce GTX 
1060). The result of the process was a model of the trained neural 
network. (3) Prediction: I used the trained model to segment the 
image. The separation of objects from the background usually took a 
second or two. The image prepared in this way could then be further 
processed using the Analyze Particles tool in ImageJ/Fiji (Baviskar, 
2011). Figure 1 highlights the difference between the ImageJ/Fiji 
only and Machine Learning +ImageJ/Fiji approaches.

2.8 | Comparison of counting methods

Forty-three photos of bird assemblages from the Black-headed Gull 
breeding colony were selected at random and analyzed using differ-
ent methods. The photos were mostly of Black-headed Gulls, but a 
few other species (Common Tern and other gull species) were also 
present though much less frequently. In this analysis, they were all 
counted together. Species with a different (darker) coloration, such 
as Greylag Goose, were eliminated during the preparation of the 
photo for counting and not counted.

F I G U R E  1   Bird counting process using two approaches: ImageJ/Fiji and Machine learning + ImageJ/Fiji. In the first method, the step 
from image (a) to (b) is performed manually, whereas in DenoiSeg it is performed automatically using the neural network model. The step 
from picture (b) to (c) in both methods is the same

(a) (c)(b)

https://imagej.net/plugins/denoiseg
https://imagej.net/plugins/denoiseg
https://imagej.net/plugins/denoiseg
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A stopwatch was used to measure the time needed to process and 
count the birds. The Photoshop Layer method allows one to zoom in 
on the image to check whether the bird should be added to the re-
sult. This yielded much more detail than was needed for this study 
(bird). The Layer method enables the identification of species in a 
group and the activity being performed by a bird (e.g., in a breeding 
colony, whether it is incubating, Figure 2). Given the precision of the 
Layer method, the results obtained with it were taken as reference 
values (proxy method). Then, the count precision was compared with 
the proxy method using different methods. All the other methods 
used in this study (Manual, Click Tool, Photoshop automatic count 
tool, ImageJ/Fiji and DenoiSeg + ImageJ/Fiji) were compared to the 
Layer method separately using Passing Bablok Regression (Bablok 
and Passing, 1985; see also below for more details).

Passing Bablok Regression is a linear regression procedure with 
no special assumptions regarding sample distribution or measure-
ment errors. The result does not depend on the assignment of the 
methods or instruments. The regression equation (y  =  a  +  bx) re-
vealed constant (the regression line's intercept (a)) and proportional 
(the regression line's slope (b)) differences with confidence intervals 
of 95% (95% CI). The confidence intervals explain whether their 
value differs from zero (0) for the intercept and one (1) for the slope 
only by chance. Thus, if 95% CI for the intercept includes the value 
zero it can be concluded that there is no significant difference be-
tween the obtained intercept value and zero, and that there is no 
constant difference between the two methods. Correspondingly, if 
95% CI for the slope includes the value one, it can be concluded that 
there is no significant difference between the obtained slope value 
and one, and that there is no proportional difference between the 
two methods. In such a case, we can assume that x = y and that there 
is no significant difference between the methods, so both can be 
used interchangeably (Bablok and Passing, 1985, Bilić-Zulle, 2011). 
The minimum sample size required to assess the effectiveness of the 

method is 40 (Bilić-Zulle, 2011), so in my comparison, I used a sample 
size of 43 randomly selected images. The statistical analyses were 
carried out using the software program R (R Core Team, 2021).

3  | RESULTS

3.1 | Species identification

The greater the distance, the harder it is to identify a species (Table 2, 
Figure 3), so the distance coefficient is significant (p = .0001, Table 2). A 
species could be identified correctly up to a height of about 25 m; above 
this height, it was usually possible to identify only the subfamily (Larinae), 
and Black-headed Gulls could not be distinguished from Herring Gulls.

One hundred percent of the birds in an image with more than 
10,000 pixels could be identified to species level. This figure dropped 
to 81% if the resolution of the images was from 1000 to 3500 pixels, 
to 40% at resolutions of 300–1000 pixels, to 5% for 100–300 pixels, 
and 0% if there were fewer than 100 pixels.

3.2 | Reaction to the drone

The ratio of drone response to no response was almost half and half 
(52.8% – reaction, 47.2% – no reaction, chi-square test: χ2 = 1.052; 
p = .30, n = 343).

However, the drone-induced response was usually insignifi-
cant (birds moved slowly away or flew away for a short distance): 
most drone missions (84.8%, n  =  52) yielded a combination of no 
response and insignificant reactions. Significant reactions, that is, 
birds being flushed from the sample plot or attacking the drone, to-
gether accounted for 15.2% (chi-square test: χ2 = 10.828; p < .001). 
This indicates that negligible (not significant for birds) reactions or 
no reaction constitutes the statistically significant majority (Table 3). 
The feasibility of counting birds using a drone was confirmed in 331 
cases (n = 343, Table 3).

The average distance from the drone to the birds when an unac-
ceptable reaction occurred was 35.8 m (± min.–max. 15 m–50 m). In 
the case of breeding birds, an unacceptable reaction took place in three 
cases (n = 83) and involved only one species – Black Tern Chlidonias 
niger – the reaction each time being an attempted attack on the drone. 
Where non-breeding birds were concerned, unacceptable reactions 

F I G U R E  2   Results of the Layer method: this yields a precise 
count of the birds incubating in a breeding colony, as well as 
identification of the species and their activities, that is, whether 
a bird is incubating or standing on the ground. Red circles – 
incubating Black-headed Gulls, black circles – Black-headed Gulls 
standing on the ground or in the water, yellow circles – incubating 
Greylag Geese and nests with eggs, blue circles – incubating 
Common Terns, white squares – birds performing an unidentified 
activity, or possibly dead

TA B L E  2   Results of a Generalized Linear Model showing the 
effect of distance on species identification as exemplified by Black-
headed Gull (Chroicocephalus ridibundus) and Herring Gull (Larus 
argentatus)

Estimate SE z value p value

(Intercept) 6.11967 1.68486 3.632 .000281***

Distance −0.18368 0.04749 −3.868 .00011***

Note: Asterisks indicate significance codes: 0 '***', .001 '**', .01 '*', .05 
'.', .1 ' '.
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occurred in 49 cases (n = 260), all of them involving the birds flying off 
beyond the sample plot. None of the non-breeding birds attempted 
to attack the drone. The average flock size among birds displaying un-
acceptable reactions was 317 individuals and was slightly higher than 
that of birds exhibiting no or negligible reactions (291) (Table 4).

Adverse (unacceptable) reactions were recorded in 13  species 
(n = 33). Anser geese were the most sensitive to the drone's presence 
with 35.8% of unacceptable reactions. Gulls were the least sensitive to 
the drone's presence: no unacceptable reactions were observed, and the 
birds were completely indifferent to the drone in 88.8% of cases (Table 5).

3.3 | Comparison of counting methods

For all methods except one – the Photoshop automatic count – the 
95% CI of the difference from zero includes zero. Hence, there is 

no significant difference between the intercept value and the zero 
value, and there is no consistent difference between these methods. 
Likewise, if the 95% CI (of the difference from one) for the slope 
includes the value 1, there cannot be a significant difference be-
tween the slope and unity, and there is no proportional difference 
between the methods. As with the intercept, all the methods meet 
this assumption, except the Photoshop automatic count (Table 6, 
Figure 4). The above calculations prove that the results of the count-
ing methods – Manual, ImageJ/Fiji, Click Tool and DenoiSeg – do not 
differ significantly from the Layer proxy method and can therefore 
be used interchangeably. The only method that is not recommended 
is Photoshop Autocount, as the results obtained with it differ signifi-
cantly from the proxy method.

The Layer method was the most time-consuming, the average 
time needed to count 100 birds being 893  s. Birds were counted 
the fastest using the neural networks machine learning method 
(DenoiSeg)  +  ImageJ/Fiji – an average of 100 birds in 7  s. All the 
methods except DenoiSeg exhibited a significant correlation be-
tween the number of birds in the group and the time needed to 
count them: the more birds, the longer it took to count them. With 
the DenoiSeg method, the number of individuals in a group did not 
affect the time needed to count them (Table 7).

4  | DISCUSSION

4.1 | Field study

The drone proved to be a useful tool for the safe study of colo-
nial and gregarious waterbirds: their flocks could be counted in 
more than 96% of cases. It also turned out to be minimally inva-
sive: out of 343 birds/missions, no dangerous event was recorded, 
such as a collision of a bird with the drone or a permanent nest 
abandonment because of a bird being scared away. A similar con-
clusion was reached during research conducted in Australia based 
on 97  flight hours (Lyons et al., 2018) and in Wales (UK, Rush 
et al., 2018). However, studies of birds nesting on cliffs in Canada 
(Common Guillemot Uria aalge and Thick-billed Guillemot Uria 
lomvia) showed that in several cases, drones scared birds off their 
nests, which were then plundered by predatory birds (Brisson-
Curadeau et al., 2017). The strongest reactions to the presence of 

F I G U R E  3   The influence of distance on the identification 
of species in aerial photos, as exemplified by Black-headed Gull 
(Chroicocephalus ridibundus) and Herring Gull (Larus argentatus sensu 
lato)

Variable

n %
The result of the goodness of 
fit test - chi-square0 1 0 1

Drone reaction all species 0 343 0 100 –

Reaction NOT/YES 162 181 47.2 52.8 χ2 = 1.053; p = .30

NAR reaction NOT/YES 291 52 85.4 15.2 χ2 = 10.83; p < .001***

Count possible 0 343 0 100 –

NOT/YES 12 331 3.5 96.5 χ2 = 15.14; p < .001***

Note: NAR, non-acceptable response.
Asterisks indicate significance codes: 0 '***', .001 '**', .01 '*', .05 '.', .1 ' '.

TA B L E  3   Results of chi-square 
goodness-of-fit tests regarding the 
reaction of birds to the appearance of a 
drone
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the drone were displayed by Anser geese in the non-breeding pe-
riod, chiefly large flocks foraging on farmland. Similar results were 
obtained in Scotland, where, in addition, a dependence on flock 
size was demonstrated: the larger the flock, the greater the chance 
of its responding to a drone (Jarrett et al., 2020). My results indi-
cate that the group of birds reacting adversely to the drone was 

slightly larger than that exhibiting a moderate reaction or none at 
all. Birds in the non-breeding period reacted more strongly to the 
drone's appearance – 18.8% of adverse reactions. Breeding birds, 
on the other hand, appeared to be indifferent to the drone, unde-
sirable behavior being manifested in only 3 (3.6%) cases out of 83. 
Chabot et al. (2015) drew similar conclusions from their study in 

TA B L E  4   Mean distance of the drone from birds

No. Species
Mean 
distance

Mean dist. of 
reaction #0

Mean dist. of 
reaction #1

Mean dist. of 
reaction #2

Mean dist. of 
reaction #3

Mean dist. of 
reaction #4

Mean dist. of 
reaction #5

1 Cygnus olor 13 13 NA NA NA NA NA

2 Cygnus cygnus 18 12 8 NA 28 43 NA

3 Anser albifrons 44 35 NA NA NA 49 NA

4 Anser fabalis/serrirostrisa 32 23 30 NA NA 41 NA

5 Anser anser 26 15 13 NA 29 44 NA

6 Anas platyrhynchos 16 11 13 NA 30 43 NA

7 Anas acuta 15 NA 15 NA NA NA NA

8 Anas crecca 15 NA NA NA 15 NA NA

9 Mareca penelope 15 NA 15 NA NA NA NA

10 Mareca strepera 10 11 10 NA NA NA NA

11 Aythya ferina 31 35 26 NA NA NA NA

12 Aythya marila 23 32 19 24 NA 20 NA

13 Aythya fuligula 25 30 20 25 NA 29 NA

14 Melanitta nigra 31 35 25 NA NA NA NA

15 Clangula hyemalis 30 35 25 NA NA NA NA

16 Bucephala clangula 24 33 24 23 20 21 NA

17 Mergus merganser 20 25 18 18 NA NA NA

18 Mergus serrator 35 NA 35 NA NA NA NA

19 Podiceps cristatus 14 14 NA NA NA NA NA

20 Phalacrocorax carbo 14 11 20 NA 13 NA NA

21 Ardea cinerea 29 32 NA NA 26 NA NA

22 Ardea alba 25 NA NA NA 25 NA NA

23 Fulica atra 14 10 30 NA NA NA NA

24 Grus grus 25 10 20 NA 25 50 NA

25 Chroicocephalus 
ridibundus

15 12 NA NA 40 NA NA

26 Larus canus 13 13 NA NA NA NA NA

27 Ichthyaetus 
melanocephalus

15 15 NA NA NA NA NA

28 Larus argentatus sensu 
latob

9 9 10 NA 10 NA NA

29 Larus marinus 15 13 20 NA NA NA NA

30 Sternula albifrons 15 15 NA NA NA NA NA

31 Sterna hirundo 13 13 15 NA 10 NA NA

32 Chlidonias niger 24 15 NA NA 25 NA 37

33 Chlidonias hybrida 9 9 NA NA NA NA NA

Note: The mean distances of the initial reaction to the drone approach and type of reaction. Type of reaction – a bird: #1 – moved slowly away; #2 – 
dived; #3 – was flushed over a short distance but remained in the sample plot, or quickly returned; #4 – was scared away, exhibited a panic reaction, 
left the sample plot, and did not return; #5 – attacked the drone; #0 – displayed no reaction; NA – no reaction of any type was recorded.
aBean Goose complex (two species Tundra and Taiga Bean Goose Anser fabalis/serrirostris).
bThe group of closely related large gulls in the study area is Herring Gull Larus argentatus and Caspian Gull Larus cachinnans.
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a Common Tern colony. In our case, however, these undesirable 
behaviors (observed in Black Tern) were manifested in attempts to 
attack the drone. This is potentially more dangerous than when the 
birds are scared away over a long distance, as a bird–drone collision 
may ensue; drone attack behavior has been reported in Australia 
(Lyons et al., 2018). One brief attempt at attacking a drone was 
also recorded during the above-mentioned study in Wales (Rush 
et al., 2018).

Despite the promising results of this study, the effectiveness 
and minimal invasiveness of the drone, the use of a drone for per-
forming bird counts should be approached with great caution. 
Species-specific responses should be considered. This is because, 
as my research (Table 4) shows, but also a study conducted in 
Canada (Brisson-Curadeau et al., 2017), some species may react 
more strongly than others, which may lead to dangerous situations, 
such as collisions with a drone or a predator plundering a nest. The 
persons conducting the research must have a good knowledge of 
the study area, so that in the event of an emergency, the drone can 

be landed quickly. They must also be experienced in bird biology 
and behavior in order to be able to predict and prevent dangerous 
situations by withdrawing the drone at the right moment (Rush 
et al., 2018).

At this point, it is important to separate the impacts of a drone 
on breeding and non-breeding birds. In the first case, great care 
should be taken not to disturb the birds at all, as there is a risk of 
the nest being abandoned or of possible losses in the breeding col-
ony caused by many birds being scared off and the ensuing confu-
sion (Brisson-Curadeau et al., 2017; Chabot et al., 2015). However, 
it should be emphasized that breeding birds quickly get used to 
the drone (Chabot et al., 2015; Rush et al., 2018). Hence, assuming 
there are no predators near the colony that can quickly rob a nest 
(Brisson-Curadeau et al., 2017), a brief absence from it in response 
to a drone does not endanger the birds (Rush et al., 2018). In the 
case of non-breeding birds, one should aim for a situation where 
the birds completely ignore the drone, because a drone being flown 
over large aggregations of feeding or roosting waterbirds could elicit 

TA B L E  5   The behavior of birds in response to the drone, broken down into groups of similar species

Group of species No of obs. %: code #0 %: code #1 %: code #2 %: code #3 %: code #4 %: code #5

Anser 65 41.5 9.2 0 13.8 35.8 0

Anas groupa 24 41.6 37.5 0 12.5 8.3 0

Diving birdsb 119 28.6 37.0 14.3 3.4 16.8 0

Gulls 36 88.8 5.6 0 5.6 0 0

Terns 28 75.0 3.8 0 10.7 0 10.7

Note: Reaction codes – a bird: #0 – displayed no reaction; #1 – moved slowly away; #2 – dived; #3 – was flushed over a short distance but remained 
in the sample plot, or quickly returned; #4 – was scared away, exhibited a panic reaction, left the sample plot, and did not return; #5 – attacked the 
drone.
Bold values are adverse (unacceptable) reactions # 4 and # 5.
aDucks from the Anatini tribe consisted of the following genera: Anas, Mareca, and Spatula.
bGroup consisting of diving ducks from the genera Aythya, Bucephala, Melanitta, Mergus and Clangula, Coot Fulica atra, Great Crested Grebe Podiceps 
cristatus, and Cormorant Phalacrocorax carbo.

Method comparison Estimate L 95%CI U 95%CI

Layer vs. Manual

Intercept −0.8876245 −3.8653823 3.355620

Slope 1.0227596 0.9968978 1.034173

Layer vs. ImageJ/Fiji

Intercept 1.289855 −4.7397276 12.120016

Slope 1.007246 0.9576697 1.055058

Layer vs. Photoshop Autocount

Intercept −738.36782 −2272.77634 −293.20543

Slope 7.198686 4.940249 10.80274

Layer vs. Click Tool

Intercept −1.756221 −5.413764 0.9931358

Slope 1.027441 1.000000 1.0416667

Layer vs. Denoiseg + ImageJ/Fiji

Intercept −0.385159 −5.0712107 3.044472

Slope 1.014134 0.9858247 1.030146

TA B L E  6   Results of Passing Bablok 
regression models, comparison of 
counting methods
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energetically costly flight responses, increased stress, and effective 
loss of available habitat (Jarrett et al., 2020). In the case of breeding 
birds, attention should also be paid to the fact that an incubating 
bird may not show signs of fear but may feel it. Currently, we need 
research to address the question of whether a minimal behavioral 

response of breeding birds, or none at all, coincides with the same 
body response at a physiological level.

The reactions of birds to an approaching drone are not easy to 
predict (Brisson-Curadeau et al., 2017). Much probably depends 
on their individual characteristics (Herrmann, 2016). In a flock, the 

F I G U R E  4   Comparison of methods 
using the Passing Bablok regression. 
The graphs show the records with the 
regression line (solid line), the confidence 
interval for the regression line (dashed 
lines), and the identity line (x = y, dotted 
line). Comparison between the proxy 
methods and other methods: (a) – 
Manual, (b) – Click Tool, (c) – Photoshop 
Autocount, (d) – ImageJ/Fiji, and (e) – 
DenoiSeg + ImageJ/Fiji

Method
Average time to count 
100 individuals

Pearson's reg. Time/
number of ind. Significance

Layer 927 (n = 43) 0.969 p < .001***

Manual 223 (n = 43) 0.933 p < .001***

Click Tool 172 (n = 43) 0.891 p < .001***

ImageJ/Fiji 64 (n = 43) 0.562 p < .001***

DenoiSeg + ImageJ/Fiji 7 (n = 43) 0.282 p = .064

Note: Asterisks indicate significance codes: 0 '***', .001 '**', .01 '*', .05 '.', .1 ' '.

TA B L E  7   Average time (in seconds) 
needed to count 100 individuals in a 
group of birds and correlation with the 
size of the group
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impulse to flee would presumably be a reaction of the most skittish 
individuals. Very skittish individuals are more likely to be present in 
larger flocks, which is probably why such flocks react more quickly to 
the appearance of a drone and from a greater distance than smaller 
ones (Jarrett et al., 2020). Hence, when flying a drone toward birds 
of the same species, their reactions may sometimes differ in simi-
lar circumstances. In non-breeding geese, for example, strong reac-
tions, such as flying off over a long distance, were recorded when 
the drone was still quite a long distance (over 40 m) away from them, 
whereas they did not react at all when the drone was only 24 m away 
(see also Table 4 for more examples). This demonstrates that the rule 
according to which the farther away the drone, the less the reaction 
it causes is not always applicable. An aspect not explored in this ar-
ticle is distinguishing between the effect on birds of the appearance 
of a drone (visual reaction) and that of the sound it makes. For exam-
ple, we can use a special type of propeller to reduce the sound emit-
ted by the drone and to test the reaction of birds or other animals.

In the ideal case, the birds completely ignore the drone. If a flock 
of birds consists of one species or when we simply want to deter-
mine the overall number of birds without separating them into spe-
cies, the drone can be flown relatively high up, at 50 or even 100 m 
above the ground (Figure 3), depending on the contrast of the birds’ 
coloration with the background (Corregidor-Castro et al., 2021). 
However, in a situation where a flock of birds consists of two or more 
species that resemble each other closely (e.g., different species of 
gulls and terns), the drone has to be brought down much nearer to 
them. In the present study, I tested the possibility of distinguish-
ing two different gull species, easily identified in the field – Black-
headed Gull and Herring Gull sensu lato. Problems with identification 
from the drone started above a height of 25 m (~1500 px; Figure 3). 
In the case of species extremely similar in appearance, like Black-
headed Gull and Mediterranean Gull, the distance of the drone from 
the bird would have to be less than 25  m (~1500  px) for positive 
identification. In identifying some species or determining other pa-
rameters, such as reading rings/tags, photos from above may not be 
sufficient and photography from the side should be considered. This 
poses some risk, especially among breeding birds that are incubating 
eggs (Brisson-Curadeau et al., 2017; Corregidor-Castro et al., 2021). 
However, it never happened during this study that a drone flying 
over a gull breeding colony toward one particular individual caused 
other individuals to fly off in a panic, as happened in the study by 
Chabot et al. (2015). The birds remained on their nests; even the one 
that was the target of the drone did not usually leave the nest. This 
occurred only exceptionally (see Table S1), and then just one bird 
would leave the nest, returning immediately as soon as the drone 
was withdrawn. Comparison of the method of counting birds from 
a drone (even in exceptional cases when the drone is flown as close 
as 10 m) with the traditional method of counting nests in a colony, 
that is, human entry and counting nests (Bibby et al., 2000), shows 
that the drone method is much less invasive, and the results are 
far more precise (Brisson-Curadeau et al., 2017; Corregidor-Castro 
et al., 2021; Hodgson et al., 2018). At this point, it is also necessary 
to mention the dependence of distance on the quality of the photos 

taken with the drone's camera. This research shows the capabili-
ties of a camera with a resolution of 5472 × 3648 pixels. Of course, 
with a better resolution or using a camera with optical zoom, the 
same effects can be obtained at a greater distance from the birds. 
When assessing the possibility of species identification and other 
parameters, such as behavior, egg count, or brood productivity, it is 
preferable to use the pixel count in the pictures rather than the dis-
tance from the object, as shown in this paper (see Results – species 
identification).

This research has shown that counting with a drone is not en-
tirely non-invasive, and that extreme caution should be exercised 
at all times. A single visit of a drone to a colony will probably not 
adversely impact its breeding success (Chabot et al., 2015). By con-
trast, a drone flying over a breeding colony or a flock of non-breeding 
birds, often at low altitude, can have a negative effect on individual 
breeding success, elicit energetically costly flight responses, cause 
increased stress and the effective loss of available habitat (Jarrett 
et al., 2020; Sardà-Palomera et al., 2017). Therefore, the frequent 
flying of large numbers of drones over flocks of birds for recreational 
purposes should be proscribed. Drones are becoming more and more 
affordable (Kyrkou et al., 2019), and the temptation for people to 
“play” with birds will have a decidedly negative impact on the latter.

The present study was conducted by a person with 30 years of 
experience in field ornithology, so his ability to predict bird behav-
ior will have helped to avoid dangerous situations. At the present 
stage, of course, one can speculate that it is highly probable that 
people with less experience will pose a greater risk of dangerous sit-
uations for animals and humans. Hence, the use of drones in wildlife 
research should be legally regulated: a license should be issued for 
such work, and the persons involved should have passed an exam-
ination in animal biology and behavior.

4.2 | Automatic counting

Bird counts using medic software were described by Pérez-
García (2012), who used the UHTSCSA Image Tool 3.0  software 
to perform a census of starlings. This software does not work 
everywhere, however; for example, it cannot be installed in the 
Windows 10 operating system. Other free software dedicated 
to birds was described by Descamps et al. (2011), who used it to 
count flamingos in breeding colonies. But this latter software has 
turned out to be quite difficult to use: one serious difficulty is that 
the basic language is French and that no other language versions 
are available. In contrast, while DotCount v1.2 is easy to use, a 
disadvantage is the closed source, so it cannot be used to create 
plugins or updates to improve its functionality; moreover, the lat-
est version of this software stems from as long ago as 2012. In the 
future, the use of neural networks and machine learning in wildlife 
studies will undoubtedly become more important (e.g. Tabak et al., 
2019; Villa et al., 2017). Promising results have been obtained 
with the use of CountEm software: typical relative standard er-
rors after counting ~200 properly sampled animals in about 5 min 
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are in the 510% range (González-Villa & Cruz, 2019). Clearly, there 
are many different possibilities and solutions for automatic bird 
counting, but at present, ImageJ/Fiji (Grishagin, 2015) seems to be 
one of the best choices. As it is an open-source platform, several 
programmers and biologists can work together to create new pl-
ugins. Some of them already use neural network-based algorithms 
(Buchholz et al., 2020).

The automatic counting methods using the ImageJ/Fiji plat-
form proved to be the best in this study, as they were the fast-
est and maintained the precision of the results (Tables 6 and 7, 
Figure 4). For small and medium bird concentrations, I recommend 
using the Analyse Particles tool in the ImageJ/Fiji software pro-
gram. This does require pre-treatment of each image each time, 
but with some practice, this can be done quite efficiently and the 
results will be precise.

In my study, I used photos from a Black-headed Gull breeding 
colony, in which other species, such as Common Tern and other gull 
species (Mediterranean, Herring and Common), also nested, though 
not as frequently. All these species were counted together for this 
study. However, there is a possibility (not tested in this study) that 
automatic counting can cope with different species if they are es-
sentially of different shapes and/or sizes. In the automatic counting 
tools (ImageJ/Fiji), this can be done by defining the pixel range and 
circularity of the objects to be counted (Grishagin, 2015). Thus, one 
can simply count all the similar species together or set the count to 
size and circularity corresponding to a particular species or group of 
species.

In the case of solutions using neural network algorithms, a one-
off count takes a very short time (100 birds in 7 s on average, Table 4), 
but to achieve this state, a lot of prior preparation is necessary, and 
the images require some preliminary assumptions. An undoubted ad-
vantage of the DenoiSeg approach is that advanced artificial intelli-
gence technologies are easily applied (Buchholz et al., 2020). In other 
cases, the user has to possess coding skills in environments, such as 
Phyton or Java (e.g. Frank et al., 2010; Pedregosa et al., 2011). The 
computer on which the machine learning will take place has to have 
the appropriate hardware. Then, the images must be scaled in such 
a way that the objects are roughly the same size, and the learning 
time of the neural network can take up to several dozen hours. This 
method is therefore recommended in situations where a lot of data 
(images) have been acquired from long-term monitoring programs, in 
large breeding colonies and in non-breeding concentrations. When 
planning multi-year monitoring, the learned models can then be used 
for producing images in subsequent years of monitoring.

5  | CONCLUSIONS

The drone turned out to be a convenient tool that can be successfully 
used to count waterbirds during both the breeding and non-breeding 
seasons. The methods presented in the article can be applied not 
only to waterbirds, but also to other groups of birds, not to mention 
other groups of vertebrates, such as antelopes, bison, and seals. To 

identify similar species, the drone needs to approach within a short 
distance from the bird; for instance, to distinguish Black-headed 
Gulls from Herring Gulls this will be about 25 m, assuming a camera 
resolution of 5472 × 3648 pixels. For more closely similar species, 
the distance may have to be shorter, though longer distances are 
possible with better camera resolutions. Birds do not normally react 
to the drone, but this does not mean that it is always safe to fly a 
drone over them. Occasionally, birds have been observed to attack a 
drone, a situation that can lead to dangerous collisions. On the other 
hand, if a drone does force an incubating bird to leave the nest, this 
may be plundered in the meantime by predators. Drone surveys of 
birds should therefore be planned in such a way that the device is 
ignored by the birds. The automatic counting of birds using ImageJ/
Fiji software, and more extensive trials and planned long-term moni-
toring using DenoiSeg +ImageJ/Fiji turned out to be easy to use, 
precise, and fast.
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