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Abstract

The ability of animals to sense and differentiate among thousands of odorants relies on a
large set of olfactory receptors (OR) and a multitude of accessory proteins within the olfacto-
ry epithelium (OE). ORs and related signaling mechanisms have been the subject of inten-
sive studies over the past years, but our knowledge regarding olfactory processing remains
limited. The recent development of next generation sequencing (NGS) techniques encour-
aged us to assess the transcriptome of the murine OE. We analyzed RNA from OEs of fe-
male and male adult mice and from fluorescence-activated cell sorting (FACS)-sorted
olfactory receptor neurons (ORNs) obtained from transgenic OMP-GFP mice. The lllumina
RNA-Seq protocol was utilized to generate up to 86 million reads per transcriptome. In OE
samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the
perception of volatile amines were detectably expressed. Other genes known to participate
in olfactory signaling pathways were among the 200 genes with the highest expression lev-
els in the OE. To identify OE-specific genes, we compared olfactory neuron expression pro-
files with RNA-Seq transcriptome data from different murine tissues. By analyzing

different transcript classes, we detected the expression of non-olfactory GPCRs in ORNs
and established an expression ranking for GPCRs detected in the OE. We also identified
other previously undescribed membrane proteins as potential new players in olfaction.

The quantitative and comprehensive transcriptome data provide a virtually complete cata-
logue of genes expressed in the OE and present a useful tool to uncover candidate

genes involved in, for example, olfactory signaling, OR trafficking and recycling, and
proliferation.
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Introduction

The sense of smell has been perfected to detect a tremendous range of different volatile chemi-
cal substances. Olfactory receptors (OR) constitute the largest superfamily of mammalian

G protein-coupled receptors (GPCRs) and account for the vast discriminatory power of the ol-
factory system. In humans, this discriminatory power is achieved by the relatively small num-
ber of approximately 400 functional ORs, whereas mice possess a considerably larger number
of OR genes with approximately 900 functional ORs [1-6]. Despite their lower number of func-
tional genes, humans can discriminate more than 10,000 different odors. Presumably, this dis-
crimination is achieved by a combinatorial code, in which single receptor types are able to
respond to several different odorant molecules, and single odorant compounds are recognized
by a number of different receptor types [7]. According to the classical olfactory signal transduc-
tion scheme, receptor-ligand interactions in the ciliary membranes of the olfactory receptor
neurons (ORNs) lead to activation of olfactory-specific G-proteins (Goyr) [8], stimulation of
adenylyl cyclase type III (ACIII), production of cyclic adenosin monophosphate (cAMP) [9],
and activation of cyclic nucleotide-gated (CNG) channels that are composed of CNGA2,
CNGA4 and CNGBI1b [10-12]. The initial depolarization produced by the CNG channels is
enhanced by subsequent activation of the calcium activated chloride channel (CaCC) ANO2
[13-18]. Focused research on this model of olfactory perception has provided more detail, and
the participation of many more components has been reported. The action of the Na*/K*/CI -
cotransporter Nkccl, most likely together with Slc4al [17] and other transporters, provides the
high intracellular chloride concentration necessary for signal amplification [19, 20]. The traf-
ficking of ORs is accomplished by receptor transporting proteins (RTP) [21]. After OR activa-
tion, the signal termination and internalization processes are achieved through G protein-
coupled receptor kinase (GRK) [22-24]and possibly B-arrestins [25-27]. ORs and accessory
proteins bind to the scaffolding multi PDZ-domain proteins (MUPP) to form an assembled
transduction complex [28]. The efficacy of the signal transduction cascade is enhanced by the
nucleotide exchange factor Ric8b [29-31]. In contrast, signal adaptation is achieved through
reduced ACIII activity mediated by calmodulin (CaM) kinases [32], degradation of cAMP by
specific phosphodiesterases (PDEs) [33-37], and desensitization of CNG-channels by binding
of CaM [38-41].

Stephan et al. (2012) showed that the principal Na*/Ca®* exchanger Nckx4 is involved in
rapid response termination and proper adaptation [42]. However, adaptation processes are
complex, and there are many more proteins involved in the regulation of this mechanism.

Further, an inhibitory signal transduction cascade that involves phosphoinositide 3-kinase
(PI3K) has been proposed [43-47]. Although the basic mechanisms involved in signal process-
ing are known, many issues require further exploration before understanding of the complex
olfactory perception process on molecular level will be achieved. Hence, it is desirable to identi-
fy the plenary repertoire of ORN-specific proteins to fully uncover the factors involved in olfac-
tory signaling pathways.

In recent publications [48, 49], the transcriptome of the murine OE was characterized by
microarray analysis. According to this DNA-array study, more than 10,000 genes are
expressed in ORNs. ORN-specific genes were identified by the differential analysis of OMP-
positive versus OMP-negative neurons using a transgenic OMP-GFP mouse [50], and the spe-
cific expression of 300 genes in ORN’s was verified by in situ hybridization (ISH). Most recent-
ly, next generation sequencing (NGS)-based OE transcriptome data focused on sex-specific
differences in OR genes were generated for BALB/c mice [51], and the study by Keydar et al.
(2013) [52] generated a more general catalogue of genes based on NGS from data of C57BL/6]
mice.
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Additionally, transcriptome analyses are complemented by proteomic studies of OE plasma
and ciliary membranes [53-56, 16, 15] that have led to the detection of approximately 2,346
proteins. Nevertheless, the detection of OR gene expression, which is fundamental for an olfac-
tory tissue, was incomplete because membrane proteins are difficult to detect in such proteome
studies, and in some of these studies, ORs failed to be detected at all.

Here, we present the first NGS based transcriptome of fluorescence-activated cell sorting-
(FACS)-sorted ORNs in combination with a comprehensive transcriptome study of the murine
OE. Our data provide a comprehensive list of transcripts for membrane proteins that included
established and previously described proteins and new, previously unrecognized proteins. We
present a detailed expression ranking for GPCRs and additionally analyze the expression pat-
terns of several newly identified membrane proteins in the OE.

Compared with microarray [48, 49] and proteome data [53-56, 16, 15] from the OE, deep se-
quencing of murine the OE transcriptome detects more expressed genes and nearly all known
ORs and allows better quantification of expression levels, as verified by quantitative PCR.

Our data provide an important new and sensitive tool to guide novel approaches and ad-
vance research on olfactory signaling mechanisms in the OE and, especially, ORNS.

Materials and Methods
Animals

CD1 and C57BL/6] mice were obtained from Charles River (Sulzfeld, Germany) and transgenic
OMP-GFP mice [50] were kindly provided by Dr. Peter Mombaerts, Max Planck Institute of
Biophysics, Frankfurt.

Mice were offered normal laboratory chow and water ad libitum in standard cages. All ani-
mal experiments were carried out in accordance with the European Union Community Coun-
cil guidelines and approved by the competent state office of the Federal Land of Northrhine
Westphalia (file number 87-51.04.2010.A180).

Preparation of mice OE and FACS of ORNs

OE of 4 weeks old male and female CD1 or C57BL/6] mice was prepared and subsequently RNA
was isolated; each RNA sample (male and female CD1, female C57BL/6]) was prepared from an
OE pool from eight different mice for CD1 mice; in case of C57BL/6] three mice were used for
OE preparation. ORNs were obtained from homo- or heterozygous OMP-GFP mice [50]. OE
was prepared and collected in 300 pl cold Ringer’s solution. Epithelia were minced and ORNs
dissociated by adding papain followed by an incubation of 15 minutes at 37°C. Reaction was
stopped by washing with Ringer’s solution; cell suspension was centrifuged 10 minutes at 121 g
and cell pellet was resuspended in phosphate buffered saline. Enrichment of ORNSs from cell sus-
pension was done by FACS. Altogether, six (homozygous) or eight (heterozygous) adult mice
were used to obtain about 100,000 sorted, fluorescent ORN.

RNA isolation

Total RNA was isolated either out of the pooled OE or of the sorted ORN sample with the
RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol includ-
ing the optional on-column DNasel digestion.

NGS library preparation and lllumina sequencing

Libraries for NGS sequencing were prepared from total RNA and subjected to DSN normaliza-
tion by standard Illumina protocols. Afterwards, Illumina sequencing was performed on a
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Genome Analyzer IIx using single end 36-bp (CD1 OE male and female) respectively 75-bp
(ORNs homozygous) reads. RNA for heterozygous ORNs was sequenced on a HiSeq-2000 by
standard Illumina protocols (101-bp, paired end). In case of C57BL/6] mice and additional
probes of CD1 OE, mRNA was sequenced on HiSeq-2000 (101-bp, paired end).

Alignment of RNA-Seq reads using TopHat

We analyzed the raw sequence data in fastq format as previously described [57]. RNA-Seq
reads were aligned to version mm9 of mouse reference genome and transcriptome using
TopHat (v2.0.7) [58] which utilizes the ultra-fast short-read mapping program Bowtie to ar-
range the alignment [59]. TopHat output files in BAM format were sorted and indexed with
SAMtools [60]. In order to reduce the alignment of repetitive reads a multiread-correction was
used allowing up to 5 hits per read.

Gene expression calculation using Cufflinks

Aligned RNA-Seq reads for each sample were assembled into transcripts and their abundance
was estimated by the program Cufflinks (v1.3.3) [61] using the RefSeq mm9 reference tran-
scriptome in Gene Transfer Format (GTF) obtained from the UCSC Genome Bioinformatics
database (University of California Santa Cruz). In order to estimate transcript expression, the
GTF-file was supplied to Cufflinks. The parameter—compatible-hits-norm was set to ensure
that FPKM normalization was performed based on reference transcriptome only.

Cufflinks was provided with a multifasta file (mm9.fa) to improve accuracy of the relatively
transcript abundance estimation [62]. We further used a masked command -M and the mask
GTF rmsk.gtf to mask all possible reads from RNA repeats (including tRNA, snRNA, scRNA,
srpRNA) short and long interspersed nuclear elements (SINE, LINE) and other classes of
repeats.

Cufflinks indicates and quantifies the relative abundances of transcripts in the unit
FPKM [61]. For comparison to olfactory tissue, we reanalyzed already published raw RNA-Seq
data from brain, liver, muscle and testes [63, 64] in the same manner as our own data. The data
sets were visualized and investigated by the Integrative Genomic Viewer (www.broadinstitue.
org/igv) for proving sequence alignements and correct mapping of reads for the top expressed
genes. While the raw data analysis was performed on a Linux based computer further calcula-
tions were carried out with Microsoft Excel 2010. In this study, our intention was to monitor
the expression of protein coding genes only. Therefore, we removed all entries for non-polya-
denylated transcripts from our analyzed data including microRNA (miRNA) and small nucleo-
lar RNA (snoRNAs). This also improves the comparability to other data sets such as mRNA-
Seq versus total-RNA-Seq. DSN-normalization and different types of RNA preparation lead to
differences especially in such small RNA species.

For a differential gene expression analysis, we used the program Cuffdiff, which identifies
significant changes in transcript expression between two datasets [57].

Availability of raw data sets. The raw RNA-Seq data sets (FASTQ file format) for FACS-
sorted ORNs and OE were deposited in Gene Expression Omnibus (GEO) repository (www.
ncbi.nlm.nih.gov/geo/) under the following accession number: GSE53793.

Quantitative PCR

Mice were decapitated and OE was collected from septum und turbinates. Total RNA from sin-
gle mouse samples was isolated with RNeasy Mini Kit (Qiagen, Hilden, Germany) including
optional DNasel digestion and cDNA was prepared using iScript cDNA Synthesis Kit (Bio-
Rad, Miinchen, Germany). PCR reactions (1 min, 95°C; 1 min, 63°C; 1 min, 72°C; 35 cycles)
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were performed on an iQ5 thermal cycler using iQ SYBR Green Supermix (both Bio-Rad,
Miinchen, Germany). At least three independent runs with three technical replicates each were
performed and expression levels were calculated using the ddCt method.

Since OR genes contain no introns in their coding sequence, we used genomic DNA as effi-
ciency control and normalized OR cDNA data to OR genomic DNA data.

Primers for housekeeping gene a.1b-tubulin were used as described [65], others were de-
signed with Primer-BLAST (sequence 5’ to 3’):

alb-tubulin long rv (AGCAATGGCTGTGGTGTTGCTCA)
ACIII (ACGACCACAAGCGCTTTCAGG; ACTTGGAAGGCACCAGGGGCA)

mOR-EG short (TGACAGGTTTGTGGCCATCCGG;
CAGTATCAAGGAGCATACCACCCCC)

mOR-EG long (TCTCCTCTCTCCTTTCACTTTCACGC; AGGCTTTGCGGCGTCCACTT)
Olfr2 (GGAGCGAAGGAACCACACTGGG; TCAGCACCAACACGTAGGCCA)

Olfr31 (TGCTCGTCTCACATGACTGTGGT; CCCAGTGCCCTCCTCAGACCT)

Olfr169 (TCCTTTTCCACCTGTTCCTTCCACA; TGCCAAAAATTTATCCTGCCCTGGA)
Olfr259 (TCAGAACACAAGTCTACGAGGCTGT; TGCCACATAGCGATCATAGGCCA)
Olfr309 (CTGACTTTCTGTGGGCCGAA; CTCCCACAGCCAGGGTGATA)

Olfr314 (ACCCCCATGCTGAACCCCCT; GGTCCAAGCCAGCCAAGGCA)

Olfr355 (TCGGCCTGAGGACCAAAAACCA; AGGGTCAGAACGGATGGCCAGA)
Olfr411 (CATGCGGCTGGGGTCAGTGG; ATGCCAAGTCTCGCTTTCCTGTGA)
Olfr525 (AGCTGCTGCTGCTCACTGCC; TGCACTGATGACCCACACACTGC)

Olfr533 (GTGACCCCATCTCTGAACCC; GCTTTTAGAGTTCATCTCCAAGCTC)
Olfr545 (GGCTCGCACTGCCTCCCAA; TCAGGGGCCTGCACTCAGGA)

Olfr632 (GGGCCCCGTGTGGCATTGAT; GCGGGTGTCAGAACAGGCCA)

Olfr705 (CCTGGCACTGACACTGGGTGG; TGTGGCCACCATAAGCCAGCA)

Olfr1126 (TGTGGTGAGCTGTGCCACACAA; AGGCTGCTGCCAGCTGAGTG)
Olfr1301 (TGCAACTGCCTCTCTGTGGTCAT; GCTCTGGCGAACAGTGAGAAGGA)
Olfr1347 (TTGACCAACATGACCAGAGTCCAAC; TCTCCAGGAGGGTCAGCAGGT)
Olfr1348 (ATGGACGGGGCCCTACCACA; TGTAGTGGGCGGCAGATGGC)

Olfr1349 (CACCAGCCTGGACTTCGGCC; GGCTGCAGCAGGGTCACCAQG)

Olfr1395 (TCCTGGTGGCCCTCTCTGGC; GGAGCCACGGCCCAGGAGAA)

Olfr1507 (GGGCCATGTGGACAGCAGGG; AGGCCAGTTCGATCACCTGAGGT)
Olfr1508 (TGGCTTGCACTGACACCCACA; ACCACGGTGAGATGGGCTGC)

Adiporl (CGGCAGACAAGAGCAGGAGTGT; AGAACCAGCCCATCTGGCCCA)
Gpr108 (TGAGTCCCGTGAGGAGGGTGC; TGCAGATGCCGAATGGACCAGA)
Gprl177 (AAAGGGGGTCGCAGAAATGGCTG; GGGTGCTGGAGCGATCAAGCCT)
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Stomatin (CAGCAACCCGTCTTTTGGCAC; TCCCCCAGTCATCCGTGGCAT)
Stoml2 (TGGACTGCCCCGAAACACCG; CCGGATTCGGTCTAACACGGGG)
Stoml3 (GCCACGTTCCTGCTGGCTCAG; ATTCCCCAGAGCTCGGTGGCA)

RTP1 (GTACCTGGAACTTCATGCCTCAGGC; CACGCATGCGCACCGAACCAQG)
RTP2 (GCAGTACCTGGAGCAACATGCCT; CGCATGCGCACTGAGCCAACA)
RTP3 (CGTTTTGAAGCCAGGATGGACGC; GGCCTTCTTCTCACACCACCGCQC)
RTP4 (GCACCACCTGGCTCGAACCC; GCATCACCCAGTCTGCCACAGT)

REEP1 (ATGGTGCTCCTGCTCCCTCGG; AGGGTTCTAGGCGGTGCCCG)

REEP2 (AACAGCGGCTCCTGCTGCCT; GGCTGGGTACAGGGTGCCAA)

REEP3 (CGCTGAGGCGATCCCAGAGCA; TCTTGGGAAGGGCAAGGTGTAGACA)
REEP4 (CTGAGTGAGCGTCCCTCCGC; ACGGCCTTGTAGGAAGCATACGC)
Tmem30a (CATCGTCGCTACGTGAAATCTCGA; CGCCACATGGCGCAATTGGT)
Tmem30b (GTTCCGCTCCGACGGTCTGC; GATCGAGCGGCACCTCGACG)
Tmem30c (TTTGCAGGAAGTTCGAAGCCTCTGC; AAAGGCAGCCGTCCGCATCC)
Tmem?205 (GAGCTGCCACGGTTCTTGGTCC; CCAGGCACCAGACAAGACCAGCQC)
Tmem16b (GACGCCCAGATGCTGTGAGGA; AGGCGGGGGATAAAGTCGGAGG)

In situ hybridization

Digoxigenin-labeled antisense riboprobes, typically about 600-800 nucleotide length, were
generated from cDNA of interest by in vitro transcription performed with the DIG RNA label-
ing mix (Roche, Palo Alto, CA) according to the manufacturer’s instructions. Coronal Cross
sections of OE were obtained from wild type C57BL/6] mice of both sexes aged postnatal

21 days (P21). Mice were sacrificed using CO, followed by decapitation. Subsequently the max-
illary and anterior cranial region of the head was dissected free. The whole head was fixed in
4% paraformaldehyde in PBS at 4°C overnight, followed by a 24 hours decalcification step with
0.5 M ethylen-diamin-tetra-acetat (EDTA) (pH 8.0) and a final cryoprotecting incubation step
with an increasing 10%-30% sucrose in PBS series (10% and 20% sucrose for 1 hour; 30% su-
crose for at least 3 hours) at 4°C. Afterwards, coronal sections (12 um) of quickly frozen heads
embedded in tissue freezing medium OCT for supporting tissue during cryotomy (Leica
Microsystems, Bensheim, Germany) were cut on a cryostat (Leica, CM 3050S) and mounted
on Superfrost Plus Slides (Thermo Scientific, Menzel Glaser). After dehydration using an in-
creasing ethanol series, slices were stored at -80°C until further use.

In situ hybridizations were performed as described with minor modifications [66]. Briefly,
fixed cryosections were incubated in RIPA-bulftfer, followed by an acetylation step with acetic
anhydride in TEA buffer. Next, a prehybridization step in 50% deionized formamide, 10% dex-
tran sulfate, 5x Denhardt’s solution, 5x SSC, 10 mM DTT, 250 pg/ml yeast tRNA, 500 pg/ml
sheared and denatured herring sperm, 50 pg/ml heparin, 2.5 mM EDTA, and 0.1% (v/v)
Tween-20 was carried out for 1 h at 55°C to prevent unspecific binding of riboprobes. After
each incubation step a wash step with SSC- or PBS™/T-buffers followed.

Finally, 50 ng antisense riboprobes were hybridized at 55-65°C on cyrosections mounted on
slides overnight. The hybridized mRNA was visualized using an alkaline phosphatase-
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conjugated antibody to digoxigenin and hydrolysis of nitro-blue tetrazolium chloride/
5-bromo-4-chloro-3-indolylphosphate p-toluidine. Antisense and a control sense probe were
tested in parallel. The slides were covered with cover slips using polyvinyl-alcohol containing
embedding medium (Mowiol, Immo-Mount). Digital images were obtained with Axiocam
camera on an Axioscope2 microscope (Zeiss, Oberkochen, Germany). All images of sense and
antisense samples were recorded under same conditions (brightness, contrast and light expo-
sure time).

A signal was considered a positive when the antisense labeling was visually noticeably dark-
er than the sense labeling.

Immunohistochemistry

Immunostainings of the OE were performed on 12 um coronal cryosections of paraformalde-
hyde-fixed tissue of OMP-GFP mice [50] on Superfrost slides (Thermo Scientific, Menzel Gla-
ser). After blocking with 1% gelatin or 10% goat serum in phosphate-buffered saline / 0.1%
Triton X-100, sections were incubated with primary antibody (TRPCI: 5 pg/ml and TRPM?7:

2 pg/ml; kindly provided by D.E. Clapham) and fluorescence-labeled secondary antibody (dilu-
tions 1:500 or 1:1000) in phosphate-buffered saline / 1% gelatin / 0.1% Triton X-100. Stained
sections were mounted in ProLong Antifade Gold medium (Molecular Probes). All fluores-
cence images were collected on a confocal laser scanning microscope (LSM510 Meta, Zeiss,
Oberkochen, Germany). Image] (NIH) was used for image processing.

Literature search

In order to identify novel genes in terms of OE, an intense Pubmed (http://www.ncbi.nlm.nih.
gov/pubmed) literature search was required. Thereby, the query contained the name of gene in-
terested in combined with the terms “olfactory” or “olfaction”.

Results

To assess gene expression, the Illumina RNA-Seq protocol was used to amplify and sequence up
to 57 million fragments from OEs of male and female CD1 adult mice. Furthermore, 13 million
reads were generated for FACS-sorted ORNs obtained from homozygous and 58 million reads
from heterozygous transgenic OMP-GFP mice [50] with a C57BL/6 background (Table 1,

S1 Table). These OMP-GFP mice are determined to be valid models for assessing ORN gene ex-
pression patterns in a study using microarrays [48, 49].

Additionally, we sequenced approximately up to 86 million 101 nt length fragments from
the OEs of female C57BL/6 mice (Table 1, S1 Table).

We analyzed our sequencing results using TopHat and Cufflinks software [57], and reads
were mapped onto the mouse reference genome mm9. Expression values were calculated from
the number of reads per kilobase per million reads in each sample. The quantitative measure-
ment of gene expression employed in the RNA-Seq experiments was the FPKM (fragments per
kilobase of exon per million fragments mapped) value.

Our analysis enabled us to detect the expression of 13,955 protein-coding genes in male and
13,280 in female OEs and up to 13,103 genes in FACS-sorted ORNs (FPKM > 1) of the 21,550
genes interrogated with a Refseq-based gene model. Including genes with an extremely low ex-
pression level (FPKM < 1), we counted a total of up to 16,786 genes (S1 Table).

To quantify olfactory gene expression relative to other tissues, we reanalyzed the raw se-
quencing data of previously published murine RNA-Seq NGS transcriptome studies that fo-
cused on the brain, muscle, liver and testes [63, 64] in the same manner with which we
analyzed our own sequencing data (S3 Table, S4 Table). To ensure the comparability of
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Table 1. Summary of RNA-Seq data.

Tissue/
Cells

Sorted
ORNs

Sorted
ORNSs

OE1

OE2

OE3

OE4

OE1

OE2
OES
OE4
OE5
OE1
OE2
OE3
OE4

Mouse

strain

C57BL6 transgene
OMP-GFP

C57BL6 transgene
OMP-GFP

CD1
CD1
CD1
CD1
CD1

CD1
CD1
CD1
CD1
C57BL6
C57BL6
C57BL6
C57BL6

doi:10.1371/journal.pone.0113170.t001

mRNA-Seq Total number of

genotype Gender Sequenced Mapped [%]

reads reads

homozygous  mixed lllumina/Genome Analyser Il, 72 bp reads, single- 13,574,176 8,857,058 65.25
end

heterozygous mixed lllumina/HiSeq2000, 101 bp reads, paired end 58,234,129 34,519,988 59.28

WT male RNA-Seq (DNS-Normalization) lllumina/Genome 37,284,951 28,881,184 77.46
Analyser Il, 36 bp reads, single-end

WT male lllumina/Genome Analyser Il, 101 bp reads, 40,053,764 28,363,505 70.81
paired-end

WT male lllumina/Genome Analyser I, 101 bp reads, 36,141,244 26,397,003 73.04
paired-end

WT male lllumina/Genome Analyser Il, 101 bp reads, 11,394,752 8,384,689 73.58
paired-end

WT female  RNA-Seq (DNS-Normalization)lllumina/Genome 52,716,231 38,700,603 73.41
Analyser Il, 36 bp reads, single-end

WT female lllumina/HiSeq 2000, 101 bp reads, paired-end 54,589,506 36,103,429 66.14

WT female lllumina/HiSeq 2000, 101 bp reads, paired-end 57,808,346 39,268,107 67.93

WT female lllumina/HiSeq 2000, 101 bp reads, paired-end 33,354,414 24,884,683 74.61

WT female lllumina/HiSeq 2000, 101 bp reads, paired-end 19,807,752 14,513,434 73.27

WT female lllumina/HiSeq 2000, 101 bp reads, paired-end 86,404,176 63,862,406 73.91

WT female lllumina/HiSeq 2000, 101 bp reads, paired-end 30,763,538 22,694,013 73.77

WT female lllumina/HiSeq 2000, 101 bp reads, paired-end 25,520,854 17,789,702 69,7

WT female lllumina/HiSeq 2000, 101 bp reads, paired-end 25,520,328 18,831,564 73.79

datasets, we studied expression patterns of different housekeeping genes. A general, rough
scale regards FPKM values ~1 to indicate weakly expressed genes, ~10 indicates medium ex-
pression, and ~100 indicates highly expressed genes based on comparisons to housekeeping
genes (S1 Fig).

Olfactory Receptor Genes

To analyze the transcriptome in more detail, we first focused on chemoreceptor gene families
starting with OR genes. The high sensitivity of RNA-Seq was demonstrated by the detection of
nearly all ORs. Of 1,125 annotated OR genes, we detected 1,075 in female and 1,001 in male
CD1 mice and 1,044 in female C57BL/6] mice with FPKMs > 0.1 (Fig. 1, S5 Table, S2 Fig.).

Regarding FACS-sorted ORNs, we detected the expression of 582 (homozygous) and 905
(heterozygous) OR genes with FPKM > 0.5. For a typical 1 kb OR coding sequence at a FPKM
of 0.1, the expression was confirmed by 3 reads in the OE, and due to the lower sequencing
depths for FACS-sorted ORNs at a FPKM of 0.5 (S3 Fig.). As Shiao et al. (2012), we set a simi-
lar threshold for the detection of ORs [51].

If very weakly expressed OR genes, whose expression was only supported by 1-2 fragments,
were included, expression of an additional ~2% of ORs was detected in both male and female
OE:s. A total of 98 and 18 ORs had no detectable expression in male and female OEs,
respectively.

In comparison, RNA-Seq results from mouse brains, livers and muscles revealed greatly re-
duced numbers of detected OR genes (3—10 ORs). In contrast, pronounced expression of 155
ORs was detected in the testes (54 Fig.).
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Figure 1. OR detection using RNA-Seq: Bar chart showing the percentage of detected OR genes in female and male OE tissue and FACS-sorted
ORNSs. Percentages were calculated based on the 1,125 OR genes annotated in the Refseq based gene model.

doi:10.1371/journal.pone.0113170.9001

The strength of OR gene expression is strongly dependent on the receptor gene and
reached up to 97 FPKM for Olfr1507 in the ORNs. However, most OR genes (up to 73%)
were expressed at low levels (FPKMs < 3) due to their mosaic-like expression patterns
(S5 Fig.) in the OE. The median expression was 2 in the OE and 2.7 FPKM in the FACS-sorted
ORNS.

The expression levels of individual ORs was strongly conserved between the male and fe-
male OEs (Pearson correlation coefficient, r = 0.83), and the three most highly expressed recep-
tors (Olfr533, Olfr1507 and Olfr309) were identical in the males and females. Furthermore, the
three most highly expressed ORs in the sorted ORNs were found in the top ten most highly ex-
pressed genes in the male and female OEs (Fig. 2).

These finding suggest that the expression levels of specific receptor types are not only con-
served between sexes but also between different mouse strains, as OEs from CD1 mice and
sorted ORNSs from transgenic OMP-GFP mice with a C57BL/6] background were examined.

Furthermore, we detected the expression of 21 out of 24 annotated OR pseudo-genes in the
OE. Among these pseudo-genes, Olfr1372-ps exhibited the highest expression level (S6 Table).
Because previous studies have established that certain OR pseudo-genes are functional [67],
Olfr1372-ps is an interesting candidate for future studies.

We additionally verified the RNA-Seq results for several highly expressed OR genes with
real time RT-PCR. The expression levels were comparable to that of mOR-EG (Olfr73), a well-
characterized mouse OR [68].
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Figure 2. Correlations of expression levels plotted for each detected OR gene. A. Correlation of the OR gene expression patterns between male and
female CD1 mice. Only OR genes with detectable expression levels (FPKM>0.1) are shown. The FPKM values are logarithmically presented. The Pearson
correlation coefficient of r = 0.83 confirmed the strong correlation of OR gene expression patterns between female and male CD1 mice. The three ORs
(Olfr533, OIfr1507 and Olfr309) with the highest expression levels were also the most highly expressed in the RNA-Seq data from both sexes. B. Correlation
of OR gene expression patterns between females of strain CD1 and C57BL6. The Pearson correlation coefficient of r = 0.75 confirmed the strong correlation
between the expression patterns of OR genes between the different strains; however, these patterns exhibited greater divergence between strains than
between the sexes of the CD1 strain. The most highly expressed ORs, OIfr533 and OIfr309, had the same expression ranking, and OIfr1507 was among the
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doi:10.1371/journal.pone.0113170.g002

We detected similar expression rankings for the 20 tested ORs compared to our RNA-Seq
data and confirmed that Olfr1507, Olfr533 and Olfr309 belong to the highly expressed OR
genes (Fig. 2).

Correlation Analysis
Whole data set

We generated for each condition (OE from CD1 male, CD1 female and C57BL16) up to five bi-
ological replicates (Table 1, S1 Table). Correlation measurements for protein-coding gene ex-
pression patterns between biological replicates showed that Pearson correlation coefficient
values ranged for CD1 male from r = 0.43 t0 0.96 (riean = 0.6), CD1 female from r = 0.35 to
0.91(rpean = 0.67) and C57BL/6 female from r = 0.37 t0 0.91 (rpean = 0.61) (S6 Fig.).

Analyzing genes with the most diverging expression pattern between the biological repli-
cates, interestingly, we found predominantly transcripts for odorant-binding proteins (OBPs)
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(Obp, Mup, Len and several other gene families) [51] (S1 Table, S7 Fig.). OBPs function as sol-
uble transport proteins of the nasal mucus [69].

In addition, the expression pattern of several cytochrome P450 (Cyp) genes, which are
known to be expressed in the olfactory mucosa [70], showed a high variability in expression
level between the OE samples (S1 Table). The presence of these enzymes in the olfactory organ
is probably necessary for the metabolic transformation of odorant molecules and they play a
protective role by detoxifying inhaled chemicals [70]. It is therefore plausible that mice individ-
ually adapt and regulate their olfactory transport system to their appropriate surrounding ol-
factory environment.

In summary, the genes with the highest variability of expression between individual mice
belong to proteins with a major olfactory function. After excluding these genes from the corre-
lation analysis, the biological replicates strongly correlate up to r = 0.97. Even data between
CD1 and C57BL6 strains show now a strong correlation (Pearson correlation coefficient values
up to r = 0.95) (S6 Fig.). Therefore, these results bode for the reproducibility of our data and
represent a good basis for comparative analysis.

OR subgenome

To ensure reproducibility of the conserved pattern for OR gene expression, we analyzed the ad-
ditionally generated replicates for each condition (OE of CD1 male, CD1 and C57BL6 female)
(S8 Fig,, S9 Fig.).

By comparing the highly expressed ORs in each replicate, our analysis confirms that the
ORs Olfr533, Olfr1507 and Olfr309 indeed belong to the top expressed OR genes in all OE
samples (S10 Fig.).

Further, the expression levels for individual ORs within the biological replicates were
strongly conserved and reached Pearson correlation coefficient values up to r = 0.95) (89 Fig.).
OR expression levels were comparable between female CD1 and C57BL/6] mice; the Pearson
correlation coefficient were r = 0.65 to 0.86 between replicates (S9 Fig.)

The variance of OR gene expression pattern between replicates within one strain was lower
than between strains (S9 Fig.). This shows that the OR gene expression is widely conserved in
the OE, whereby the expression pattern of a small set of OR genes is strain specific.

Other Chemoreceptors

Next, we analyzed other classes of chemoreceptor genes. Our analysis emphasized the specific
expression of the “olfactory” trace amine-associated receptors (TAARs) in the OE [71]. All
TAARs, with the exception of TAARI, known to be specifically expressed in the brain, were ex-
clusively detected in OE and FACS-sorted ORNs (Fig. 3). We also detected several vomeronasal
organ (VNO) receptors (V1R and V2R) in the OE. Out of the 207 annotated V1R receptors, we
observed weak expression of 15 genes with FPKMs of 0.1-0.5 in the OE, and 24 genes with
FPKM values of up to 2 in sorted ORNs. Regarding V2R receptors, of the 127 annotated V2Rs
we detected 5 genes with low expression levels (0.1-0.7 FPKM) in the OE and up to 21 genes
with FPKM values from 0.5 to 8 in ORNSs (Fig. 3). Analyses of these expression patterns in
C57BL/6] mice yielded basically the same results.

In contrast, the family of formylpeptide receptors (FPR), which function as chemoreceptors
in the VNO [72, 73], were largely undetected. Only weak expression of FPR1 and FPR2 genes
was noticed (Fig. 3). Likewise, guanylyl cyclase GC-D receptor [74] expression was low
(FPKM 0.8) (Fig. 3).

Interestingly, we also detected the expression of taste receptors in the OE. Our data from
sorted ORNSs revealed an enrichment of Tas1r1 and Tas1r3, (FPKM 6.7), these receptors

PLOS ONE | DOI:10.1371/journal.pone.0113170 January 15,2015 11/47



" ®
@ ’ PLOS ‘ ONE Murine Olfactory Receptor Neuron Transcriptome

T g T g
E 8 E .8
2 2 w6 3 2 2 w o g
2 £ o 5 £ 5 3 & 2 £ o 5 £ 5 3 &
§ & § § & 3 2 8 & & 8§ & 3 2 &
Taar1 Vmn1r222
Taar2 Vmnir17
Taar3 Vmn1ir21
Taard - Vmn1r80
Taar5 Vmn1r27
Taar6
Taar7a Vmn2r29
Taar7b Vmn2r27
Taar7d Vmn2r88
Taar7e Vmn2rd2
Taar7f Vmn2r89
TaarBa Vmn2r7
TaarBb Vmn2rd
Taar8c Vmn2ré
Tearo [N
Fprz | |
Tas1r1
Tas1r3 Gucy2d | |
Tas2r108 | |

Figure 3. Expression pattern of chemoreceptor genes. Heatmap showing the expression levels of the following chemoreceptor classes: TAARs, VNO
receptors, GC-D, taste receptors and FPR in olfactory (male and female OE, and FACS-sorted ORNSs) and non-olfactory tissue (brain, muscle, liver and
testes). Higher FPKM values are indicated by deeper colors. Only genes with a FPKMs >1 are represented in this chart.

doi:10.1371/journal.pone.0113170.g003

typically form heterodimers and function as the umami receptor [75]. Type 2 bitter taste recep-
tors (Tas2r) were weakly detected in OFE at a FPKM of 0.7 for Tas2r108 (Fig. 3).

Genes with Known OE-Specific Expression

Next, we analyzed whether our RNA-Seq results matched the reported expression patterns of
molecules linked to olfactory signaling cascades. Due to the extreme mosaic-like pattern of OR
gene expression, FPKM values for OR expression cannot be directly compared to the values for
other genes. Therefore, we calculated the accumulated gene expression of all ORs and assumed
that this represented the expression level of a single OR in a single ORN.

Under these assumptions, the FPKM value was approximately on average 4,000 (n = 13)
which would make the ORs by far the most highly expressed protein coding genes. The other
most highly expressed genes (Fig. 4) included OMP, which is one of the most abundant pro-
teins in the OE, followed by the subunits of trimeric G-protein composed of Go,, GB; and
Gy, and, with a somewhat lower expression rate, Go and Gf3,. Moreover, the guanine nucleo-
tide exchange factor Ric8b and the receptor interacting proteins RTP1, RTP2 and Reepl were
also among the most highly expressed proteins (Fig. 4). Other classical signaling molecules en-
riched in ORNs include the following: ACIII (which is the only adenylyl cyclase that we found
to be highly enriched in the ORNs), the CNG channel (formed by the CNGA2, -A4 and -Bl
subunits [76]), and the calcium-activated chloride channel Ano2 [16, 77]. We also detected
BArr2, which is responsible for OR internalization [78, 27], and a weak expression of BArrl.
Among the 1,000 most highly expressed genes that have been implicated in olfactory signaling
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Figure 4. Expression pattern of known genes of the olfactory signal transduction. A. Heatmap showing the expression levels of genes known to be
involved in olfactory signaling and other genes known to be highly expressed in ORNs as determined by NGS. The FPKM of OR total represents the
accumulated gene expression of all ORs and shows that the OR is the most highly expressed gene in the OE. The main components of the signal
transduction scheme were among the 200 most highly expressed genes. The FPKM values shown for OMP in sorted ORNs (homozygous) are rough
estimations based on the calculation of reads located in the 3’-untranslated regions of OMP and are therefore only valid to a limited extent. Higher FPKM
values are indicated by deeper colors. B. RT-PCR verification of the highly expressed genes in the OE. Gene expression was normalized to the level of
adenylyl cyclase type Il (ACIIl) RNA. The Investigated genes were RTP1-4, REEP1—4, Stom, StomI2-3 and transmembrane proteins, including ANO2
(Tmem16b). Error bars represent the SEM.

doi:10.1371/journal.pone.0113170.9004

were Nkccl (also called Slc12a2) [14, 19], 6 PKC genes (o, B, §, €, 1, and £), of which only o
and P are known to be expressed in mouse ORNs, 5 GRKs (Grk2, Grk3, Grk4, Grk5, Grkeé)
[79-81, 22-25], and voltage-gated sodium channels (S1 Table) of which Scn9a was the primary
and most highly enriched isoform in ORNs[82].
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The expression patterns determined by NGS were in good agreement with previous reports
about ORN gene expression and confirmed that the key proteins in olfactory signal transduc-
tions are strongly expressed in ORNG.

We also verified the RNA-Seq results for several highly expressed genes by real time
RT-PCR using ACIII as a standard (Fig. 4). As expected, RTP genes showed the highest
expression levels for RTP1 and RTP2. Stomatin-like protein 3 (Stoml3) is known to be express-
ed in ORN’s [83] and showed the highest expression level of the stomatin family genes tested.
The expression levels of the tested genes correlated with the FPKM values determined by
RNA-Seq.

The top expressed genes in FACS-sorted ORNs from homo- and heterozygous OMP-GFP
mice have similar expression levels. Therefore, we assume that a lack of OMP expression has
no general influence on the expression of other genes. We calculate a Pearson coefficient of r =
0.9 for gene expression patterns between these two groups, which suggests a strong correlation
of gene expression pattern. Additionally, using Cuffdiff analysis, we identified only few statisti-
cal significant changes in gene expression between both datasets. Our analysis revealed that
only 13 genes were differentially expressed (S2 Table). Therefore, we assume that the data of
FACS-sorted homozygous ORNSs represent a nearly normal transcriptome of ORNs. These re-
sults are in accordance with the study of Sammeta et al. (2007)[48], in which no statistically sig-
nificant differences in mRNA abundance between these two genotypes were detected by
microarray technique. However, the limited sequencing depth of our homozygous ORNs (~13
million) complicates the detection especially of lower differentially expressed genes with a sta-
tistical significance, so that more regulated genes will be probably detected at a higher sequenc-
ing depth. The OMP expression level in FACS-sorted ORNs with a heterozygous genotype was
comparable to the level in the OE datasets.

Differences in Gene Expression Patterns between OE and ORNS

The OE is composed of several different cell types. Next to the ORNs are sustentacular cells,
basal cells, including globose and horizontal cells, microvillar cells, and cells lining the Bow-
man’s glands and duct are found in the OE [84, 85]. Accordingly, the differential expression
pattern of the OE compared to FACS-sorted ORNs revealed a catalog of genes expressed in
ORNSs and/or other cell types of the OE. To avoid strain specific differences, we only compared
the ORN data with C57BL/6] transcriptome data. We found that, in nearly all instances, genes
known to be expressed in ORNs had 2-8 times higher FPKM values in sorted ORNs than in
the OE, while genes known to be expressed in other cell types of the OF had 2-119-fold higher
FPKMs in the OF compared to the sorted ORNs (Fig. 5).

To examine the expression patterns of non-neuronal cell types, we analyzed the expression
of the marker genes reported by Sammeta et al. (2007) [48]. FPKMs of the sustentacular cell
markers Cbr2 and Pax6 were higher in the OE but were also detected in ORNs [66], which sug-
gests a small proportion of these cells were present in our FACS-sorted ORN probe. Expression
of Krt14 and Krt5, markers of horizontal basal cells, was either weak or absent in the FACS-
sorted ORN probe, and stronger expression of these markers was detected in the OE.

Reg3g, a marker of respiratory epithelium, was strongly expressed in the OE and expressed
at lower levels in the ORNs. Moreover, Ascll and Neurogl, markers for transiently amplifying
progenitor cells, were found in the OE and only weakly detected in the ORN probe set. Further,
GAP43, a marker of immature neurons, was present in the OE and, to a lesser extent, in the
ORN probe.

These expression pattern analyses confirm the purity of the FACS-sorted ORN sample and
support the reliability of our NGS-analysis.
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Figure 5. Differences in the gene expression patterns between ORNs and the OE. Comparison of FACS-sorted ORNs and the OE (CD1 OE both sexes;
C57BL6 female OE) revealed that genes that are known to be expressed in mature ORNs were expressed in ORNs at levels that were about two to three-fold

higher those of the OE. Genes specific for non-neuronal cell types were expressed at levels that were at least two to 119-fold greater in the OE.

doi:10.1371/journal.pone.0113170.g005

Non-Olfactory GPCRS (nGPCRS)

Our analysis allowed us to detect the transcripts of known and previously undescribed mem-
brane proteins in the OE. GPCRs form the largest family of transmembrane proteins and func-
tion in various signaling pathways. Out of 407 annotated non-olfactory GPCRs (nGPCRs) in
our data set (S7 Table), we detected the expression of 114 (sorted ORNs) and 159 (male/female
OE) nGPCRs, which displayed FPKM values >1 (Table 2).
We classified the nGPCRs into five main GPCR families: glutamate, rhodopsin, adhesion,

frizzled and secretin. This classification reveals that the nGPCRs (including genes with FPKMs
below 1) that were expressed in ORNs mainly belong to the rhodopsin family (64%). Ten per-
cent belong to the adhesion family, approximately 4% to the frizzled family, 6% to the glutamate
family, and 0.2% to the secretin family. An additional set of nGPCRs with unknown functions,
no known ligands and atypical structure could not be classified (approximately 12%) nGPCRs
that are highly expressed may hypothetically function as co-receptors in ORNs [86, 87]. There-
fore, we created a ranking of the expression of all nGPCRs to identify the highly expressed can-

didates (Fig. 6). Interestingly, only six nGPCRs were ranked among the 1,000 most highly

expressed genes in ORNs: Adiporl, Gprl78, Gabbrl, Gprc5c, Drd2, and Lphn3 (Fig. 6). An
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Table 2. The total number of GPCRs detected in mouse OE (RefSeq gene model).

ORNSs (heterozygous) = OE1 CD1male OE1CD1female  Number of genes annotated in RefSeq gene model
Chemosensory GPCRs
ORs 905 1,001 1,075 1,225
TAARs 13 11 13 15
Vomeronasal receptors 1 24 5 4 218
Vomeronasal receptors 2 20 4 5 130
Taste receptors 6 3 5 38
Non-chemosensory GPCRs 238 264 250 407
Total 1,206 1,288 1,352 2,033

doi:10.1371/journal.pone.0113170.t002

additional 30 nGPCRs exhibited medium expression profiles (FPKMs between 52-10), and 65
nGPCRs exhibited low expression profiles (FPKMs between 1-10) (S11 Fig.). Some of these
GPCRs have previously been reported to be expressed in ORNs [48, 49]. Regarding the most
highly expressed 30 nGPCRs, our study describes the expression of an additional 17 genes:
Gprl178, Lphnl, Gprl37, Gprl62, Gprl55, Gpr63, Paqr9, Gprl08, Lgr4, Gpr89, Wls,
A030009H04Rik, Gpr107, Gpr87, Gpr137b, Ptgerl and P2ry14 (Fig. 6). A few of these genes
have also been tabularly presented in a recent transcriptome wide study of the total OE [52].
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liver, muscle and testes). A total of 18 specifically enriched nGPCRs were found in ORNs. Excluding the specifically enriched candidates that were already
presented in the list of the 30 most highly expressed genes, an additional 10 genes were found to be specifically enriched and are new in terms of olfaction.
Regarding the genes that were among the 30 most highly expressed and were specifically enriched in ORNs, 60% had neither been shown to be expressed
in the OE or been ascribed any function in the OE in any previous study with the exception of for several candidates in a tabular form in a recent

transcriptome-wide study of the total OE [52].

doi:10.1371/journal.pone.0113170.g006
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In a subsequent analysis, we classified the nGPCRs according to their expression levels and
expression patterns. To identify nGPCRs that were specifically expressed in ORNs, we com-
pared expression levels between ORNs and non-chemosensory tissue. We defined a gene as
being enriched in ORNS, if the expression level of that gene was at least five times higher (as de-
termined by RNA-Seq data) in the ORN’s than in any of the control tissues (brain, liver, muscle
and testes) (S8 Table). We found that 14 (FPKM > 1) nGPCRs were specifically enriched in
ORNSs, and 100 nGPCRs had broader tissue distributions (Fig. 6 and S7 Table).

Focusing on nGPCRs specifically enriched in ORNs and excluding genes already presented
under the 30 top expressed candidates, we additionally detected the expression of 10 genes:
Gprl171, Sfrpl, Rho, Gprl8, Gpr183, F2rl1, Gprl152, Gpr126, Gpr35 and Gpr82.

Finally, we constructed a quantitative ranking of the expression of all GPCRs detected in the
OE and ORNs (S7 Table). We selected some of these new nGPCRs and verified their expression
in ORNs with in situ hybridization (Fig. 7). All selected probes produced signals in the mature
ORN layer as predicted by the FPKM values from ORNs. Additionally, we tested the most
highly expressed GPCR, Adipor1 and two other identified GPCRs with RT-PCR and deter-
mined their relative expression levels (Fig. 8). As expected, we found that Adiporl was most
highly expressed followed by a lesser extent for Gpr177. These results match our RNA-Seq and
in situ hybridization results.

Non-GPCR Membrane Proteins

The detection of unknown transmembrane proteins in several recent proteome studies has led
to the discovery of proteins with essential functions in olfactory signaling processes. For exam-
ple, Ano2 was identified as the olfactory CaCC [16, 15].

To identify other potential candidates, we searched for new non-GPCR membrane proteins
that were highly and/or specifically expressed in ORNs. We assembled a catalogue of integral
membrane proteins by manual inspection and GO terms (integral to membrane: GO: 0016021)
using Ontologizer [88]. This process led to the detection of the expression (FPKMs > 1) of up to

Figure 7. In situ hybridization for nGPCRs mRNA. A: Adipor1 (adiponectin receptor 1) B: Gpr178; C:
Gpr155; D: Gpr177 (aka WIls); E: Ptgdr (prostaglandin D receptor). All transcripts were detected in the mature
ORN cell layer as predicted by the expression levels observed in sorted ORNs. Scale bar = 30 um.

doi:10.1371/journal.pone.0113170.9007
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Figure 8. Expression levels of GPCRs by real time RT-PCR. Bar chart shows the relative expression levels

of selected GPCRs relative to adenylyl cyclase type Il (ACIIl) as determined by RT-PCR. In accordance with
our RNA-Seq data, the most highly expressed GPCR was Adipor1. Error bars represent the SEM.

doi:10.1371/journal.pone.0113170.9008

S
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2,339 genes in ORNs (S8 Table), 2,706 in male OE, and 2,575 in female OE. We next ranked
these genes based on their expression levels and expression patterns.

This ranking showed that, of the 1,000 most highly expressed genes, 20% were genes that
code for membrane proteins. We found the following known components of basic signaling
among the 30 most highly expressed membrane protein genes: ACIII, Cnga2, Cnga4 Ano2,
and Rtp1, which is involved in OR trafficking [21]. In addition to these genes that are known to
have roles in basic signaling, we found Stoml3, Stom, Umodll, Plekhb1, Atplal, Nsgl,
Tmbimé6, Atplbl, Aplp2, Aplpl, Tmem66, Sgpll, Sec1413, Kened, Clstnl, Rtnl, Ormdl3, Flrtl,
Mslnl, Igst8, Ncam1, Olfm1, Acsl6 and Faim2 (Fig. 9).

Out of these 30 most highly expressed genes in ORNs, we detected 11 genes (Fig. 9), whose
expression was not reported in the OE. That these genes ranked among the 200 most highly ex-
pressed genes indicates their potential importance in olfaction.

Among the top 30 specifically enriched genes, we also found candidates that were among the
30 most highly expressed genes overall: Stom, Stoml3, Umodl1, Cnga2, Ano2, Rtpl, ACIII and
Mslnl. Further known components of olfactory signal transduction that specifically were en-
riched in ORNs were the other subunits of the CNG channel (Cngb1, Cnga4), Scn9a, Scn5a and
Trpmb5, which is involved in the detection of semiochemicals [89]. Additionally, the following
genes exhibited specifically enriched expression patterns: Sec1413, Gent7, Tmem?211, B4galnt3,
Pcdhbl, Cldn9, Abcal3, Pirt, Kenmb3, Mcoln3, Svopl, Atp2c2, Flrtl, Manea, Gldn and Kcnh4.
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Figure 9. Expression patterns and ranking of genes coding for non-GPCR membrane proteins. A. Heatmap showing the ranking of the 30 most highly
expressed genes in the FACS-sorted ORNs. B. Heatmap showing the ranking of the 30 most highly expressed genes that were specifically enriched in ORNs
according to criteria that their FPKMs > 1 and their expression level in ORNs was at least 5x greater than that in non-olfactory tissue (brain, liver, muscle and
testes).

doi:10.1371/journal.pone.0113170.g009

We next focused on genes involved in the transport or flux of ions across the membrane.

We detected 132 ion channels, 199 members of the solute carrier (SLC) superfamily and 122
active transporters in ORNs with FPKMs >1 (S10 Table).

Our analysis revealed that the CNG channel subunits, Ano2, Scn9a and Scn4b were among
the 10 most highly expressed channel genes in ORNSs. Several potassium channel genes showed
relatively high and specific expression patterns in ORNs. The most highly expressed was
Kcnc4, the expression of which in ORNs has also been reported by Sammeta et al. (2007) [48].

In addition to Kcnc4, we detected two members of the voltage-gated KCNH channel family,
Kcnh3 and Kenh4 and several members of the KCNA family: Kcnal, Kena2, Kena5, Kena6
and Kcnal0. Interestingly, the expression of these genes in ORNSs has not previously been re-
ported (S10 Table).

As mentioned above, the expression levels of Ano2 were high in ORNs. We also detected
other members of the anoctamin family, namely Anol, 3, 6,7, 8,9 and 10 (S10 Table). A small
subset of the OE RNA-Seq data for anoctamines 1-10 and other genes (Ttyh1-3, Trpal, Trpm8
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and Trpvl) were previously published by Schobel and colleagues (2013) [90] in a Heat Map
figure.

Members of the transmembrane channel-like protein (TMCs) family are evolutionarily re-
lated to the anoctamines [91]. We detected expression of Tmc4, 5, and 7 in ORNs (S1 Table).
We further identified the expression of up to 7 aquaporin genes; Aqp3 was strongly expressed
in ORNs (S10 Table). Hen2, a channel protein that is abundantly expressed in the olfactory
bulb [92], was also detected.

We next focused on SLC members that were specifically expressed in ORNs (FPKMs >1
and 5x greater expressing in ORNSs than in non-olfactory tissue) and have reported function in
ion homeostasis. We detected Nkecl (Slcal2a2), which is important for Cl” accumulation in
ORNS [18, 19], Nckx4 (Slc24a4), a Na*/Ca**-exchanger involved in rapid response termination
and adaptation of the olfactory response [42], and Nckx2 (Slc24a2). Our data also revealed the
expression of Slc8al, a Na*/Ca®" exchanger, in ORNs [93]; this exchanger may contribute to
the regulation of Ca** flux in ORNs (S10 Table).

Interestingly, we, for the first time, report the detection of the specific expression of addi-
tional membrane proteins in ORNs/OE; these novel proteins ABC-transporters, ATPases, tet-
raspanines, TMEM-proteins, WD-repeat domain proteins, Gram domain-containing proteins
and several other proteins with unknown functions (Table 3).

We selected several genes and confirmed their expression patterns with ISH (Fig. 10). All
probes produced positive signals in the mature ORN layer.

Classes of Transcripts Enriched in ORNs

To obtain an overview of the transcript classes that were enriched in ORNs, we analyzed the
gene expression patterns according to gene ontology (GO) categories using the Ontologizer
software [88].

Previous microarray and proteome studies have described several transcript classes that are
enriched in ORNs [48, 49, 54, 55, 53, 56, 16].

Genes associated with the sensory perception of smell (including ORs, OMP, Go¢ and
ACIII) represented the predominant class/GO term (GO: 0007608) in our list (followed by the
GO categories of ion transport (GO:0006811) and cilia morphogenesis (GO:0005929) (Fig. 11).
Proliferating basal cells continuously replace dying or aging ORNs in the OE. Thus, it is not
surprising to find that transcripts for neuronal differentiation (GO:0030182) are enriched in
the OE [84]. The Ca®*-dependent odorant induced excitation and adaptation process [94] is
the origin for the class/GO-term (GO:005509) that includes genes that encode proteins with

Table 3. Further genes for non-GPCR membrane proteins that were among the 1,000 most highly
expressed genes.

ABC transporter Abca13, Abca5, Abcc4, Abcc1, Abcg1, Abcc10, Abca7

further ATPases Atp6vib1, Atp2c2, Atp6vic2, Atp10d, Atp6v0a4, Atp13a5, Atpiia,
Atp2ci

other subunits of pumps or Sico15a2, Sec1413, Sic44a2, Slc15a2, Slc27a2, Slc22a20, Slc6ab

transporter

tetraspanines Tspan3, Tspani13, Tspan7

Tmem66, Tmem64, Tmem59, Tmem30a, Tmem63b, Tmem151b,
Tmem50a, Tmem205, Tmem213

transmembrane proteins

WD-repeat domain proteins Wdr17

GRAM domain containing Gramdic

proteins

other proteins Tusc5, Dnajb14, Efr3b, Gpm6a, Homer2, Tm9sf3 Ttc9, Nehrf1, Nherf2

doi:10.1371/journal.pone.0113170.t003
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Figure 10. In situ hybridization for mMRNA of non-GPCR membrane proteins. A: Stom (stomatin), B:
Stoml3: Stomatin-like protein 3, C: Gpm6a (glycoprotein m6a), D: Gpm6b (glycoprotein méb), E: Unc45a
(protein unc-45 homolog A), F: Efr3b (EFR3 homolog B), G: Ttc9 (tetratricopeptide repeat domain 9), H:
Homer2 (homer protein homolog 2), I: Tspan? (tetraspanin 7), J: Wdr17 (WD repeat domain 17), K: Tm9sf3
(transmembrane 9 superfamily member 3), L: Tusc5 (tumor suppressor candidate 5), M: Gramd1ic (GRAM
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domain-containing protein 1), N: Msinl (mesothelin-like protein precursor), O: Pcdhb1 (protocadherin beta 1),
P: Manea (glycoprotein endo-alpha-1,2-mannosidase), Q: Tmc5 (transmembrane channel-like gene family 5),
R: Tmc4 (transmembrane channel-like gene family 4), S: Slc15a2 (solute carrier family 15 (H+/peptide
transporter), member 2), T: Slc27a2 (solute carrier family 27 (fatty acid transporter), member 2), U: Sico1a5
(solute carrier organic anion transporter family, member 1a5), V: Slc44a2 (solute carrier family 44, member 2/
choline transporter-like protein 2), W: Slc22a20 (solute carrier family 22 member 20), X: Sic6a6 (sodium- and
chloride-dependent taurine transporter), Y: Tmem205 (transmembrane protein 205), Z: Tmem66
(transmembrane protein 66), AA: Tmem213 (transmembrane protein 213), AB: Slc9r3a1 (solute carrier family
9 (sodium/hydrogen exchanger), member 3 regulator 1, AC: Sec14I3 (Sec14-like protein 3). All transcripts
were detected in the mature ORN cell layer as predicted by the expression in sorted ORNs. Scale bar =30 ym

doi:10.1371/journal.pone.0113170.g010

calcium binding properties. Biological processes, such as protein transport (GO:0015031),
RNA-processing (GO:0006396), and chromatin modification (GO:016568), are ubiquitous
functions in cells. The corresponding categories contain the genes that support basic cellular
mechanisms [95].

Genes classifications that include ubiquitously expressed genes but are also likely to include
genes that are more restricted to the machinery of ORNSs [48] include the following: regulation
of gene expression (GO: 10468), zinc ion binding (GO:0008270), kinase (GO:0016301) or
phosphatase activity (GO:0016791), cell adhesion (GO:0007155), calcium binding
(G0:0005509), TPR (GO:0030911), and WD repeat (GO:0005515).

Genes Related to cAMP-Signaling

In addition to the highly expressed G, ACIII and CNG channel subunits, we analyzed the
expression patterns of other proteins involved in cAMP signaling. We detected strong expres-
sion of phosphodiesterases (PDEs), which are possible candidates for rapid termination of ol-
factory signal transduction due to their action in the degradation of the second messenger
cAMP [22, 96]. Previously, three PDEs, PdelC [97, 34], Pde4A [35] and Pde2 [98] had been
identified in mammalian ORNs. Our transcriptome data revealed the expression of new PDEs
in ORNs and the OE (Fig. 12). Our dataset demonstrated that all 11 PDE gene families are rep-
resented by the expression of at least one gene in ORNs and/or the OE. We report for the first
time that Pde7b is expressed in ORNSs and that it is one of the three most highly expressed
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Regulation of transcription
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Figure 11. Classification of GO terms enriched in ORNs. Based on results from Ontologizer [88],
specifically enriched GO terms are represented in this bar chart. For simplification, related classes were
combined.

doi:10.1371/journal.pone.0113170.9011

PLOS ONE | DOI:10.1371/journal.pone.0113170 January 15,2015 22/47



" ®
@ ’ PLOS ‘ ONE Murine Olfactory Receptor Neuron Transcriptome

g 9
A E 8
£ & u 6
2 2 5 3
r o ®© E o
O O 2L Characteristics (Essayan, 2001)
Pdeda cAMP -specific
Pde7b cAMP -specific
Pdelc Ca2+/calmodulin-stimulated, dual specificity
Pde6d cGMP-specific
Pde4d cAMP-specific
Pde7a cAMP-specific
Pdelb e Ca2+/calmodulin-stimulated, dual specificity
Pde3a cGMP
Pde10a 1 cAMP-selective, cGMP-sensitive
Pde8a || cAMP-specific, IBMX insensitive
Pdedb 1 ] cAMP-specific
Pde8b cAMP-specific, IBMX insensitive
Pde9a - cGMP-specific, IBMX insensitive
Pde2a | cGMP-stimulated
Pde6g cGMP-specific
Pde4c cAMP-specific
Pde3b ¢cGMP-inhibited 3', cAMP-selective
Pdel1a ] dual specificity
Pde5a || cGMP-specific
Pdela - Ca2+/calmodulin-stimulated, dual specificity
Pde6a cGMP-specific
Pde6b cGMP-specific
Pde6c cGMP-specific
Pde6h cGMP-specific
B
Prkaria cAMP-dependent protein kinase type l-alpha regulatory subunit
Pkia cAMP-dependent protein kinase inhibitor alpha
Prkaca cAMP-dependent protein kinase catalytic subunit alpha
Prkacb cAMP-dependent protein kinase catalytic subunit beta
Prkx cAMP-dependent protein kinase catalytic subunit PRKX
Pkig cAMP-dependent protein kinase inhibitor gamma
Prkar2a cAMP-dependent protein kinase type ll-alpha regulatory subunit
Pkib cAMP-dependent protein kinase inhibitor beta
Prkar2b cAMP-dependent protein kinase type |l-beta regulatory subunit
Prkar1b cAMP-dependent protein kinase type |-beta regulatory subunit

Figure 12. Expression patterns of genes involved in cAMP-dependent signaling. A. Expression patterns of cyclic nucleotide phosphodiesterase (PDE)
genes. Heatmap showing the expression levels of PDEs in olfactory tissue and non-olfactory tissues (brain, liver, muscle and testes). B. Expression patterns
of cAMP-dependent protein kinases and associated regulatory proteins in olfactory tissue and non-olfactory tissues (brain, liver, muscle and testes). Higher
FPKM values are indicated by deeper colors.

doi:10.1371/journal.pone.0113170.9012

PDEs in ORNs. Pde7b is a cAMP-specific phosphodiesterase that may have a modulating effect
in olfactory signal transduction via its ability to hydrolyze cAMP. Moreover, we discovered
that the Pde6d subunit is also highly expressed. Pde6 is localized in rod and cone photorecep-
tors where it regulates cytoplasmic cGMP concentrations [99, 100]. The high level of expres-
sion of the cGMP-specific Pde6d raises the question of what impact cGMP has on olfactory
signal transduction. The IBMX-insensitive PDEs Pde8 (Pde8a, Pde8b) and Pde9 (Pde9a) were
detected at low expression levels in ORNs and the OE.
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Additionally, we detected high levels of expression of cAMP-dependent protein kinases
(Prk), which form tetramers that consist of 2 regulatory and 2 catalytic subunits [101]. Regard-
ing the catalytic subunits, we detected the alpha, beta and Prkx subunits, and we detected 4 iso-
forms the regulatory subunit (alpha I/II and beta I/IT). Moreover, we detected weak expression
of 3 cAMP-dependent PKA inhibitor genes (Pkia, Pkib and Pkig) that regulate the action of
PKAs (Fig. 12).

Genes Related to IP3 / Pl Signaling

The physiological function of phosphatidylinositol (PI) signaling mechanisms in ORNs have
been discussed for several years [45]. Recent findings suggest that PI3K-dependent signaling
mediates the inhibition of odorant responses in ORNs, which express GPCR-activated iso-
forms of PI3K and exhibit odorant-induced PI3K activity [43, 102, 103, 47]. Several PI-kinases
(S11 Table) were found in ORNSs. The expression of the phosphatidylinositol 3-kinase type cat-
alytic subunits PI3K-B and y were of special interest because these subunits can be activated by
the B/y subunits of G-proteins, and both have been detected in the OE [103]. Our sequencing
data revealed that ORNs mainly express PI3ko and PI3kp and, to a lesser extent, PIk3y. Nearly
all subtypes were expressed more highly in ORNs than in non-OE control tissues (S11 Table);
however, the expression levels of these kinases were only moderate compared to the expression
of elements of cAMP signaling. Nevertheless, all four types of PI3-kinases were detected in
ORNSs by in situ hybridization (S12 Fig.).

Phospholipase A2 (XIIA), phospholipase C, (b3, 4) phospholipase C-like 2 and phospholipase
D3 are the most highly expressed phospholipases, but none of these are specific to ORNs (S11
Table). The same is true for the most highly expressed PKCs. The expression of IP3-receptors
was previously shown by Restrepo et al. (1990) [104], Fadool and Ache (1992) [105], Kalinoski
etal. (1992) [106], Restrepo et al. (1992) [107], Cunningham et al. (1993) [108] and Munger
etal. (2000) [39]. Among the three subtypes, IPTr1 is most highly expressed, although its expres-
sion levels are about 100-fold lower level than those of the CNG channels. In contrast to genes in-
volved in the cAMP-mediated signaling pathway, none of the genes involved in PI signaling were
among the 500 most highly expressed genes.

Expression Patterns of TRP Channels

TRP channels constitute a family of proteins that respond to a variety of stimuli [109]. The ex-
pression of several TRP channels has been reported in the OE [110, 89]. Our sequencing data
provide a comprehensive overview of the expression levels of TRP channel transcripts in both
the OE and FACS-sorted ORNS (Fig. 13). Within the TRPC subfamily, TRPC1, TRPC2 and
TRPC4 were detected in ORNs, and TRPC1 transcripts were the most enriched. While the
transcripts of seven TRPM subfamily members were amplified from pooled cDNAs of whole
OE, only four members showed somewhat higher expression levels in ORNSs (Fig. 13). Tran-
script levels of TRPM7, a channel fused to a protein kinase [111], were the highest. Among
TRPV subfamily members, only TRPV2 transcripts were present in ORNs. We also detected
transcripts for two of the intracellular mucolipin TRP proteins, TRPML1 (Mcolnl) and
TRPML3 (Mcoln3). Finally, and consistent with previous studies [112], we found both PKD1
and PKD2 transcripts in ciliated ORNs.

TRPC1 and TRPM7 transcripts were among the most enriched TRP channel transcripts in
ORN, yet they constituted only ~ 7% of the total number of CNGA2 channel subunit tran-
scripts. We examined the expression by immunohistochemistry and detected TRPC1 and
TRPM7 immunoreactivity in ORNs (Fig. 14).
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Figure 13. Expression pattern of TRP channel genes. Heatmap showing the expression levels of
annotated TRP channels in olfactory (male and female OE, and FACS-sorted ORNs) and non-olfactory
tissues (brain, muscle, liver and testes). Higher FPKM values are indicated by deeper colors.

doi:10.1371/journal.pone.0113170.9013
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Figure 14. Expression of TRPC1 and TRPM7 in the OE. Protein expression was assessed staining coronal
sections of OMP-GFP mice with anti-TRPC1 and TRPM7 antibodies. TRPC1 immunoreactvity was observed
in a few ORNs in 1 of 3 stained sections, while TRPM7 immunoreactivity was detected in a larger number of
ORNSs (1 stained section). Omission of the primary antibody served as control. Scale bar, 20 ym.

doi:10.1371/journal.pone.0113170.g014

Discussion

A comprehensive understanding of the transcriptome is fundamental for the study of the func-
tionality of ORNs and the machinery of their crucial elements. Several previous studies, includ-
ing microarray [66, 48, 113, 49] and proteomics studies [53, 55, 56, 16, 15, 54], have revealed
the expression of a large number of known and novel genes in the OE. While proteomic studies
have facilitated progress, for example, the identification of the Ano2 gene that encodes the ol-
factory CaCC, most of these studies lack proper quantification of genes and remain incomplete,
especially regarding the detection of OR gene expression. Recent advances in next generation
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sequencing provided the means to obtain a “complete” list of protein-coding genes expressed
in the OE in a high-throughput fashion.

Here, we present a comprehensive analysis of the murine olfactory transcriptome that was
generated by the high-throughput NGS technique. For the first time, we analyzed FACS-sorted
ORNs to gain knowledge about the differences in expression profiles between ORNs and other
cell types in the OE with the NGS technique.

We compared our data to transcriptome data from non-olfactory tissues (brain, liver, mus-
cle and testes) to identify ORN-specific genes. We further described the expression of known
and novel membrane proteins and generated a list of all non-olfactory GPCRs that were ex-
pressed in the OE.

During the preparation of our manuscript, a murine olfactory transcriptome study was pub-
lished that focused mainly on sex-specific differences [51] in the OE. Using NGS, these authors
detected nearly all classified OR genes. A second study by Keydar et al. (2013) [52] focused on
a more general catalogue of genes expressed in the OE, but did not provide any data on speci-
ficity of expressed genes for ORN.

Our analysis, and particularly our comprehensive list of genes expressed in ORNs, comple-
ments previous studies and provides a basis for the discovery and study of novel genes express-
ed in the OE, especially ORNs.

Chemoreceptors

In the mouse, the OR family comprises ~1209 OR genes, of which 913 have been identified as
functional genes and 296 have been identified as OR-pseudogenes [1]. Using NGS, we success-
fully detected up to ~97% (FPKM > 0.1) of all OR genes based on the Refseq gene model in
our probes. A previous study by Shiao et al. (2012) [51] detected 99% of all OR genes, and this
result was possibly due to the even greater sequencing depth of that study. The fact that virtual-
ly all ORs are highly expressed in the OE and virtually none are expressed in other tissues (ex-
cept for the testes) is astonishing for a gene class with ~1,200 members and suggests an
extremely thorough regulation of gene expression.

Sequencing of the FACS-sorted ORN’s detected the expression of fewer OR genes, and this
was likely due to the lower number of sequences generated for homozygous ORNs (~13 mil-
lion) and the limited number of sorted neurons. As we used OMP-GFP transgenic animals to
obtain ORN samples for sequencing, we cannot exclude the possibility that some receptors
were underrepresented. OMP is a marker of mature olfactory neurons [114]. The expression
level of a particular OR gene is strongly dependent on the receptor type. In CD1 mice, the ex-
pression patterns of OR genes were strongly correlated between female and male OEs (Pearson
coefficient, r = 0.83). The expression rankings for the OR genes Olfr533, Olfr1507 and Olfr309
were similar in male and female mice, and the three most highly expressed OR genes found in
the sorted ORNs were among the ten most highly expressed OR genes in the OE. That similar
percentages of OR genes were detected in our and previous studies suggests that the OR subge-
nome does not only strongly correlate between sexes, but also between mouse strains because
OE samples were derived from female CD1 and C57BL/6] mice (S8 Fig., S9 Fig.). We calculate
a Pearson coefficient of r = 0.75 for between these two groups, which suggest that only a small
percentage of OR genes is strain-specific and differentially expressed. However, further studies
are needed for detailed analyses of strain-specific differences in the OR subgenome.

One of the most highly expressed OR genes, Olfr1507, was also the most transcribed OR
gene in the FACS-sorted ORNs sample in our study (FPKM ~ 97) [115]. The number of ORNs
expressing an individual OR varies and is coupled to the strict regulation of gene choice [2].
Olfr1507 (also called MOR28) is located in a gene cluster consisting of seven ORs and an
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upstream H regulatory element on chromosome 14. The H element interacts with the most
proximal OR gene (Olfr1507) and may facilitate its expression [116]. The expression levels of
the remaining 6 genes in the cluster (Olfr1508, Olfr1509, Olfr1510, Olfr1511, Olfr1512) are
considerably lower, suggesting that the most proximal position to the regulatory H element in-
deed defines the expression strength of these ORs in the OE.

Other Chemoreceptors

In addition to ORs, we detected the expression of other types of chemoreceptors in the OE.
Mice have 15 TAAR genes, 14 of which are expressed in the OE [71]. We detected all 14 TAAR
genes in the OE, which underlines the quality of our data set. Interestingly, we also detected the
expression of vomeronasal receptors in the OE. We identified the expression of 15 VIR and 5
V2R genes in the OF and 24 VIR and 21 V2R genes in FACS-sorted ORNs. The FPKM values
were often small (< 1) and comparable to the minimally expressed ORs, suggesting a possible
mosaic-like gene expression pattern for these chemoreceptors in only a few cells in the OE. The
expression of the V1- and V2R genes in ORNs implies that the main OE contributes to phero-
mone detection. Interestingly, in previous studies, pheromone-induced behavior was not al-
tered in mice after removal of the VNO [117], and electrophysiological data additionally
support the detection of several pheromones in the OE [118]. Although we also detected the ex-
pression of TRPC2 and PLC (both of which are part of the transduction cascade in VNO neu-
rons) [119-121] in our transcriptome analysis of the OE, the low number of detected
vomeronasal receptors likely limits their contribution to OE-mediated pheromone sensing.
Thus, it seems reasonable that ORs or other receptor classes are also involved in pheromone
perception in the OE.

We also detected an enrichment of two taste receptors in ORNs, Tas1rl and Tas1r3, which
are known to heterodimerize and subsequently form the umami-receptor. The detection of
taste receptors in the OE could likewise confirm the presence of solitary chemosensory neurons
(SCN) in the OE, which are known to express TasRs [122]. Chemosensory information derived
from taste and olfaction is used by organism to value the quality of food. The detection of taste
receptors in the OE may underline the fact that the sense of olfaction and taste are linked
modalities.

Signal Transduction in ORNs

The commonly known components of the classical olfactory signal transduction pathway were
among the 200 most highly expressed genes in our murine OE transcriptome analysis.

It is reasonable to assume that other global players in olfactory signaling should be as highly
expressed. In this respect, we detected several GPCRs and other membrane proteins with high
expression levels. Their relevance to olfactory signaling remains elusive. Future studies may un-
cover the function of the presented candidate genes in ORNGs.

Among the 200 most highly expressed genes were the previously unrecognized
phosphodiesterases Pde6d and Pde7b. Previous studies suggest that hydrolyzation of cAMP by
phosphodiesterases is involved in the termination of the olfactory signal transduction. The
Ca®*/calmodulin-stimulated Pdelc appears to be enriched in the olfactory cilia, whereas the
cAMP-specific Pde4a occurs throughout the cell but not in the cilia [34, 98]. Simultaneous dis-
ruption of the Pdelc and Pde4a genes in mice leads to prolonged response termination in elec-
tro-olfactogram measurements [97]. The potential regulatory function of this novel expression
of Pde7b and Pde6d in the OE in olfactory signaling will be the subject of future studies. While
Pde6 is primarily known to be localized to photoreceptors, where it regulates the cytoplasmatic
c¢GMP concentration [99], less is known about the subunit Pde6d. Previous studies have
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reported a regulatory function of Pde6d in the membrane association of Ras and Rap GTPases
[123] and a potential contribution to cell proliferation [124].

We additionally focused on molecules supporting alternative signaling pathways in ORNs.
The involvement of odorant-stimulated PI signaling in ORNs has previously been shown
[45, 43, 103]. This pathway involves PLC- and PI3K-dependent signaling. Our data provide
support for a potential PI-mediated signaling of odorants as we detected weak expression of
PLC, PI3K and IP; receptors.

Interestingly, our data revealed the expression of several TRP channel transcripts. TRP
channels are known downstream targets of PI-mediated signaling in chemosensory cells
[125, 126]. The detection of semiochemicals is thought to involve Ca**-activated TRPMS5 chan-
nels that are expressed in a subset of ORN's in which both CNGA2 and PLC are co-expressed
[89]. TRP channels form non-selective cation channels that are permeable to calcium, which
may suggest a contribution to processes in the OE such as transduction, transcriptional control
or proliferation. Among the detected TRP channel transcripts, TRPC1 and TRPM7 were the
most enriched. Immunohistochemistry indicated expression of these proteins in ORNSs, but
their function in ORNG is unknown. A recent study proposed a regulatory function of TRPC1
in the fine-tuning of neuronal migration [127]. Another study by Kerstein et al. (2013) [128]
addressed a mechanosensitive role of TRPCI in spinal neuron growth cones. Additionally,
TRPC1 has been proposed to be involved in store-operated Ca®" entry, which regulates cell
proliferation [129]. TRPM?7 is ubiquitously expressed and has been implicated in a variety of
cellular functions including magnesium homeostasis, cell cycle progression and control of the
production of ROS [130]. Knock-out studies revealed a crucial role of TRPM7 in embryonic
development [131, 132]. Future studies are required to examine potential functions of TRPC1
and TRPM7 in the OE.

Non-Olfactory GPCRS (nGPCRS)

In this study, we present a comprehensive expression pattern analysis of GPCRs in the murine
OE. In FACS-sorted ORNs, we detected the expression of 114 nGPCRs (FPKM>1). The ex-
pression of most of these proteins had previously been documented in at least one study that
employed proteome or transcriptome analytic approaches [48, 49, 53, 55, 56, 16, 15, 54].

Our analysis revealed the expression of several unrecognized GPCRs for which no expres-
sion or functions in ORNSs have been described. In summary, we detected the expression of
27 GPCRs, whose expression in ORNs has not been reported before, and 14 of these exhibited
specific enrichment (FPKM >1 and an expression level that was at least 5 times greater than
that in control tissues) in ORNs: Gpr178, Lphnl, Gpr63, Gprl37, Gprl62, Gprl55, Gpr87,
Paqr9, Gpr108, Lgr4, Gpr89, Wls, A030009H04Rik, Gpr171, Gprl07, Gpr137b, Ptgerl,
P2ry14, Sfrpl, Rho, Gprl8, Gprl83, F2rl1, Gprl52, Gprl26, Gpr35 and Gpr82.

Interestingly, among 1,000 most highly expressed genes in ORNs, only 6 non-olfactory
GPCRs were found: Adipor1, Gpr 178, Gabbrl, Gprc5c¢, Drd2, and Lphn3.

GPCRs involved in food intake

The most highly expressed GPCR is Adiporl, which was first detected by Hass et al. (2008) [133]
in mature ORNs. Another highly expressed adiponectin receptor is Paqr3 [134]. It is possible
that adiponectin regulates food intake by acting as an appetite stimulator and conveying a starva-
tion signal to the brain via AdipoR1 and AdipoR2 [135]. In animals, the sense of smell plays a
crucial role in finding food resources. Thus, an interaction of adiponectin and AdipoR1 could
modulate the function of ORNs depending on the nutritional status of the body. In this context,
it is interesting to note that the modulatory effects of two anorectic peptides, insulin and leptin,
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on ORN s have already been demonstrated [136]. However, receptors for insulin, leptin, ghrelin
and other peptides that are involved in the regulation of hunger and satiety were only weakly ex-
pressed in the OE (S13 Fig.); these findings lead to the assumption that adiponectin is the most
important regulatory hormone in the OE. Therefore, future studies should concentrate on inves-
tigating the functions of AdipoR1 and Paqr3 and the modulatory effect of adiponectin on
olfaction.

Furthermore, two orphan GPCRs, Gpr162, and Gpr82, are both possibly involved in food
intake and glucose homeostasis [137, 138].

mGIuR family

Gprc5c was discovered in the mouse OE through proteomics [16], is an orphan receptor of the
mGluR family [139], and is also expressed in goldfish OE [140]. Like Gprc5c, Gprl58 belongs
to the mGluR family and is most similar to the metabotropic GABA receptors [141, 142].

Inhibitory effect on olfactory signaling

Gabbrl, and the less-strongly expressed subunit Gabbr2, form the heterodimeric GABAg re-
ceptor [143], which has been shown to inhibit ORN axonal outgrowth [144] and is possibly lo-
cated presynaptically. Activation of GABAp receptors, which couple to Gai/o, stimulates
increases in cAMP through By-mediated activation of adenylyl cyclase 2 and simultaneously
inhibits Gos-mediated activation of other adenylyl cyclases in the rat olfactory bulb [140, 145].
Supporting this GABAergic effect, Drd2 dopamine receptors are inhibitory on the input from
ORNSs and provide lateral inhibition of mitral cells, which provides olfactory discrimination in
rodents [146]. Moreover Gpré63, a sphingosine 1-phosphate receptor, is expressed in mitral
cells of the OB, but its function in this region in unknown [147].

Furthermore, many neurons that are classified as GABAergic might express GPR155 [148].
These findings imply that Gpr155 has an important role in GABAergic neurotransmission.
GABAergic input has an inhibitory effect on olfaction [144]; thus, Gpr155 could also have a
supportive function for the GABAergic effect on ORNE.

Cell Architecture / Cell development

Additionally, we detected a few GPCRs that have possible roles in anatomical structural
development.

The protocadherin receptors Celsr2 and Celsr3 are key regulators of the correct positioning
of cilia and, consequently, cilia function [149]. The latrophilin receptors (Lphnl, Lphn3) are
involved in signaling of tissue polarity and morphogenesis [150].

Fzd3 is required for neurogenesis and target innervation during sympathetic nervous system
development [151].

Lgr4 is part of the Wnt signaling pathway that is involved in the cell proliferation of the in-
testinal epithelium [152].

Orphan GPCRs with unknown functions

Furthermore, we detected several GPCRs, the functions of which are presently unknown, that
were specific to ORNGs.

Gpr178 (also named Tmem181a) is an orphan GPCR with unknown function that was not
only among the 1,000 most highly expressed genes but was also specifically enriched in ORNS.
This gene shares homologies with the newly identified Gpr177 (aka Wls) gene, which has been
reported to be involved in the Wnt signaling pathway [153].
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No endogenous ligands have been identified for Gpr137, Gpr152, Gpr158, Gpr89, Gprl71,
Gpr108 or A030009HO04Rik, the exact functions of these receptors are unknown.

We selected a few candidates and confirmed their expression in ORNs with ISH experi-
ments: these experiments revealed that the mRNA transcripts of these candidates were promi-
nent in olfactory neurons. Because these candidates were specifically expressed in mature
ORNSs and because of the described functions of these genes in other tissues, we suggest that
they might play important roles in ORNS.

Previous studies have reported that ORs can co-assemble with other GPCRs such as beta ad-
renergic and muscarinergic receptors [86, 87]. However, according to our analysis, both of
these GPCRs are only weakly expressed in ORNs. The six GPCRs we found to be highly ex-
pressed could form such co-receptors in principle, but our expression data did not reveal any
candidates that were expressed at levels comparable those of the ORs. Consequently, the ex-
pression pattern of GPCRs contradicts the hypothesis of a GPCR co-receptor for ORs. In con-
trast, our data confirm that RTP1 and RTP2 are highly expressed; in addition to their known
chaperone function, RTP1 and RTP2 have been reported to be required as co-receptors for
ORs [21]. Our data support the hypothesis that RTP1 or RTP2 co-assemble with ORs in a stoi-
chiometric manner because the expression levels of RTP1 and RTP2 are comparable that of
the ORes.

Altogether, in our analysis, we provided a detailed expression ranking of all GPCRs detected
in the OE and noted GPCRs new in terms of olfaction. Hence, our data directly leads to new
perspectives to focus on so far unknown GPCRs. Due to a strong ORNs specific expression pat-
tern; these GPCRs have a supposable important role in ORNs.

Non-GPCR Membrane Proteins

As membrane proteins form key nodes in the olfactory signaling process, we focused on find-
ing further membrane proteins that were not previously known to be expressed in, or have a
specific function in, the OE. We detected the expression of 2,339 (FPKM > 1) genes for non-
GPCR membrane proteins in ORNs. We ranked the expression of these genes and specifically
marked those that were enriched in the OE compared to non-olfactory tissues to highlight
genes that possible have important roles in the function of the ORNs. The main known compo-
nents of olfaction (ACIII, CNG channels, Ano2, Rtpl) were found among the 30 most highly
expressed genes.

Additionally, we identified 22 novel genes (11 that were specifically enriched in ORNs) that
because of their high expression levels and their described functions in other tissues, are prom-
ising and important candidates for future research in olfaction: Abcal3, Aplpl, Atplbl,
Atp2c2, B4galnt3, Faim2, Flrtl, Gent7, Gramdlc, Kenh4, Kenmb3, Olfm1, Ormdl3, Pedhbl,
Pirt, Plekhb1, Rtn1, Sec1413, Svopl, Tmem211 and Tmem66.

Transport

We newly detected the expression of a Na*/K"-transporting ATPase (Atplal, Atplbl) in the
OE; this ATPase modulates membrane potential [154]. We also detected Nsgl in the OE; this
molecule is involved in regulating receptor recycling [155]. The expression of both genes is im-
portant for olfactory signaling, as the adjustment of ion homeostasis is the basis for the depo-
larization of neurons and the recycling of receptors.

Further, the following transporter proteins were present: Abcal3, an ABC transporter [156],
Svopl, a putative transporter [157] and Atp2c2, a Ca®" ATPase [158].

Aplp1 and Tmem66 are proteins that regulate the Ca®* homeostasis [159, 160]. Rtn1 and
Ormdl3 are involved in membrane vesicle trafficking and protein folding [161, 162], and these
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two processes are necessary for proper membrane expression of GPCRs and other membrane
proteins.

Pirt, a phosphoinositide-binding protein, has been reported to function as a regulatory sub-
unit of TRPV1 [163].

lon channels

It has been reported that 80-90% of the receptor currents that result from odorant exposure
and OR interaction are mainly generated by Cl- ions, which pass through the CaCC Ano?2. Bil-
lig et al. (2011) showed that EOG recordings from Ano2”" deficient mice were only reduced by
up to ~40% [164]; nevertheless, these mice were able to smell. Therefore, it is highly probable
that other CaCC channels are expressed in ORNs and that these channels, together with Ano2,
mediate the major part of the receptor current. Although Pifferi et al. (2006) showed that the
CaCC bestrophin-2 (Best2) is expressed in ORNS, wild type, and mice lacking Best2, exhibited
no significant differences in olfactory ability [165]. Thus, Best2 is not a CaCC that makes a pri-
mary contribution to the odorant-induced chloride current. Therefore, we searched for new
CaCC candidates that are important and account for olfactory transduction. In our analysis,
we detected ORN-specific expression of genes coding for members of the TMC (transmem-
brane channel-like) protein family, which has an evolutionary relationship with anoctamines
[91]. Based on expression patterns and the homology to anoctamines, we suggest that Tmc5,
together with Tmc4 and Tmc7, are suitable candidates for the other CaCCs and could be im-
portant in olfaction. Future studies should examine the involvement of these proteins in
olfaction.

Regarding voltage-gated sodium channels, we detected high levels of expression of Scn9a.
These expression levels confirm the vital role of this channel in olfaction, as it has been shown
that the loss of this protein leads to anosmia [82].

Among the variety of other K* channels (S10 Table), the Kcnc4 was the most highly ex-
pressed voltage-dependent potassium channel subunit in ORNSs. In the OE, the expression of
Kcnc4 was already shown by Sammeta et al. (2010) [95], where they postulate a Kenc4 expres-
sion sensitive to neuronal damage. Additionally, for the first time, we detected high and specific
levels of expression of members of the voltage-gated Kenh channel family, which is involved in
the regulation of neuronal excitability [166]. Kenh3 and Kenh4, which are potentially members
of the EAG-like (ELK) K" subfamily, exhibited strong expression patterns in ORNs, indicating
that these channels could be primarily responsible for determining and raising action potential
thresholds by acting at voltages around the firing threshold to suppress excitability [166, 167].
Hagendorf et al. (2009) have previously demonstrated the expression of Kenh channels in the
sensory neurons of the VNO and their key roles in determining neuronal excitability [168].
Thus, it is conceivable that these candidate genes in ORNs have similar roles. As it has been
shown that members of the ELK subfamily are able to co-assemble with each other [169], we
further suggest that Kenh3 and Kenh4 could form functional heteromultimers and contribute
to the hyperpolarizing effect in ORNS.

Similarly, strong and specific patterns of expression were observed for Kcna5, Kcna2,
Kcna6, and a weaker pattern of expression was observed for Kcnal; these genes all code for
members of the shaker-related voltage-gated K*-channel family. Interestingly, Eldstrom et al.
(2002) reported that PDZ domains are able to bind to Kcna5 and other members of this family
and affect potassium currents by regulating the assembly of the subunits [170]. Thus, it is of
great interest to determine what impact this channel region has and if it interacts with Mupp1,
which was recently identified as a PDZ-protein that is expressed in ORNs [28].
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Moreover, we, for the first time, detected a medium-level expression of Kenk12 and low-
level expressions of Kcnk4, Kenk5 and Kenk1 in ORN . In neurons, members of the two-pore
domain potassium channel family Kenk have been reported to determine membrane potentials
and membrane input resistances, which influence the magnitudes and kinetics of responses to
synaptic inputs [171]. Further focus should also be placed on Kcnk10, which was highly ex-
pressed, and Kenk2, although this protein was expressed at lower levels. The described
mechano- and thermosensitivity of these proteins [172, 173], is remarkable; these proteins are
novel targets for the study of the physical impact of mechano- and thermosensation during the
detection of odorants.

Others

Of the remaining membrane proteins, we discovered that Mslnl is highly and specifically ex-
pressed in ORNs. No studies of the function of Mslnl in ORNSs or any other tissue exist; MsInl
is a mesothelin-like protein. The related mesothelin protein is known to have cell adhesive
properties [174]. Additionally, our data revealed that, in addition to Gpm6b, Gpmé6a was high-
ly expressed; Gpméa is a four-transmembrane protein that is abundantly expressed in the ner-
vous system [175]. The expression and function of Gpméa in the OE have not been described
previously. In the murine retina, Gpméa is known to regulate retinal development by mediat-
ing cell-cell interactions that are involved in axon fasciculation [176]. As the visual and olfacto-
ry signal transduction systems are nearly identical on the molecular level [177], we suggest that
Gpmé6a and Gpmé6b have similar roles during the development of ORN neurites in the OE. Of
the many chaperones that are necessary for proteostasis, we detected a specific enrichment of
Dnajb14 (Hsp40) in ORNs. Dnajb14 acts as a co-chaperone for the Hsp70 protein folding ma-
chinery through its role in determining substrate specificity [178]. It has previously been re-
ported that another member of the Hsp40 family is able to bind to, and assist in the folding of,
a GPCR (progesterone receptor) [179]. Neuhaus et al. (2006) showed that the specific enrich-
ment of Hsc70t, a variant of the Hsp70 family of heat shock proteins, in the OE, assists in the
folding and trafficking of particular ORs to the plasma membrane [180]. Thus, we propose that
this co-chaperone may contribute to the proteostasis of ORs or other types of GPCRs. Wdr17
is a retina-specific transcript that is thought to be involved in signaling events within and be-
tween cells [181]. Homer2, whose function in the OE has not previously been described, is
highly expressed in ORNs. Homer proteins are known to promote the targeting and expression
processes of GPCRs by interacting with them [182, 183]. Furthermore, it has been shown that
Homer proteins are expressed in the VNO and form complexes with TRPC2 channels and IP;-
receptors [184]. Due to the strong expression level of Homer2, we suggest that this protein is
strongly involved in the chaperoning and guiding of olfactory and non-olfactory GPCRs to dif-
ferent membrane sites in the ORNs. Additionally, Homer2 may also be capable of interacting
with and modulating, among others channels, TRP channels and thus influence the signal cas-
cades of ORNSs. In addition to Homer2, we, newly detected the expression of Slc9a3rl and
Slc9a3r2, which code for the PDZ scaffolding proteins Nherfl and Nherf2 (Na*/H" exchanger
regulatory factor), respectively. Both candidates have been reported to interact via their PDZ
domains with several GPCRs [185]. Nisar et al. (2012) demonstrated an important role for
Nherfl in potentiating GPCR internalization [186]. Here, after receptor stimulation, Nherfl in-
teracts with GPCRs via the scaffolding protein arrestin. Additionally, Nherfl, which is known
to interact with B,-AR [187], regulates receptor-mediated Na*/H"-exchange and down-regu-
lates the receptor by increasing the recycling of the receptor [188, 189]. Nherf2 is known to spe-
cifically couple LPA,-receptors and PLCB3 and to regulate activity by this process [190].
Additionally, both proteins demonstrably increase the Go,-mediated signaling [191, 192]. It
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remains to be examined whether Nherfl and Nherf2 are also capable of regulating GPCR local-
ization and diversifying the signal cascade of ORs in ORNS. Of the several tetraspanins that are
expressed in ORNs, we found high levels of expression of Tspan?. Tetraspanins are known to
regulate the signaling, trafficking and biosynthetic processing of associated proteins. Specifical-
ly, Tspan7 is involved in synaptic maturation and function and promotes the formation of filo-
podia and dendritic spines [193]. We assume that, due to the high levels of expression and
reported functions of Tspan?7, this protein is highly involved in the formation of the neurites of
ORNs. Furthermore, we detected an enrichment of Ttc9 in ORNs. Ttc9 belongs to a family of
tetratricopeptide repeat (TPR)-containing proteins [194] that are involved with, among other
things, protein transport and folding [195, 196] and cell cycle control [197] and transcription
and splicing events [198]. However, the exact function of Ttc9 in ORNS has yet to be elucidat-
ed. Next, we detected high levels of expression of two members of the Tm9sf family. Tm9sf2
and Tm9sf3 are expressed throughout the epithelium. A member of the Tm9sf family has been
shown to have functional ligand properties and has consequently been suggested to function as
channels or small molecule transporter or receptors [199]. Unc45a is highly and specifically ex-
pressed in ORNS, and the functions of this protein have not been well described in olfaction. It
has been reported that Unc45a is involved in cytokinesis and motility via chaperoning myosin
and further cooperates with Hsp90 to chaperon progesterone receptors [200, 201]. Additional-
ly, Tusc5, an adipocyte-specific transcript, was abundant in ORNs. The reported co-expression
of Tusc5 in adipocytes and peripheral somatosensory neurons [202] indicates a possible con-
nection between the energy status of the body and distinct sensory systems. Accordingly, we
suppose that Tusc5 also has a regulatory function in olfactory perception that is similar to that
of Adiporl or Paqr3 and depends on nutritional status.

In this study, we have presented several membrane proteins that have not previously been
identified in OE. As the expression levels of these proteins were similar to, or even exceeded,
those of the known major players in olfactory signal transduction, these proteins potentially
have important roles in olfactory processes. ISH experiments confirmed the pronounced ex-
pressions of these selected genes in ORNSs. Therefore, we suggest that the proteins encoded by
these genes are indeed involved in the function of olfactory neurons. Future studies should
concentrate on uncovering the role of these proteins in the machinery of ORNS.

Our data provide a nearly complete catalogue of the genes expressed in, and involved in, the
function and maintenance of the OE, especially ORNs. The molecular portrait of the OE re-
vealed by this quantitative and comprehensive analysis of the murine transcriptome has uncov-
ered new and valuable approaches that will be beneficial for the advancement of knowledge
regarding the molecular mechanisms underlying olfaction and the functionality of ORNGs.

Conclusion

The unmatched power of RNA-Seq in terms of quantitative and differential transcriptome
analysis and the simplicity of the practical usage of this technique clearly prove that is this tech-
nique is a useful and important tool for OF transcriptomics. In this study, we were able to iden-
tify new potential players in olfaction. Furthermore, we demonstrated that these data provide a
valuable framework for the interpretation and understanding of the function of ORNS. Finally,
this technique currently enables the most comprehensive analyses and the easiest integration
of the vast knowledge gained by previous studies.

Supporting Information

S1 Fig. Distribution of different housekeeping genes in murine tissues. Heatmap showing
the expression levels of different housekeeping genes in olfactory and non-olfactory tissue.
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Higher FPKM values are indicated by deeper colors. Gapdh: glyceraldehyde-3-phosphate dehy-
drogenase, Actb: actin, cytoplasmic 1, Ldha: L-lactate dehydrogenase A chain isoform 2, Ubc:
polyubiquitin-C, Tubb3: tubulin beta-3 chain, Hprt: hypoxanthine-guanine phosphoribosyl-
transferase.

(TTF)

S2 Fig. OR detection using RNA-Seq in all replicates of the OE: Bar chart showing the per-
centage of detected OR genes in all replicates of OE tissue (n = 13) and FACS-sorted ORNS.
Percentages were calculated based on the 1,125 OR genes annotated in the Refseq based gene
model. Bars in light blue: FACS-sorted ORNs (homo- and heterozygous); blue: OE replicates of
CD1 male mice (n = 4), dark blue: OE replicates of CD1 female mice (n = 5), black: OE repli-
cates of C57BL6 female mice (n = 4).

(TTF)

S3 Fig. Detection of weakly and highly expressed ORs with RNA-Seq. Sample representation
of read coverage of ORs with different expression strength can be visualized by the Integrative
Genomics Viewer. Shown are exemplary cufflinks data for OF of CD1 female mice; A.
Olfr1507, FPKM = 70; B. Olfr730, FPKM = 5.4; C. Olfr1265, FPKM = 0.1. The exons are indi-
cated by blue bars and introns by thin lines. The grey segments indicate reads that were
mapped onto reference genome and red bridges exon spanning reads.. Above, the read cover-
age is shown (detected and mapped counts/bases at each respective position). In highly ex-
pressed ORs, 5 UTRs can be identified by exon-spanning reads. For medium or low expressed
ORs, this is not possible due to the lower number of mapped reads.

(TTF)

S4 Fig. Ectopic expression of ORs in testes, brain, liver and muscle. Heatmap showing the
expression of OR genes expressed in non-olfactory tissues (testes, brain, liver, muscle). Higher
FPKM values are indicated by deeper colors.

(TIF)

S5 Fig. Classification of FPKM values. A: Classification of FPKM values of OR genes.
Graph showing the distribution of OR genes according to FPKM value classes in olfactory tis-
sues (FACS sorted ORNs, OE CD1 male and female, OE C57BL/6] female. B: Classification of
FPKM values of genes. Graph showing the distribution of genes according to FPKM value
classes in olfactory tissues. Distribution confirms that the RNA-Seq data comprise the similar
number of genes classified into the same range of FPKM values.

(TIF)

S6 Fig. Correlation matrix of the whole data set. Chart showing the Pearson correlation coef-
ficient values for protein-coding gene expression pattern between all replicates of the OE
(upper matrix). In the lower matrix, OBP and Cpy genes were excluded from the analysis.
Higher correlation between replicates is indicated by a color scale from blue to orange.

(TIF)

S7 Fig. Correlations of expression levels plotted for each detected gene. Shown is the correla-
tion of the protein-coding gene expression pattern between OE of two (exemplary chosen) in-
dividual mice for each condition (CD1 male, CD1 female and C57BL6 female). Only genes
with detectable expression levels (FPKM>0.1) are shown. The FPKM values are logarithmical-
ly presented. Genes with the most diverging expression pattern belong to OBPs genes; which
are marked in red.

(TTF)
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S8 Fig. Correlations of expression levels plotted for each detected OR gene in exemplary
two biological replicates of OE from female CD1 mice. For investigation of the reproducibili-
ty of the expression pattern, two biological replicates of the transcriptome of the female OE of
CD1 mice were prepared. These new datasets were based on RNA of 8 pooled OE analyzed by
mRNA Illumina sequencing on a HiSeq 2000 platform which generated 54-57 million reads
(101 bp, paired end). Correlation of the OR gene expression between two biological replicates
of female CD1 mice is shown. A detailed analysis of these data will be given elsewhere. Only
OR genes with detectable expression levels (FPKM>0.1) are shown. The FPKM values are log-
arithmically presented. The Pearson correlation coefficient of r = 0.9 confirmed the strong cor-
relation of OR gene expression patterns between biological replicates.

(TTF)

S9 Fig. Correlation matrix of the OR subgenome. Chart showing the Pearson correlation co-
efficient values for OR gene expression between all replicates of the OF (n = 13). Higher corre-
lation between replicates is indicated by a color scale from blue to orange.

(TIF)

S10 Fig. Top expressed OR genes. Chart showing the expression ranking of the top 20 OR
genes in OE replicates (CD1 male, CD1 female and C57BL6 mice) and ORNs. The OR genes
Olfr1507, Olfr533 and Olfr309 are highly expressed. These receptors can be detected among
the 20 most highly expressed OR genes in each replicate of the OE and ORNS.

(TIF)

S$11 Fig. Distribution of FPKM values of detected nGPCRs. Bar chart showing the distribu-
tion of FPKM classes in ORNs, OE of CD1 mice (both sexes) and OE of female C57BL/6]J.
(TIF)

S12 Fig. In situ hybridization for mRNA of catalytic PI3K subunits. Expression of tran-
scripts for p110o (1), p110 (2), p110y (3) and p1108 (4) were detected in the mature ORN cell
layer as predicted by the expression in sorted ORNs RNA-Seq data. Sense (a) and antisense (b)
RNA probes were tested in parallel and show the antisense specific staining

(TTF)

$13 Fig. Expression level of receptor genes regulating food intake. Bar chart showing the ex-
pression level of receptor genes regulating food intake in the OE. Adipor1 is by far the most
highly expressed gene. Receptors for insulin, leptin or ghrelin, are weakly expressed. FPKM val-
ues are presented exemplary from CD1 male OE. Adiporl: adiponectin receptorl, Insr: insulin
receptor, Paqr3: progestin and adipoQ receptor family member III, Ghrl: ghrelin receptor,
Lepr: leptin receptor, Npylr: neuropeptide Y receptor, Glp1lr/Glp2r: Glucagon-like peptide re-
ceptor, Hctr1/Hctr2: orexin receptors, Mc3r/Mc4r: melanocortin receptors.

(TIF)

S1 Table. RNASeq data OE (CD1 male, CD1 and C57BL/6] female) and FACS sorted
ORN:Ss.
(XLSX)

S2 Table. Cuffdiff analysis for differential gene expression between homozygous and het-
erozygous ORNs datasets.
(XLSX)

$3 Table. RNASeq data reference tissue: brain, liver, muscle and testis.
(XLSX)

PLOS ONE | DOI:10.1371/journal.pone.0113170 January 15,2015 36/47


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113170.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113170.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113170.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113170.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113170.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113170.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113170.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113170.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113170.s016

@ PLOS | one

Murine Olfactory Receptor Neuron Transcriptome

$4 Table. Raw data sets of RNASeq used in this study.
(DOCX)

S5 Table. OR genes.
(XLSX)

S6 Table. OR pseudo-genes.
(XLSX)

S7 Table. Non-olfactory GPCRs.
(XLSX)

S8 Table. Non-GPCR membrane proteins.
(XLSX)

§9 Table. Transporter: channels, SLCs and active transporters.
(XLSX)

S$10 Table. PI3 kinases.
(XLSX)

S11 Table. Enriched genes in ORNs.
(XLSX)

Acknowledgments

We thank Simon Pyschny (Ruhr-University Bochum), Thomas Lichtleitner (Ruhr-University
Bochum) and Ute Miiller (Ruhr-University Bochum) and for excellent technical assistance.

Author Contributions

Conceived and designed the experiments: NK EMN HH GG. Performed the experiments: NK
MN BS SB PSJA CB JD HC SO CHW HH. Analyzed the data: NK MD GG. Wrote the paper:
NK GG.

References

1. Godfrey PA, Malnic B, Buck LB (2004) The mouse olfactory receptor gene family. Proc. Natl. Acad.
Sci. U.S.A. 101 (7): 2156—2161. doi: 10.1073/pnas.0308051100 PMID: 14769939

2. Mombaerts P (2004) Odorant receptor gene choice in olfactory sensory neurons: the one receptor-
one neuron hypothesis revisited. Curr. Opin. Neurobiol. 14 (1): 31-36. doi: 10.1016/j.conb.2004.01.
014 PMID: 15018935

3. BuckL, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for
odor recognition. Cell 65 (1): 175-187. doi: 10.1016/0092-8674(91)90418-X PMID: 1840504

4. Glusman G, Yanail, Rubin I, Lancet D (2001) The complete human olfactory subgenome. Genome
Res. 11 (5): 685—702. doi: 10.1101/gr.171001 PMID: 11337468

5. NiimuraY, Nei M (2007) Extensive gains and losses of olfactory receptor genes in mammalian evolu-
tion. PLoS ONE 2 (8): e708. doi: 10.1371/journal.pone.0000708 PMID: 17684554

6. DeMaria S, NgaiJ (2010) The cell biology of smell. J. Cell Biol. 191 (3): 443-452. doi: 10.1083/jcb.
201008163 PMID: 21041441

7. Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96 (5): 713—
723. doi: 10.1016/S0092-8674(00)80581-4 PMID: 10089886

8. Jones DT, Reed R (1989) Golf: an olfactory neuron specific-G protein involved in odorant signal trans-
duction. Science 244 (4906): 790-795. doi: 10.1126/science.2499043 PMID: 2499043

9. Bakalyar HA, Reed R (1990) Identification of a specialized adenylyl cyclase that may mediate odorant
detection. Science 250 (4986): 1403—1406. doi: 10.1126/science.2255909 PMID: 2255909

PLOS ONE | DOI:10.1371/journal.pone.0113170 January 15,2015 37/47


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113170.s017
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113170.s018
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113170.s019
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113170.s020
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113170.s021
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113170.s022
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113170.s023
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113170.s024
http://dx.doi.org/10.1073/pnas.0308051100
http://www.ncbi.nlm.nih.gov/pubmed/14769939
http://dx.doi.org/10.1016/j.conb.2004.01.014
http://dx.doi.org/10.1016/j.conb.2004.01.014
http://www.ncbi.nlm.nih.gov/pubmed/15018935
http://dx.doi.org/10.1016/0092-8674(91)90418-X
http://www.ncbi.nlm.nih.gov/pubmed/1840504
http://dx.doi.org/10.1101/gr.171001
http://www.ncbi.nlm.nih.gov/pubmed/11337468
http://dx.doi.org/10.1371/journal.pone.0000708
http://www.ncbi.nlm.nih.gov/pubmed/17684554
http://dx.doi.org/10.1083/jcb.201008163
http://dx.doi.org/10.1083/jcb.201008163
http://www.ncbi.nlm.nih.gov/pubmed/21041441
http://dx.doi.org/10.1016/S0092-8674(00)80581-4
http://www.ncbi.nlm.nih.gov/pubmed/10089886
http://dx.doi.org/10.1126/science.2499043
http://www.ncbi.nlm.nih.gov/pubmed/2499043
http://dx.doi.org/10.1126/science.2255909
http://www.ncbi.nlm.nih.gov/pubmed/2255909

@ PLOS | one

Murine Olfactory Receptor Neuron Transcriptome

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

Nakamura T, Gold GH (1987) A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature
325 (6103): 442—444. doi: 10.1038/325442a0 PMID: 3027574

Michalakis S, Reisert J, Geiger H, Wetzel C, Zong X, et al. (2006) Loss of CNGB1 protein leads to ol-
factory dysfunction and subciliary cyclic nucleotide-gated channel trapping. J. Biol. Chem. 281 (46):
35156-35166. doi: 10.1074/jbc.M606409200 PMID: 16980309

Pifferi S, Boccaccio A, Menini A (2006) Cyclic nucleotide-gated ion channels in sensory transduction.
FEBS Lett. 580 (12): 2853-2859. doi: 10.1016/j.febslet.2006.03.086 PMID: 16631748

Kleene SJ, Gesteland R (1991) Calcium-activated chloride conductance in frog olfactory cilia. J. Neu-
rosci. 11 (11): 3624-3629. PMID: 1941099

Reisert J, Bauer PJ, Yau K, Frings S (2003) The Ca-activated Cl channel and its control in rat olfactory
receptor neurons. J. Gen. Physiol. 122 (3): 349-363. doi: 10.1085/jgp.200308888 PMID: 12939394

Stephan AB, Shum EY, Hirsh S, Cygnar KD, Reisert J, et al. (2009) ANO2 is the cilial calcium-activat-
ed chloride channel that may mediate olfactory amplification. Proc. Natl. Acad. Sci. U.S.A. 106 (28):
11776-11781. doi: 10.1073/pnas.0903304106 PMID: 19561302

Rasche S, Toetter B, Adler J, Tschapek A, Doerner JF, et al. (2010) Tmem16b is specifically express-
ed in the cilia of olfactory sensory neurons. Chem. Senses 35 (3): 239-245. doi: 10.1093/chemse/
bjg007 PMID: 20100788

Hengl T, Kaneko H, Dauner K, Vocke K, Frings S, et al. (2010) Molecular components of signal ampli-
fication in olfactory sensory cilia. Proc. Natl. Acad. Sci. U.S.A. 107 (13): 6052—6057. doi: 10.1073/
pnas.0909032107 PMID: 20231443

Kaneko H, Putzier |, Frings S, Kaupp UB, Gensch T (2004) Chloride accumulation in mammalian ol-
factory sensory neurons. J. Neurosci. 24 (36): 7931-7938. doi: 10.1523/JNEUROSCI.2115-04.2004
PMID: 15356206

Reisert J, Lai J, Yau K, Bradley J (2005) Mechanism of the excitatory Cl- response in mouse olfactory
receptor neurons. Neuron 45 (4): 553-561. doi: 10.1016/j.neuron.2005.01.012 PMID: 15721241

Nickell WT, Kleene NK, Kleene SJ (2007) Mechanisms of neuronal chloride accumulation in intact
mouse olfactory epithelium. J. Physiol. (Lond.) 583 (Pt 3): 1005—-1020. doi: 10.1113/jphysiol.2007.
129601

Saito H, Kubota M, Roberts RW, Chi Q, Matsunami H (2004) RTP family members induce functional
expression of mammalian odorant receptors. Cell 119 (5): 679-691. PMID: 15550249

Boekhoff |, Breer (1992) Termination of second messenger signaling in olfaction. Proc. Natl. Acad.
Sci. U.S.A. 89 (2): 471-474. doi: 10.1073/pnas.89.2.471 PMID: 1370581

Boekhoff |, Inglese J, Schleicher S, Koch WJ, Lefkowitz RJ, et al. (1994) Olfactory desensitization re-
quires membrane targeting of receptor kinase mediated by beta gamma-subunits of heterotrimeric
G proteins. J. Biol. Chem. 269 (1): 37—-40. PMID: 8276821

Schleicher S, Boekhoff |, Arriza J, Lefkowitz RJ, Breer H (1993) A beta-adrenergic receptor kinase-
like enzyme is involved in olfactory signal termination. Proc. Natl. Acad. Sci. U.S.A. 90 (4): 1420—-
1424. doi: 10.1073/pnas.90.4.1420 PMID: 8381966

Dawson TM, Arriza JL, Jaworsky DE, Borisy FF, Attramadal H, et al. (1993) Beta-adrenergic receptor
kinase-2 and beta-arrestin-2 as mediators of odorant-induced desensitization. Science 259 (5096):
825-829. doi: 10.1126/science.8381559 PMID: 8381559

Peppel K, Boekhoff I, McDonald P, Breer H, Caron MG, et al. (1997) G protein-coupled receptor ki-
nase 3 (GRK3) gene disruption leads to loss of odorant receptor desensitization. J. Biol. Chem. 272
(41): 25425-25428. doi: 10.1074/jbc.272.41.25425 PMID: 9325250

Mashukova A, Spehr M, Hatt H, Neuhaus EM (2006) Beta-arrestin2-mediated internalization of mam-
malian odorant receptors. J. Neurosci. 26 (39): 9902-9912. doi: 10.1523/JNEUROSCI.2897-06.2006
PMID: 17005854

Dooley R, Baumgart S, Rasche S, Hatt H, Neuhaus EM (2009) Olfactory receptor signaling is regulat-
ed by the post-synaptic density 95, Drosophila discs large, zona-occludens 1 (PDZ) scaffold multi-
PDZ domain protein 1. FEBS J. 276 (24): 7279-7290. doi: 10.1111/j.1742-4658.2009.07435.x PMID:
19909339

Dannecker LEC von, Mercadante AF, Malnic B (2005) Ric-8B, an olfactory putative GTP exchange
factor, amplifies signal transduction through the olfactory-specific G-protein Galphaolf. J. Neurosci.
25 (15): 3793-3800. doi: 10.1523/JNEUROSCI.4595-04.2005

Dannecker LEC von, Mercadante AF, Malnic B (2006) Ric-8B promotes functional expression of odor-
ant receptors. Proc. Natl. Acad. Sci. U.S.A. 103 (24): 9310-9314. doi: 10.1073/pnas.0600697103

Kerr DS, Dannecker LEC von, Davalos M, Michaloski JS, Malnic B (2008) Ric-8B interacts with G
alpha olf and G gamma 13 and co-localizes with G alpha olf, G beta 1 and G gamma 13 in the cilia of

PLOS ONE | DOI:10.1371/journal.pone.0113170 January 15,2015 38/47


http://dx.doi.org/10.1038/325442a0
http://www.ncbi.nlm.nih.gov/pubmed/3027574
http://dx.doi.org/10.1074/jbc.M606409200
http://www.ncbi.nlm.nih.gov/pubmed/16980309
http://dx.doi.org/10.1016/j.febslet.2006.03.086
http://www.ncbi.nlm.nih.gov/pubmed/16631748
http://www.ncbi.nlm.nih.gov/pubmed/1941099
http://dx.doi.org/10.1085/jgp.200308888
http://www.ncbi.nlm.nih.gov/pubmed/12939394
http://dx.doi.org/10.1073/pnas.0903304106
http://www.ncbi.nlm.nih.gov/pubmed/19561302
http://dx.doi.org/10.1093/chemse/bjq007
http://dx.doi.org/10.1093/chemse/bjq007
http://www.ncbi.nlm.nih.gov/pubmed/20100788
http://dx.doi.org/10.1073/pnas.0909032107
http://dx.doi.org/10.1073/pnas.0909032107
http://www.ncbi.nlm.nih.gov/pubmed/20231443
http://dx.doi.org/10.1523/JNEUROSCI.2115-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15356206
http://dx.doi.org/10.1016/j.neuron.2005.01.012
http://www.ncbi.nlm.nih.gov/pubmed/15721241
http://dx.doi.org/10.1113/jphysiol.2007.129601
http://dx.doi.org/10.1113/jphysiol.2007.129601
http://www.ncbi.nlm.nih.gov/pubmed/15550249
http://dx.doi.org/10.1073/pnas.89.2.471
http://www.ncbi.nlm.nih.gov/pubmed/1370581
http://www.ncbi.nlm.nih.gov/pubmed/8276821
http://dx.doi.org/10.1073/pnas.90.4.1420
http://www.ncbi.nlm.nih.gov/pubmed/8381966
http://dx.doi.org/10.1126/science.8381559
http://www.ncbi.nlm.nih.gov/pubmed/8381559
http://dx.doi.org/10.1074/jbc.272.41.25425
http://www.ncbi.nlm.nih.gov/pubmed/9325250
http://dx.doi.org/10.1523/JNEUROSCI.2897-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/17005854
http://dx.doi.org/10.1111/j.1742-4658.2009.07435.x
http://www.ncbi.nlm.nih.gov/pubmed/19909339
http://dx.doi.org/10.1523/JNEUROSCI.4595-04.2005
http://dx.doi.org/10.1073/pnas.0600697103

@ PLOS | one

Murine Olfactory Receptor Neuron Transcriptome

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

olfactory sensory neurons. Mol. Cell. Neurosci. 38 (3): 341-348. doi: 10.1016/j.mcn.2008.03.006
PMID: 18462949

Wei J, Wayman G, Storm D (1996) Phosphorylation and inhibition of type Ill adenylyl cyclase by cal-
modulin-dependent protein kinase Il in vivo. J. Biol. Chem. 271 (39): 24231-24235. doi: 10.1074/jbc.
271.39.24231 PMID: 8798667

Yan C, Zhao AZ, Bentley JK, Loughney K, Ferguson K, et al. (1995) Molecular cloning and characteri-
zation of a calmodulin-dependent phosphodiesterase enriched in olfactory sensory neurons. Proc.
Natl. Acad. Sci. U.S.A. 92 (21): 9677—9681. doi: 10.1073/pnas.92.21.9677 PMID: 7568196

Yan C, Zhao AZ, Bentley JK, Beavo J (1996) The calmodulin-dependent phosphodiesterase gene
PDE1C encodes several functionally different splice variants in a tissue-specific manner. J. Biol.
Chem. 271 (41): 25699-25706. doi: 10.1074/jbc.271.41.25699 PMID: 8810348

Cherry JA, Davis RL (1995) A mouse homolog of dunce, a gene important for learning and memory in
Drosophila, is preferentially expressed in olfactory receptor neurons. J. Neurobiol. 28 (1): 102—-113.
doi: 10.1002/neu.480280109 PMID: 8586960

Davis RL, Cherry J, Dauwalder B, Han PL, Skoulakis E (1995) The cyclic AMP system and Drosophila
learning. Mol. Cell. Biochem. 149-150: 271-278. doi: 10.1007/BF01076588 PMID: 8569740

Pho V, Butman ML, Cherry JA (2005) Type 4 phosphodiesterase inhibition impairs detection of low
odor concentrations in mice. Behav. Brain Res. 161 (2): 245-253. doi: 10.1016/j.bbr.2005.02.011
PMID: 15922051

Zufall F, Leinders-Zufall T (2000) The cellular and molecular basis of odor adaptation. Chem. Senses
25 (4): 473-481. doi: 10.1093/chemse/25.4.473 PMID: 10944513

Munger SD, Gleeson RA, Aldrich HC, Rust NC, Ache BW, et al. (2000) Characterization of a phos-
phoinositide-mediated odor transduction pathway reveals plasma membrane localization of an inositol
1,4, 5-trisphosphate receptor in lobster olfactory receptor neurons. J. Biol. Chem. 275 (27): 20450—
20457. doi: 10.1074/jbc.M001989200 PMID: 10781594

Munger SD, Lane AP, Zhong H, Leinders-Zufall T, Yau KW, et al. (2001) Central role of the CNGA4
channel subunit in Ca2+-calmodulin-dependent odor adaptation. Science 294 (5549): 2172-2175.
doi: 10.1126/science.1063224 PMID: 11739959

Kelliher KR, Ziesmann J, Munger SD, Reed RR, Zufall F (2003) Importance of the CNGA4 channel
gene for odor discrimination and adaptation in behaving mice. Proc. Natl. Acad. Sci. U.S.A. 100 (7):
4299-4304. doi: 10.1073/pnas.0736071100 PMID: 12649326

Stephan AB, Tobochnik S, Dibattista M, Wall CM, Reisert J, et al. (2012) The Na(+)/Ca(2+) exchanger
NCKX4 governs termination and adaptation of the mammalian olfactory response. Nat. Neurosci. 15
(1): 131-137. doi: 10.1038/nn.2943

Klasen K, Corey EA, Kuck F, Wetzel CH, Hatt H, et al. (2010) Odorant-stimulated phosphoinositide
signaling in mammalian olfactory receptor neurons. Cell. Signal. 22 (1): 150—157. doi: 10.1016/].
cellsig.2009.09.026 PMID: 19781634

Zhainazarov AB, Doolin R, Herlihy JD, Ache (2001) Odor-stimulated phosphatidylinositol 3-kinase in
lobster olfactory receptor cells. J. Neurophysiol. 85 (6): 2537—-2544. PMID: 11387399

Spehr M, Wetzel CH, Hatt H, Ache B (2002) 3-phosphoinositides modulate cyclic nucleotide signaling
in olfactory receptor neurons. Neuron 33 (5): 731-739. doi: 10.1016/S0896-6273(02)00610-4 PMID:
11879650

Ukhanov K, Corey EA, Brunert D, Klasen K, Ache BW (2010) Inhibitory odorant signaling in Mammali-
an olfactory receptor neurons. J. Neurophysiol. 103 (2): 1114-1122. doi: 10.1152/jn.00980.2009
PMID: 20032232

Ukhanov K, Brunert D, Corey EA, Ache BW (2011) Phosphoinositide 3-kinase-dependent antagonism
in mammalian olfactory receptor neurons. J. Neurosci. 31 (1): 273-280. doi: 10.1523/JNEUROSCI.
3698-10.2011 PMID: 21209212

Sammeta N, Yu T, Bose SC, McClintock TS (2007) Mouse olfactory sensory neurons express 10,000
genes. J. Comp. Neurol. 502 (6): 1138—1156. doi: 10.1002/cne.21365 PMID: 17444493

Nickell MD, Breheny P, Stromberg AJ, McClintock TS (2012) Genomics of mature and immature olfac-
tory sensory neurons. J. Comp. Neurol. 520 (12): 2608—2629. doi: 10.1002/cne.23052 PMID:
22252456

Potter SM, Zheng C, Koos DS, Feinstein P, Fraser SE et al. (2001) Structure and emergence of specif-
ic olfactory glomeruli in the mouse. J. Neurosci. 21 (24): 9713-9723. PMID: 11739580

Shiao M, Chang AY, Liao B, Ching Y, Lu MJ, et al. (2012) Transcriptomes of mouse olfactory epitheli-
um reveal sexual differences in odorant detection. Genome Biol Evol 4 (5): 703-712. doi: 10.1093/
gbe/evs039 PMID: 22511034

PLOS ONE | DOI:10.1371/journal.pone.0113170 January 15,2015 39/47


http://dx.doi.org/10.1016/j.mcn.2008.03.006
http://www.ncbi.nlm.nih.gov/pubmed/18462949
http://dx.doi.org/10.1074/jbc.271.39.24231
http://dx.doi.org/10.1074/jbc.271.39.24231
http://www.ncbi.nlm.nih.gov/pubmed/8798667
http://dx.doi.org/10.1073/pnas.92.21.9677
http://www.ncbi.nlm.nih.gov/pubmed/7568196
http://dx.doi.org/10.1074/jbc.271.41.25699
http://www.ncbi.nlm.nih.gov/pubmed/8810348
http://dx.doi.org/10.1002/neu.480280109
http://www.ncbi.nlm.nih.gov/pubmed/8586960
http://dx.doi.org/10.1007/BF01076588
http://www.ncbi.nlm.nih.gov/pubmed/8569740
http://dx.doi.org/10.1016/j.bbr.2005.02.011
http://www.ncbi.nlm.nih.gov/pubmed/15922051
http://dx.doi.org/10.1093/chemse/25.4.473
http://www.ncbi.nlm.nih.gov/pubmed/10944513
http://dx.doi.org/10.1074/jbc.M001989200
http://www.ncbi.nlm.nih.gov/pubmed/10781594
http://dx.doi.org/10.1126/science.1063224
http://www.ncbi.nlm.nih.gov/pubmed/11739959
http://dx.doi.org/10.1073/pnas.0736071100
http://www.ncbi.nlm.nih.gov/pubmed/12649326
http://dx.doi.org/10.1038/nn.2943
http://dx.doi.org/10.1016/j.cellsig.2009.09.026
http://dx.doi.org/10.1016/j.cellsig.2009.09.026
http://www.ncbi.nlm.nih.gov/pubmed/19781634
http://www.ncbi.nlm.nih.gov/pubmed/11387399
http://dx.doi.org/10.1016/S0896-6273(02)00610-4
http://www.ncbi.nlm.nih.gov/pubmed/11879650
http://dx.doi.org/10.1152/jn.00980.2009
http://www.ncbi.nlm.nih.gov/pubmed/20032232
http://dx.doi.org/10.1523/JNEUROSCI.3698-10.2011
http://dx.doi.org/10.1523/JNEUROSCI.3698-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21209212
http://dx.doi.org/10.1002/cne.21365
http://www.ncbi.nlm.nih.gov/pubmed/17444493
http://dx.doi.org/10.1002/cne.23052
http://www.ncbi.nlm.nih.gov/pubmed/22252456
http://www.ncbi.nlm.nih.gov/pubmed/11739580
http://dx.doi.org/10.1093/gbe/evs039
http://dx.doi.org/10.1093/gbe/evs039
http://www.ncbi.nlm.nih.gov/pubmed/22511034

@ PLOS | one

Murine Olfactory Receptor Neuron Transcriptome

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Keydar |, Ben-Asher E, Feldmesser E, Nativ N, Oshimoto A, et al. (2013) General olfactory sensitivity
database (GOSdb): candidate genes and their genomic variations. Hum. Mutat. 34 (1): 32—41. doi:
10.1002/humu.22212 PMID: 22936402

Mayer U, Ungerer N, Klimmeck D, Warnken U, Schnélzer M, et al. (2008) Proteomic analysis of a
membrane preparation from rat olfactory sensory cilia. Chem. Senses 33 (2): 145-162. doi: 10.1093/
chemse/bjm073 PMID: 18032372

Barbour J, Neuhaus EM, Piechura H, Stoepel N, Mashukova A, et al. (2008) New insight into stimu-
lus-induced plasticity of the olfactory epithelium in Mus musculus by quantitative proteomics. J. Prote-
ome Res. 7 (4): 1594-1605. doi: 10.1021/pr7005796 PMID: 18336002

Mayer U, Kiiller A, Daiber PC, Neudorf I, Warnken U, et al. (2009) The proteome of rat olfactory senso-
ry cilia. Proteomics 9 (2): 322—-334. doi: 10.1002/pmic.200800149 PMID: 19086097

Klimmeck D, Mayer U, Ungerer N, Warnken U, Schnélzer M, et al. (2008) Calcium-signaling networks
in olfactory receptor neurons. Neuroscience 151 (3): 901-912. doi: 10.1016/j.neuroscience.2007.11.
023 PMID: 18155848

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, et al. (2012) Differential gene and transcript expres-
sion analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7 (3): 562-578. doi: 10.
1038/nprot.2012.016 PMID: 22383036

Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioin-
formatics 25 (9): 1105—-1111. doi: 10.1093/bioinformatics/btp120 PMID: 19289445

Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of
short DNA sequences to the human genome. Genome Biol. 10 (3): R25. doi: 10.1186/gb-2009-10-3-
25 PMID: 19261174

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence Alignment/Map format
and SAMtools. Bioinformatics 25 (16): 2078-2079. doi: 10.1093/bioinformatics/btp352 PMID:
19505943

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, et al. (2010) Transcript assembly and quanti-
fication by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation.
Nat. Biotechnol. 28 (5): 511-515. doi: 10.1038/nbt.1621 PMID: 20436464

Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L (2011) Improving RNA-Seq expression esti-
mates by correcting for fragment bias. Genome Biol. 12 (3): R22. doi: 10.1186/gb-2011-12-3-r22
PMID: 21410973

Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian
transcriptomes by RNA-Seq. Nat. Methods 5 (7): 621-628. doi: 10.1038/nmeth.1226 PMID:
18516045

Harr B, Turner LM (2010) Genome-wide analysis of alternative splicing evolution among Mus subspe-
cies. Mol. Ecol. 19 Suppl 1: 228-239. doi: 10.1111/1.1365-294X.2009.04490.x PMID: 20331782

Dubacq C, Jamet S, Trembleau A (2009) Evidence for developmentally regulated local translation of
odorant receptor mRNAs in the axons of olfactory sensory neurons. J. Neurosci. 29 (33): 10184—
10190. doi: 10.1523/JNEUROSCI.2443-09.2009 PMID: 19692593

Yu T, Mclintyre JC, Bose SC, Hardin D, Owen MC, et al. (2005) Differentially expressed transcripts
from phenotypically identified olfactory sensory neurons. J. Comp. Neurol. 483 (3): 251-262. doi: 10.
1002/cne.20429 PMID: 15682396

Lai PC, Bahl G, Gremigni M, Matarazzo V, Clot-Faybesse O, et al. (2008) An olfactory receptor pseu-
dogene whose function emerged in humans: a case study in the evolution of structure-function in
GPCREs. J. Struct. Funct. Genomics 9 (1-4:): 29-40. doi: 10.1007/s10969-008-9043-x PMID:
18802787

Kajiya K, Inaki K, Tanaka M, Haga T, Kataoka H, et al. (2001) Molecular bases of odor discrimination:
Reconstitution of olfactory receptors that recognize overlapping sets of odorants. J. Neurosci. 21
(16): 6018—6025. PMID: 11487625

Pes D, Pelosi P (1995) Odorant-binding proteins of the mouse. Comp Biochem Physiol B Biochem
Mol Biol 112 (3): 471-479. doi: 10.1016/0305-0491(95)00063-1 PMID: 8529023

Ling G, Gu J, Genter MB, Zhuo X, Ding X (2004) Regulation of cytochrome P450 gene expression in
the olfactory mucosa. Chem Biol Interact 147 (3): 247—258. doi: 10.1016/j.cbi.2004.02.003 PMID:
15135081

Liberles SD, Buck LB (2006) A second class of chemosensory receptors in the olfactory epithelium.
Nature 442 (7103): 645-650. doi: 10.1038/nature05066 PMID: 16878137

Liberles SD, Horowitz LF, Kuang D, Contos JJ, Wilson KL, et al. (2009) Formyl peptide receptors are
candidate chemosensory receptors in the vomeronasal organ. Proc. Natl. Acad. Sci. U.S.A. 106 (24):
9842-9847. doi: 10.1073/pnas.0904464106 PMID: 19497865

PLOS ONE | DOI:10.1371/journal.pone.0113170 January 15,2015 40/47


http://dx.doi.org/10.1002/humu.22212
http://www.ncbi.nlm.nih.gov/pubmed/22936402
http://dx.doi.org/10.1093/chemse/bjm073
http://dx.doi.org/10.1093/chemse/bjm073
http://www.ncbi.nlm.nih.gov/pubmed/18032372
http://dx.doi.org/10.1021/pr7005796
http://www.ncbi.nlm.nih.gov/pubmed/18336002
http://dx.doi.org/10.1002/pmic.200800149
http://www.ncbi.nlm.nih.gov/pubmed/19086097
http://dx.doi.org/10.1016/j.neuroscience.2007.11.023
http://dx.doi.org/10.1016/j.neuroscience.2007.11.023
http://www.ncbi.nlm.nih.gov/pubmed/18155848
http://dx.doi.org/10.1038/nprot.2012.016
http://dx.doi.org/10.1038/nprot.2012.016
http://www.ncbi.nlm.nih.gov/pubmed/22383036
http://dx.doi.org/10.1093/bioinformatics/btp120
http://www.ncbi.nlm.nih.gov/pubmed/19289445
http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://www.ncbi.nlm.nih.gov/pubmed/19261174
http://dx.doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
http://dx.doi.org/10.1038/nbt.1621
http://www.ncbi.nlm.nih.gov/pubmed/20436464
http://dx.doi.org/10.1186/gb-2011-12-3-r22
http://www.ncbi.nlm.nih.gov/pubmed/21410973
http://dx.doi.org/10.1038/nmeth.1226
http://www.ncbi.nlm.nih.gov/pubmed/18516045
http://dx.doi.org/10.1111/j.1365-294X.2009.04490.x
http://www.ncbi.nlm.nih.gov/pubmed/20331782
http://dx.doi.org/10.1523/JNEUROSCI.2443-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19692593
http://dx.doi.org/10.1002/cne.20429
http://dx.doi.org/10.1002/cne.20429
http://www.ncbi.nlm.nih.gov/pubmed/15682396
http://dx.doi.org/10.1007/s10969-008-9043-x
http://www.ncbi.nlm.nih.gov/pubmed/18802787
http://www.ncbi.nlm.nih.gov/pubmed/11487625
http://dx.doi.org/10.1016/0305-0491(95)00063-1
http://www.ncbi.nlm.nih.gov/pubmed/8529023
http://dx.doi.org/10.1016/j.cbi.2004.02.003
http://www.ncbi.nlm.nih.gov/pubmed/15135081
http://dx.doi.org/10.1038/nature05066
http://www.ncbi.nlm.nih.gov/pubmed/16878137
http://dx.doi.org/10.1073/pnas.0904464106
http://www.ncbi.nlm.nih.gov/pubmed/19497865

@ PLOS | one

Murine Olfactory Receptor Neuron Transcriptome

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92,

93.

Riviere S, Challet L, Fluegge D, Spehr M, Rodriguez | (2009) Formyl peptide receptor-like proteins are
a novel family of vomeronasal chemosensors. Nature 459 (7246): 574-577. doi: 10.1038/
nature08029 PMID: 19387439

Fulle HJ, Vassar R, Foster DC, Yang RB, Axel R, et al. (1995) A receptor guanylyl cyclase expressed
specifically in olfactory sensory neurons. Proc. Natl. Acad. Sci. U.S.A. 92 (8): 3571-3575. doi: 10.
1073/pnas.92.8.3571 PMID: 7724600

Chaudhari N, Pereira E, Roper SD (2009) Taste receptors for umami: the case for multiple receptors.
Am. J. Clin. Nutr. 90 (3): 738S-742S. doi: 10.3945/ajcn.2009.27462H PMID: 19571230

Zheng J, Zagotta WN (2004) Stoichiometry and assembly of olfactory cyclic nucleotide-gated chan-
nels. Neuron 42 (3): 411-421. doi: 10.1016/S0896-6273(04)00253-3 PMID: 15134638

Stephan AB, Shum EY, Hirsh S, Cygnar KD, Reisert J, et al. (2009) ANO2 is the cilial calcium-activat-
ed chloride channel that may mediate olfactory amplification. Proc. Natl. Acad. Sci. U.S.A. 106 (28):
11776—-11781. doi: 10.1073/pnas.0903304106 PMID: 19561302

Neuhaus EM, Mashukova A, Barbour J, Wolters D, Hatt H (2006) Novel function of beta-arrestin2 in
the nucleus of mature spermatozoa. J. Cell. Sci. 119 (Pt 15): 3047-3056. doi: 10.1242/jcs.03046
PMID: 16820410

Anholt RR, Mumby SM, Stoffers DA, Girard PR, Kuo JF, et al. (1987) Transduction proteins of olfacto-
ry receptor cells: identification of guanine nucleotide binding proteins and protein kinase C. Biochem-
istry 26 (3): 788—795. doi: 10.1021/bi003772020 PMID: 3105575

Margolis FL, Verhaagen J, Biffo S, Huang FL, Grillo M (1991) Regulation of gene expression in the ol-
factory neuroepithelium: a neurogenetic matrix. Prog. Brain Res. 89: 97—122. doi: 10.1016/S0079-
6123(08)61718-5 PMID: 1839074

Bruch R (1996) Phosphoinositide second messengers in olfaction. Comp. Biochem. Physiol. B, Bio-
chem. Mol. Biol. 113 (3): 451-459. doi: 10.1016/0305-0491(95)02040-3 PMID: 8829799

Weiss J, Pyrski M, Jacobi E, Bufe B, Willnecker V, et al. (2011) Loss-of-function mutations in sodium
channel Nav1.7 cause anosmia. Nature 472 (7342): 186—190. doi: 10.1038/nature09975

Goldstein BJ, Kulaga HM, Reed RR (2003) Cloning and characterization of SLP3: a novel member of
the stomatin family expressed by olfactory receptor neurons. J. Assoc. Res. Otolaryngol. 4 (1): 74—
82. doi: 10.1007/s10162-002-2039-5 PMID: 12239636

Graziadei GA, Graziadei P (1979) Neurogenesis and neuron regeneration in the olfactory system of
mammals. Il. Degeneration and reconstitution of the olfactory sensory neurons after axotomy. J. Neu-
rocytol. 8 (2): 197-213. doi: 10.1007/BF01175561 PMID: 469573

Huard JM, Youngentob SL, Goldstein BJ, Luskin MB, Schwob JE (1998) Adult olfactory epithelium
contains multipotent progenitors that give rise to neurons and non-neural cells. J. Comp. Neurol. 400
(4): 469-486. doi: 10.1002/(SICI)1096-9861(19981102)400:4%3C469::AID-CNE3%3E3.3.CO;2-L
PMID: 9786409

Li YR, Matsunami H (2011) Activation state of the M3 muscarinic acetylcholine receptor modulates
mammalian odorant receptor signaling. Sci Signal 4 (155): ra1. doi: 10.1126/scisignal.2001230
PMID: 21224444

Hague C, Hall RA, Minneman KP (2004) Olfactory receptor localization and function: an emerging role
for GPCR heterodimerization. Mol. Interv. 4 (6): 321-322. doi: 10.1124/mi.4.6.4 PMID: 15616160

Bauer S, Grossmann S, Vingron M, Robinson PN (2008) Ontologizer 2.0—a multifunctional tool for
GO term enrichment analysis and data exploration. Bioinformatics 24 (14): 1650-1651. doi: 10.1093/
bioinformatics/btn250 PMID: 18511468

Lin W, Margolskee R, Donnert G, Hell SW, Restrepo D (2007) Olfactory neurons expressing transient
receptor potential channel M5 (TRPMS5) are involved in sensing semiochemicals. Proc. Natl. Acad.
Sci. U.S.A. 104 (7): 2471-2476. doi: 10.1073/pnas.0610201104 PMID: 17267604

Schébel N, Radtke D, Lubbert M, Gisselmann G, Lehmann R, et al. (2012) Trigeminal ganglion neu-
rons of mice show intracellular chloride accumulation and chloride-dependent amplification of capsai-
cin-induced responses. PLoS ONE 7 (11): e48005. doi: 10.1371/journal.pone.0048005 PMID:
23144843

Hahn'Y, Kim DS, Pastan |H, Lee B (2009) Anoctamin and transmembrane channel-like proteins are
evolutionarily related. Int. J. Mol. Med. 24 (1): 51-55. doi: 10.3892/ijmm_00000205 PMID: 19513534

Fried H, Kaupp UB, Miiller F (2010) Hyperpolarization-activated and cyclic nucleotide-gated channels
are differentially expressed in juxtaglomerular cells in the olfactory bulb of mice. Cell Tissue Res. 339
(3): 463-479. doi: 10.1007/s00441-009-0904-9 PMID: 20140458

Khananshvili D (2013) The SLC8 gene family of sodium-calcium exchangers (NCX)—structure, func-
tion, and regulation in health and disease. Mol. Aspects Med. 34 (2-3: ): 220—235. doi: 10.1016/j.
mam.2012.07.003 PMID: 23506867

PLOS ONE | DOI:10.1371/journal.pone.0113170 January 15,2015 41/47


http://dx.doi.org/10.1038/nature08029
http://dx.doi.org/10.1038/nature08029
http://www.ncbi.nlm.nih.gov/pubmed/19387439
http://dx.doi.org/10.1073/pnas.92.8.3571
http://dx.doi.org/10.1073/pnas.92.8.3571
http://www.ncbi.nlm.nih.gov/pubmed/7724600
http://dx.doi.org/10.3945/ajcn.2009.27462H
http://www.ncbi.nlm.nih.gov/pubmed/19571230
http://dx.doi.org/10.1016/S0896-6273(04)00253-3
http://www.ncbi.nlm.nih.gov/pubmed/15134638
http://dx.doi.org/10.1073/pnas.0903304106
http://www.ncbi.nlm.nih.gov/pubmed/19561302
http://dx.doi.org/10.1242/jcs.03046
http://www.ncbi.nlm.nih.gov/pubmed/16820410
http://dx.doi.org/10.1021/bi00377a020
http://www.ncbi.nlm.nih.gov/pubmed/3105575
http://dx.doi.org/10.1016/S0079-6123(08)61718-5
http://dx.doi.org/10.1016/S0079-6123(08)61718-5
http://www.ncbi.nlm.nih.gov/pubmed/1839074
http://dx.doi.org/10.1016/0305-0491(95)02040-3
http://www.ncbi.nlm.nih.gov/pubmed/8829799
http://dx.doi.org/10.1038/nature09975
http://dx.doi.org/10.1007/s10162-002-2039-5
http://www.ncbi.nlm.nih.gov/pubmed/12239636
http://dx.doi.org/10.1007/BF01175561
http://www.ncbi.nlm.nih.gov/pubmed/469573
http://dx.doi.org/10.1002/(SICI)1096-9861(19981102)400:4%3C469::AID-CNE3%3E3.3.CO;2-L
http://www.ncbi.nlm.nih.gov/pubmed/9786409
http://dx.doi.org/10.1126/scisignal.2001230
http://www.ncbi.nlm.nih.gov/pubmed/21224444
http://dx.doi.org/10.1124/mi.4.6.4
http://www.ncbi.nlm.nih.gov/pubmed/15616160
http://dx.doi.org/10.1093/bioinformatics/btn250
http://dx.doi.org/10.1093/bioinformatics/btn250
http://www.ncbi.nlm.nih.gov/pubmed/18511468
http://dx.doi.org/10.1073/pnas.0610201104
http://www.ncbi.nlm.nih.gov/pubmed/17267604
http://dx.doi.org/10.1371/journal.pone.0048005
http://www.ncbi.nlm.nih.gov/pubmed/23144843
http://dx.doi.org/10.3892/ijmm_00000205
http://www.ncbi.nlm.nih.gov/pubmed/19513534
http://dx.doi.org/10.1007/s00441-009-0904-9
http://www.ncbi.nlm.nih.gov/pubmed/20140458
http://dx.doi.org/10.1016/j.mam.2012.07.003
http://dx.doi.org/10.1016/j.mam.2012.07.003
http://www.ncbi.nlm.nih.gov/pubmed/23506867

@ PLOS | one

Murine Olfactory Receptor Neuron Transcriptome

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

Menini A (1999) Calcium signalling and regulation in olfactory neurons. Curr. Opin. Neurobiol. 9 (4):
419-426. doi: 10.1016/S0959-4388(99)80063-4 PMID: 10448159

Sammeta N, Hardin DL, McClintock TS (2010) Uncx regulates proliferation of neural progenitor cells
and neuronal survival in the olfactory epithelium. Mol. Cell. Neurosci. 45 (4): 398—407. doi: 10.1016/.
mcn.2010.07.013 PMID: 20692344

Firestein S, Shepherd GM, Werblin FS (1990) Time course of the membrane current underlying sen-
sory transduction in salamander olfactory receptor neurones. J. Physiol. (Lond.) 430: 135—158. doi:
10.1113/jphysiol.1990.sp018286

Cygnar KD, Zhao H (2009) Phosphodiesterase 1C is dispensable for rapid response termination of ol-
factory sensory neurons. Nat. Neurosci. 12 (4): 454—462. doi: 10.1038/nn.2289 PMID: 19305400

Juilfs DM, Fulle HJ, Zhao AZ, Houslay MD, Garbers DL, et al. (1997) A subset of olfactory neurons
that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define
a unique olfactory signal transduction pathway. Proc. Natl. Acad. Sci. U.S.A. 94 (7): 3388—-3395. doi:
10.1073/pnas.94.7.3388 PMID: 9096404

Cote RH (2004) Characteristics of photoreceptor PDE (PDES6): similarities and differences to PDES5.
Int. J. Impot. Res. 16 Suppl 1: S28-33. doi: 10.1038/s].ijir.3901212 PMID: 15224133

Cote RH (2005) Cyclic guanosine 5’-monophosphate binding to regulatory GAF domains of photore-
ceptor phosphodiesterase. Methods Mol. Biol. 307: 141—154. PMID: 15988061

Taylor SS, Buechler JA, Yonemoto W (1990) cAMP-dependent protein kinase: framework for a di-
verse family of regulatory enzymes. Annu. Rev. Biochem. 59: 971-1005. doi: 10.1146/annurev.bi.59.
070190.004543 PMID: 2165385

Ache BW (2010) Odorant-specific modes of signaling in mammalian olfaction. Chem. Senses 35 (7):
533-539. doi: 10.1093/chemse/bjg045 PMID: 20519266

Brunert D, Klasen K, Corey EA, Ache BW (2010) PI3Kgamma-dependent signaling in mouse olfactory
receptor neurons. Chem. Senses 35 (4): 301-308. doi: 10.1093/chemse/bjq020 PMID: 20190008

Restrepo D, Miyamoto T, Bryant BP, Teeter JH (1990) Odor stimuli trigger influx of calcium into olfac-
tory neurons of the channel catfish. Science 249 (4973): 1166—1168. doi: 10.1126/science.2168580
PMID: 2168580

Fadool DA, Ache BW (1992) Plasma membrane inositol 1,4,5-trisphosphate-activated channels medi-
ate signal transduction in lobster olfactory receptor neurons. Neuron 9 (5): 907—918. doi: 10.1016/
0896-6273(92)90243-7 PMID: 1384577

Kalinoski DL, Aldinger SB, Boyle AG, Huque T, Marecek JF, et al. (1992) Characterization of a novel
inositol 1,4,5-trisphosphate receptor in isolated olfactory cilia. Biochem. J. 281 (Pt 2): 449-456.
PMID: 1310597

Restrepo D, Teeter JH, Honda E, Boyle AG, Marecek JF, et al. (1992) Evidence for an InsP3-gated
channel protein in isolated rat olfactory cilia. Am. J. Physiol. 263 (3 Pt 1): C667—-73. PMID: 1384346

Cunningham AM, Ryugo DK, Sharp AH, Reed RR, Snyder SH et al. (1993) Neuronal inositol 1,4,5-
trisphosphate receptor localized to the plasma membrane of olfactory cilia. Neuroscience 57 (2):
339-352. doi: 10.1016/0306-4522(93)90067-P PMID: 8115043

Clapham DE (2003) TRP channels as cellular sensors. Nature 426 (6966): 517-524. doi: 10.1038/
nature02196 PMID: 14654832

Elsaesser R, Montani G, Tirindelli R, Paysan J (2005) Phosphatidyl-inositide signalling proteins in a
novel class of sensory cells in the mammalian olfactory epithelium. Eur. J. Neurosci. 21 (10):
2692—-2700. doi: 10.1111/j.1460-9568.2005.04108.x PMID: 15926917

Runnels LW, Yue L, Clapham DE (2002) The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat.
Cell Biol. 4 (5): 329-336. PMID: 11941371

Pluznick JL, Rodriguez-Gil DJ, Hull M, Mistry K, Gattone V, et al. (2011) Renal cystic disease proteins
play critical roles in the organization of the olfactory epithelium. PLoS ONE 6 (5): €19694. doi: 10.
1371/journal.pone.0019694 PMID: 21614130

McClintock TS, Glasser CE, Bose SC, Bergman DA (2008) Tissue expression patterns identify mouse
cilia genes. Physiol. Genomics 32 (2): 198-206. doi: 10.1152/physiolgenomics.00128.2007 PMID:
17971504

Kream RM, Margolis FL (1984) Olfactory marker protein: turnover and transport in normal and regen-
erating neurons. J Neurosci 4 (3): 868—-879. PMID: 6707736

Khan M, Vaes E, Mombaerts P (2011) Regulation of the probability of mouse odorant receptor gene
choice. Cell 147 (4): 907-921. doi: 10.1016/j.cell.2011.09.049 PMID: 22078886

PLOS ONE | DOI:10.1371/journal.pone.0113170 January 15,2015 42/47


http://dx.doi.org/10.1016/S0959-4388(99)80063-4
http://www.ncbi.nlm.nih.gov/pubmed/10448159
http://dx.doi.org/10.1016/j.mcn.2010.07.013
http://dx.doi.org/10.1016/j.mcn.2010.07.013
http://www.ncbi.nlm.nih.gov/pubmed/20692344
http://dx.doi.org/10.1113/jphysiol.1990.sp018286
http://dx.doi.org/10.1038/nn.2289
http://www.ncbi.nlm.nih.gov/pubmed/19305400
http://dx.doi.org/10.1073/pnas.94.7.3388
http://www.ncbi.nlm.nih.gov/pubmed/9096404
http://dx.doi.org/10.1038/sj.ijir.3901212
http://www.ncbi.nlm.nih.gov/pubmed/15224133
http://www.ncbi.nlm.nih.gov/pubmed/15988061
http://dx.doi.org/10.1146/annurev.bi.59.070190.004543
http://dx.doi.org/10.1146/annurev.bi.59.070190.004543
http://www.ncbi.nlm.nih.gov/pubmed/2165385
http://dx.doi.org/10.1093/chemse/bjq045
http://www.ncbi.nlm.nih.gov/pubmed/20519266
http://dx.doi.org/10.1093/chemse/bjq020
http://www.ncbi.nlm.nih.gov/pubmed/20190008
http://dx.doi.org/10.1126/science.2168580
http://www.ncbi.nlm.nih.gov/pubmed/2168580
http://dx.doi.org/10.1016/0896-6273(92)90243-7
http://dx.doi.org/10.1016/0896-6273(92)90243-7
http://www.ncbi.nlm.nih.gov/pubmed/1384577
http://www.ncbi.nlm.nih.gov/pubmed/1310597
http://www.ncbi.nlm.nih.gov/pubmed/1384346
http://dx.doi.org/10.1016/0306-4522(93)90067-P
http://www.ncbi.nlm.nih.gov/pubmed/8115043
http://dx.doi.org/10.1038/nature02196
http://dx.doi.org/10.1038/nature02196
http://www.ncbi.nlm.nih.gov/pubmed/14654832
http://dx.doi.org/10.1111/j.1460-9568.2005.04108.x
http://www.ncbi.nlm.nih.gov/pubmed/15926917
http://www.ncbi.nlm.nih.gov/pubmed/11941371
http://dx.doi.org/10.1371/journal.pone.0019694
http://dx.doi.org/10.1371/journal.pone.0019694
http://www.ncbi.nlm.nih.gov/pubmed/21614130
http://dx.doi.org/10.1152/physiolgenomics.00128.2007
http://www.ncbi.nlm.nih.gov/pubmed/17971504
http://www.ncbi.nlm.nih.gov/pubmed/6707736
http://dx.doi.org/10.1016/j.cell.2011.09.049
http://www.ncbi.nlm.nih.gov/pubmed/22078886

@ PLOS | one

Murine Olfactory Receptor Neuron Transcriptome

116.

117.

118.

119.

120.

121.

122,

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

Serizawa S, Miyamichi K, Nakatani H, Suzuki M, Saito M, et al. (2003) Negative feedback regulation
ensures the one receptor-one olfactory neuron rule in mouse. Science 302 (5653): 2088—2094. doi:
10.1126/science.1089122 PMID: 14593185

Wakabayashi Y, Mori Y, Ichikawa M, Yazaki K, Hagino-Yamagishi K (2002) A putative pheromone re-
ceptor gene is expressed in two distinct olfactory organs in goats. Chem. Senses 27 (3): 207-213.
doi: 10.1093/chemse/27.3.207 PMID: 11923183

Xu F, Schaefer M, Kida |, Schafer J, Liu N, et al. (2005) Simultaneous activation of mouse main and
accessory olfactory bulbs by odors or pheromones. J. Comp. Neurol. 489 (4): 491-500. doi: 10.1002/
cne.20652 PMID: 16025460

Zufall F (2005) The TRPC2 ion channel and pheromone sensing in the accessory olfactory system.
Naunyn Schmiedebergs Arch. Pharmacol. 371 (4): 245-250. doi: 10.1007/s00210-005-1028-8
PMID: 15871013

Zufall F, Kelliher KR, Leinders-Zufall T (2002) Pheromone detection by mammalian vomeronasal neu-
rons. Microsc. Res. Tech. 58 (3): 251-260. doi: 10.1002/jemt.10152 PMID: 12203702

Takami S, Yukimatsu M, Matsumura G, Nishiyama F (2001) Vomeronasal epithelial cells of human fe-
tuses contain immunoreactivity for G proteins, Go(alpha) and Gi(alpha 2). Chem. Senses 26 (5):
517-522. doi: 10.1093/chemse/26.5.517 PMID: 11418497

Ohmoto M, Matsumoto |, Yasuoka A, Yoshihara Y, Abe K (2008) Genetic tracing of the gustatory and
trigeminal neural pathways originating from T1R3-expressing taste receptor cells and solitary chemo-
receptor cells. Mol. Cell. Neurosci. 38 (4): 505-517. doi: 10.1016/j.mcn.2008.04.011 PMID:
18539481

Nancy V, Callebaut I, El Marjou A, Gunzburg J de (2002) The delta subunit of retinal rod cGMP phos-
phodiesterase regulates the membrane association of Ras and Rap GTPases. J. Biol. Chem. 277
(17): 15076—15084. PMID: 11786539

Nikolova S, Guenther A, Savai R, Weissmann N, Ghofrani HA, et al. (2010) Phosphodiesterase 6 sub-
units are expressed and altered in idiopathic pulmonary fibrosis. Respir. Res. 11: 146. doi: 10.1186/
1465-9921-11-146 PMID: 20979602

Nilius B, Owsianik G, Voets T (2008) Transient receptor potential channels meet phosphoinositides.
EMBO J. 27 (21): 2809-2816. doi: 10.1038/emb0j.2008.217 PMID: 18923420

Liu D, Liman ER (2003) Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction
ion channel TRPM5. Proc. Natl. Acad. Sci. U.S.A. 100 (25): 15160-15165. doi: 10.1073/pnas.
2334159100 PMID: 14657398

Storch U, Forst A, Philipp M, Gudermann T, Mederos y Schnitzler M (2012) Transient receptor poten-
tial channel 1 (TRPC1) reduces calcium permeability in heteromeric channel complexes. J. Biol.
Chem. 287 (5): 3530-3540. doi: 10.1074/jbc.M111.283218 PMID: 22157757

Kerstein PC, Jacques-Fricke BT, Rengifo J, Mogen BJ, Williams JC, et al. (2013) Mechanosensitive
TRPC1 channels promote calpain proteolysis of talin to regulate spinal axon outgrowth. J. Neurosci.
33 (1): 273-285. doi: 10.1523/JNEUROSCI.2142-12.2013 PMID: 23283340

Madsen CP, Klausen TK, Fabian A, Hansen BJ, Pedersen SF, et al. (2012) On the role of TRPC1 in
control of Ca2+ influx, cell volume, and cell cycle. Am. J. Physiol., Cell Physiol. 303 (6): C625-34. doi:
10.1152/ajpcell.00287.2011 PMID: 22744003

Bates-Withers C, Sah R, Clapham DE (2011) TRPM?7, the Mg(2+) inhibited channel and kinase. Adv.
Exp. Med. Biol. 704: 173-183. doi: 10.1007/978-94-007-0265-3_9 PMID: 21290295

Jin J, Desai BN, Navarro B, Donovan A, Andrews NC et al. (2008) Deletion of Trpm?7 disrupts embry-
onic development and thymopoiesis without altering Mg2+ homeostasis. Science 322 (5902):
756-760. doi: 10.1126/science.1163493 PMID: 18974357

Jind, WuL, Jun J, Cheng X, Xu H, et al. (2012) The channel kinase, TRPM7, is required for early em-
bryonic development. Proc. Natl. Acad. Sci. U.S.A. 109 (5): E225-33. doi: 10.1073/pnas.
1120033109 PMID: 22203997

Hass N, Haub H, Stevens R, Breer H, Schwarzenbacher K (2008) Expression of adiponectin receptor
1 in olfactory mucosa of mice. Cell Tissue Res. 334 (2): 187-197. doi: 10.1007/s00441-008-0677-6
PMID: 18791742

Garitaonandia I, Smith JL, Kupchak BR, Lyons TJ (2009) Adiponectin identified as an agonist for
PAQR3/RKTG using a yeast-based assay system. J. Recept. Signal Transduct. Res. 29 (1): 67-73.
doi: 10.1080/10799890902729456 PMID: 19519172

Kadowaki T, Yamauchi T (2005) Adiponectin and adiponectin receptors. Endocr. Rev. 26 (3):
439-451. doi: 10.1210/er.2005-0005 PMID: 15897298

PLOS ONE | DOI:10.1371/journal.pone.0113170 January 15,2015 43/47


http://dx.doi.org/10.1126/science.1089122
http://www.ncbi.nlm.nih.gov/pubmed/14593185
http://dx.doi.org/10.1093/chemse/27.3.207
http://www.ncbi.nlm.nih.gov/pubmed/11923183
http://dx.doi.org/10.1002/cne.20652
http://dx.doi.org/10.1002/cne.20652
http://www.ncbi.nlm.nih.gov/pubmed/16025460
http://dx.doi.org/10.1007/s00210-005-1028-8
http://www.ncbi.nlm.nih.gov/pubmed/15871013
http://dx.doi.org/10.1002/jemt.10152
http://www.ncbi.nlm.nih.gov/pubmed/12203702
http://dx.doi.org/10.1093/chemse/26.5.517
http://www.ncbi.nlm.nih.gov/pubmed/11418497
http://dx.doi.org/10.1016/j.mcn.2008.04.011
http://www.ncbi.nlm.nih.gov/pubmed/18539481
http://www.ncbi.nlm.nih.gov/pubmed/11786539
http://dx.doi.org/10.1186/1465-9921-11-146
http://dx.doi.org/10.1186/1465-9921-11-146
http://www.ncbi.nlm.nih.gov/pubmed/20979602
http://dx.doi.org/10.1038/emboj.2008.217
http://www.ncbi.nlm.nih.gov/pubmed/18923420
http://dx.doi.org/10.1073/pnas.2334159100
http://dx.doi.org/10.1073/pnas.2334159100
http://www.ncbi.nlm.nih.gov/pubmed/14657398
http://dx.doi.org/10.1074/jbc.M111.283218
http://www.ncbi.nlm.nih.gov/pubmed/22157757
http://dx.doi.org/10.1523/JNEUROSCI.2142-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23283340
http://dx.doi.org/10.1152/ajpcell.00287.2011
http://www.ncbi.nlm.nih.gov/pubmed/22744003
http://dx.doi.org/10.1007/978-94-007-0265-3_9
http://www.ncbi.nlm.nih.gov/pubmed/21290295
http://dx.doi.org/10.1126/science.1163493
http://www.ncbi.nlm.nih.gov/pubmed/18974357
http://dx.doi.org/10.1073/pnas.1120033109
http://dx.doi.org/10.1073/pnas.1120033109
http://www.ncbi.nlm.nih.gov/pubmed/22203997
http://dx.doi.org/10.1007/s00441-008-0677-6
http://www.ncbi.nlm.nih.gov/pubmed/18791742
http://dx.doi.org/10.1080/10799890902729456
http://www.ncbi.nlm.nih.gov/pubmed/19519172
http://dx.doi.org/10.1210/er.2005-0005
http://www.ncbi.nlm.nih.gov/pubmed/15897298

@ PLOS | one

Murine Olfactory Receptor Neuron Transcriptome

136.

137.

138.

139.

140.

141.

142.

143.

144,

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

Savigner A, Duchamp-Viret P, Grosmaitre X, Chaput M, Garcia S, et al. (2009) Modulation of sponta-
neous and odorant-evoked activity of rat olfactory sensory neurons by two anorectic peptides, insulin
and leptin. J. Neurophysiol. 101 (6): 2898-2906. doi: 10.1152/jn.91169.2008 PMID: 19297511

Sreedharan S, Almén MS, Carlini VP, Haitina T, Stephansson O, et al. (2011) The G protein coupled
receptor Gpr153 shares common evolutionary origin with Gpr162 and is highly expressed in central
regions including the thalamus, cerebellum and the arcuate nucleus. FEBS J. 278 (24): 4881-4894.
doi: 10.1111/j.1742-4658.2011.08388.x PMID: 21981325

Engel, Kathrin M Y, Schréck K, Teupser D, Holdt LM, Ténjes A, et al. (2011) Reduced food intake and
body weight in mice deficient for the G protein-coupled receptor GPR82. PLoS ONE 6 (12): 29400.
doi: 10.1371/journal.pone.0029400 PMID: 22216272

Kurtenbach S, Mayer C, Pelz T, Hatt H, Leese F, et al. (2011) Molecular evolution of a chordate specif-
ic family of G protein-coupled receptors. BMC Evol. Biol. 11:234. doi: 10.1186/1471-2148-11-234
PMID: 21827690

Kolmakov NN, Kube M, Reinhardt R, Canario AVM (2008) Analysis of the goldfish Carassius auratus
olfactory epithelium transcriptome reveals the presence of numerous non-olfactory GPCR and puta-
tive receptors for progestin pheromones. BMC Genomics 9: 429. doi: 10.1186/1471-2164-9-429
PMID: 18803863

Gloriam DE, Fredriksson R, Schiéth HB (2007) The G protein-coupled receptor subset of the rat ge-
nome. BMC Genomics 8: 338. doi: 10.1186/1471-2164-8-338 PMID: 17892602

Bjarnadottir TK, Gloriam DE, Hellstrand SH, Kristiansson H, Fredriksson R, et al. (2006) Comprehen-
sive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse.
Genomics 88 (3): 263-273. doi: 10.1016/j.ygeno.2006.04.001 PMID: 16753280

Jones KA, Borowsky B, Tamm JA, Craig DA, Durkin MM, et al. (1998) GABA(B) receptors function as
a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 396 (6712): 674—679.
doi: 10.1038/25255 PMID: 9872315

Priest CA, Puche AC (2004) GABAB receptor expression and function in olfactory receptor neuron
axon growth. J. Neurobiol. 60 (2): 154—165. doi: 10.1002/neu.20011 PMID: 15266647

Olianas MC, Onali P (1999) Mediation by G protein betagamma subunits of the opioid stimulation of
adenylyl cyclase activity in rat olfactory bulb. Biochem. Pharmacol. 57 (6): 649—652. doi: 10.1016/
S0006-2952(98)00326-8 PMID: 10037449

Tillerson JL, Caudle WM, Parent JM, Gong C, Schallert T, et al. (2006) Olfactory discrimination deficits
in mice lacking the dopamine transporter or the D2 dopamine receptor. Behav. Brain Res. 172 (1):
97-105. doi: 10.1016/j.bbr.2006.04.025 PMID: 16765459

Niedernberg A, Tunaru S, Blaukat A, Ardati A, Kostenis E (2003) Sphingosine 1-phosphate and dio-
leoylphosphatidic acid are low affinity agonists for the orphan receptor GPR63. Cell. Signal. 15 (4):
435-446. doi: 10.1016/S0898-6568(02)00119-5 PMID: 12618218

Trifonov S, Houtani T, Kase M, Toida K, Maruyama M, et al. (2012) Lateral regions of the rodent stria-
tum reveal elevated glutamate decarboxylase 1 mRNA expression in medium-sized projection neu-
rons. Eur. J. Neurosci. 35 (5): 711-722. doi: 10.1111/j.1460-9568.2012.08001.x PMID: 22332935

Tissir F, Qu Y, Montcouquiol M, Zhou L, Komatsu K, et al. (2010) Lack of cadherins Celsr2 and Celsr3
impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nat. Neurosci. 13 (6): 700-707. doi:
10.1038/nn.2555 PMID: 20473291

Langenhan T, Russ AP (2010) Latrophilin signalling in tissue polarity and morphogenesis. Adv. Exp.
Med. Biol. 706: 37—48. doi: 10.1007/978-1-4419-7913-1_3 PMID: 21618824

Armstrong A, Ryu YK, Chieco D, Kuruvilla R (2011) Frizzled3 is required for neurogenesis and target
innervation during sympathetic nervous system development. J. Neurosci. 31 (7): 2371-2381. doi:
10.1523/JNEUROSCI.4243-10.2011 PMID: 21325504

Mustata RC, van Loy T, Lefort A, Libert F, Strollo S, et al. (2011) Lgr4 is required for Paneth cell differ-
entiation and maintenance of intestinal stem cells ex vivo. EMBO Rep. 12 (6): 558-564. doi: 10.1038/
embor.2011.52 PMID: 21508962

YuHl, JinY, FuJ, Hsu W (2010) Expression of Gpr177, a Wnt trafficking regulator, in mouse embryo-
genesis. Dev. Dyn. 239 (7): 2102—2109. doi: 10.1002/dvdy.22336 PMID: 20549736

Chang JT, Lowery LA, Sive H (2012) Multiple roles for the Na, K-ATPase subunits, Atp1al and Fxyd1,
during brain ventricle development. Dev. Biol. 368 (2): 312-322. doi: 10.1016/j.ydbio.2012.05.034
PMID: 22683378

Rengaraj D, Lee BR, Park KJ, Lee SI, Kang KS, et al. (2011) The distribution of neuron-specific gene
family member 1 in brain and germ cells: Implications for the regulation of germ-line development by
brain. Dev. Dyn. 240 (4): 850-861. doi: 10.1002/dvdy.22575 PMID: 21404368

PLOS ONE | DOI:10.1371/journal.pone.0113170 January 15,2015 44 /47


http://dx.doi.org/10.1152/jn.91169.2008
http://www.ncbi.nlm.nih.gov/pubmed/19297511
http://dx.doi.org/10.1111/j.1742-4658.2011.08388.x
http://www.ncbi.nlm.nih.gov/pubmed/21981325
http://dx.doi.org/10.1371/journal.pone.0029400
http://www.ncbi.nlm.nih.gov/pubmed/22216272
http://dx.doi.org/10.1186/1471-2148-11-234
http://www.ncbi.nlm.nih.gov/pubmed/21827690
http://dx.doi.org/10.1186/1471-2164-9-429
http://www.ncbi.nlm.nih.gov/pubmed/18803863
http://dx.doi.org/10.1186/1471-2164-8-338
http://www.ncbi.nlm.nih.gov/pubmed/17892602
http://dx.doi.org/10.1016/j.ygeno.2006.04.001
http://www.ncbi.nlm.nih.gov/pubmed/16753280
http://dx.doi.org/10.1038/25255
http://www.ncbi.nlm.nih.gov/pubmed/9872315
http://dx.doi.org/10.1002/neu.20011
http://www.ncbi.nlm.nih.gov/pubmed/15266647
http://dx.doi.org/10.1016/S0006-2952(98)00326-8
http://dx.doi.org/10.1016/S0006-2952(98)00326-8
http://www.ncbi.nlm.nih.gov/pubmed/10037449
http://dx.doi.org/10.1016/j.bbr.2006.04.025
http://www.ncbi.nlm.nih.gov/pubmed/16765459
http://dx.doi.org/10.1016/S0898-6568(02)00119-5
http://www.ncbi.nlm.nih.gov/pubmed/12618218
http://dx.doi.org/10.1111/j.1460-9568.2012.08001.x
http://www.ncbi.nlm.nih.gov/pubmed/22332935
http://dx.doi.org/10.1038/nn.2555
http://www.ncbi.nlm.nih.gov/pubmed/20473291
http://dx.doi.org/10.1007/978-1-4419-7913-1_3
http://www.ncbi.nlm.nih.gov/pubmed/21618824
http://dx.doi.org/10.1523/JNEUROSCI.4243-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21325504
http://dx.doi.org/10.1038/embor.2011.52
http://dx.doi.org/10.1038/embor.2011.52
http://www.ncbi.nlm.nih.gov/pubmed/21508962
http://dx.doi.org/10.1002/dvdy.22336
http://www.ncbi.nlm.nih.gov/pubmed/20549736
http://dx.doi.org/10.1016/j.ydbio.2012.05.034
http://www.ncbi.nlm.nih.gov/pubmed/22683378
http://dx.doi.org/10.1002/dvdy.22575
http://www.ncbi.nlm.nih.gov/pubmed/21404368

@ PLOS | one

Murine Olfactory Receptor Neuron Transcriptome

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

Barros SA, Tennant RW, Cannon RE (2003) Molecular structure and characterization of a novel mu-
rine ABC transporter, Abca13. Gene 307: 191-200. doi: 10.1016/S0378-1119(03)00465-7 PMID:
12706902

Jacobsson JA, Haitina T, Lindblom J, Fredriksson R (2007) Identification of six putative human trans-
porters with structural similarity to the drug transporter SLC22 family. Genomics 90 (5): 595-609. doi:
10.1016/j.ygeno.2007.03.017 PMID: 17714910

Xiang M, Mohamalawari D, Rao R (2005) A novel isoform of the secretory pathway Ca2+, Mn(2+)-
ATPase, hSPCA2, has unusual properties and is expressed in the brain. J. Biol. Chem. 280 (12):
11608—-11614. doi: 10.1074/jbc.M413116200 PMID: 15677451

Radhakrishnan K, Krieger A, Dibué M, Hescheler J, Schneider T (2011) APLP1 and Rab5A interact
with the lI-11l loop of the voltage-gated Ca-channel Ca(v)2.3 and modulate its internalization differently.
Cell. Physiol. Biochem. 28 (4): 603—612. doi: 10.1159/000335756 PMID: 22178872

Palty R, Raveh A, Kaminsky I, Meller R, Reuveny E (2012) SARAF inactivates the store operated cal-
cium entry machinery to prevent excess calcium refilling. Cell 149 (2): 425-438. doi: 10.1016/j.cell.
2012.01.055 PMID: 22464749

Nepravishta R, Polizio F, Paci M, Melino S (2012) A metal-binding site in the RTN1-C protein: new per-
spectives on the physiological role of a neuronal protein. Metallomics 4 (5): 480—-487. doi: 10.1039/
c2mt20035] PMID: 22522967

Hjelmqvist L, Tuson M, Marfany G, Herrero E, Balcells S, et al. (2002) ORMDL proteins are a con-
served new family of endoplasmic reticulum membrane proteins. Genome Biol. 3 (6): RE-
SEARCHO0027. doi: 10.1186/gb-2002-3-6-research0027 PMID: 12093374

Kim AY, Tang Z, Liu Q, Patel KN, Maag D, et al. (2008) Pirt, a phosphoinositide-binding protein, func-
tions as a regulatory subunit of TRPV1. Cell 133 (3): 475-485. doi: 10.1016/j.cell.2008.02.053 PMID:
18455988

Billig GM, Pal B, Fidzinski P, Jentsch TJ (2011) Ca2+-activated Cl- currents are dispensable for olfac-
tion. Nat. Neurosci. 14 (6): 763-769. doi: 10.1038/nn.2821 PMID: 21516098

Pifferi S, Dibattista M, Sagheddu C, Boccaccio A, Al Qteishat A et al. (2009) Calcium-activated chlo-
ride currents in olfactory sensory neurons from mice lacking bestrophin-2. J. Physiol. (Lond.) 587 (Pt
17): 4265—4279. doi: 10.1113/jphysiol.2009.176131

Zhang X, Bertaso F, Yoo JW, Baumgartel K, Clancy SM, et al. (2010) Deletion of the potassium chan-
nel Kv12.2 causes hippocampal hyperexcitability and epilepsy. Nat. Neurosci. 13 (9): 1056—1058.
doi: 10.1038/nn.2610 PMID: 20676103

Hardman RM, Forsythe ID (2009) Ether-a-go-go-related gene K+ channels contribute to threshold ex-
citability of mouse auditory brainstem neurons. J. Physiol. (Lond.) 587 (Pt 11): 2487—2497. doi: 10.
1113/jphysiol.2009.170548

Hagendorf S, Fluegge D, Engelhardt C, Spehr M (2009) Homeostatic control of sensory output in
basal vomeronasal neurons: activity-dependent expression of ether-a-go-go-related gene potassium
channels. J. Neurosci. 29 (1): 206—-221. doi: 10.1523/JNEUROSCI.3656-08.2009 PMID: 19129398

Zou A, Lin Z, Humble M, Creech CD, Wagoner PK, et al. (2003) Distribution and functional properties
of human KCNH8 (Elk1) potassium channels. Am. J. Physiol., Cell Physiol. 285 (6): C1356-66. doi:
10.1152/ajpcell.00179.2003 PMID: 12890647

Eldstrom J, Doerksen KW, Steele DF, Fedida D (2002) N-terminal PDZ-binding domain in Kv1 potas-
sium channels. FEBS Lett. 531 (3): 529-537. doi: 10.1016/S0014-5793(02)03572-X PMID:
12435606

Talley EM, Solorzano G, Lei Q, Kim D, Bayliss DA (2001) Cns distribution of members of the two-
pore-domain (KCNK) potassium channel family. J. Neurosci. 21 (19): 7491-7505. PMID: 11567039

Lesage F, Terrenoire C, Romey G, Lazdunski M (2000) Human TREK2, a 2P domain mechano-sensi-
tive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs,
Gi, and Gq protein-coupled receptors. J. Biol. Chem. 275 (37): 28398-28405. doi: 10.1074/jbc.
M002822200 PMID: 10880510

Noél J, Zimmermann K, Busserolles J, Deval E, Alloui A, et al. (2009) The mechano-activated K+
channels TRAAK and TREK-1 control both warm and cold perception. EMBO J. 28 (9): 1308-1318.
doi: 10.1038/emb0j.2009.57 PMID: 19279663

Chang K, Pastan | (1996) Molecular cloning of mesothelin, a differentiation antigen present on meso-
thelium, mesotheliomas, and ovarian cancers. Proc. Natl. Acad. Sci. U.S.A. 93 (1): 136—140. doi: 10.
1073/pnas.93.1.136 PMID: 8552591

Michibata H, Okuno T, Konishi N, Kyono K, Wakimoto K, et al. (2009) Human GPM6A is associated
with differentiation and neuronal migration of neurons derived from human embryonic stem cells.
Stem Cells Dev. 18 (4): 629-639. doi: 10.1089/scd.2008.0215 PMID: 19298174

PLOS ONE | DOI:10.1371/journal.pone.0113170 January 15,2015 45/47


http://dx.doi.org/10.1016/S0378-1119(03)00465-7
http://www.ncbi.nlm.nih.gov/pubmed/12706902
http://dx.doi.org/10.1016/j.ygeno.2007.03.017
http://www.ncbi.nlm.nih.gov/pubmed/17714910
http://dx.doi.org/10.1074/jbc.M413116200
http://www.ncbi.nlm.nih.gov/pubmed/15677451
http://dx.doi.org/10.1159/000335756
http://www.ncbi.nlm.nih.gov/pubmed/22178872
http://dx.doi.org/10.1016/j.cell.2012.01.055
http://dx.doi.org/10.1016/j.cell.2012.01.055
http://www.ncbi.nlm.nih.gov/pubmed/22464749
http://dx.doi.org/10.1039/c2mt20035j
http://dx.doi.org/10.1039/c2mt20035j
http://www.ncbi.nlm.nih.gov/pubmed/22522967
http://dx.doi.org/10.1186/gb-2002-3-6-research0027
http://www.ncbi.nlm.nih.gov/pubmed/12093374
http://dx.doi.org/10.1016/j.cell.2008.02.053
http://www.ncbi.nlm.nih.gov/pubmed/18455988
http://dx.doi.org/10.1038/nn.2821
http://www.ncbi.nlm.nih.gov/pubmed/21516098
http://dx.doi.org/10.1113/jphysiol.2009.176131
http://dx.doi.org/10.1038/nn.2610
http://www.ncbi.nlm.nih.gov/pubmed/20676103
http://dx.doi.org/10.1113/jphysiol.2009.170548
http://dx.doi.org/10.1113/jphysiol.2009.170548
http://dx.doi.org/10.1523/JNEUROSCI.3656-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19129398
http://dx.doi.org/10.1152/ajpcell.00179.2003
http://www.ncbi.nlm.nih.gov/pubmed/12890647
http://dx.doi.org/10.1016/S0014-5793(02)03572-X
http://www.ncbi.nlm.nih.gov/pubmed/12435606
http://www.ncbi.nlm.nih.gov/pubmed/11567039
http://dx.doi.org/10.1074/jbc.M002822200
http://dx.doi.org/10.1074/jbc.M002822200
http://www.ncbi.nlm.nih.gov/pubmed/10880510
http://dx.doi.org/10.1038/emboj.2009.57
http://www.ncbi.nlm.nih.gov/pubmed/19279663
http://dx.doi.org/10.1073/pnas.93.1.136
http://dx.doi.org/10.1073/pnas.93.1.136
http://www.ncbi.nlm.nih.gov/pubmed/8552591
http://dx.doi.org/10.1089/scd.2008.0215
http://www.ncbi.nlm.nih.gov/pubmed/19298174

@ PLOS | one

Murine Olfactory Receptor Neuron Transcriptome

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192,

193.

194.

195.

Zhao J, lida A, Ouchi Y, Satoh S, Watanabe S (2008) M6a is expressed in the murine neural retina
and regulates neurite extension. Mol. Vis. 14: 1623-1630. PMID: 18776950

Menini A (1995) Cyclic nucleotide-gated channels in visual and olfactory transduction. Biophys.
Chem. 55 (3): 185—196. doi: 10.1016/0301-4622(94)00153-B PMID: 7542935

Heldens L, Dirks RP, Hensen, Sanne M M, Onnekink C, van Genesen, Siebe T, et al. (2010)
Co-chaperones are limiting in a depleted chaperone network. Cell. Mol. Life Sci. 67 (23): 4035-4048.
doi: 10.1007/s00018-010-0430-7 PMID: 20556630

Cintron NS, Toft D (2006) Defining the requirements for Hsp40 and Hsp70 in the Hsp90 chaperone
pathway. J. Biol. Chem. 281 (36): 26235-26244. doi: 10.1074/jbc.M605417200 PMID: 16854979

Neuhaus EM, Mashukova A, Zhang W, Barbour J, Hatt H (2006) A specific heat shock protein en-
hances the expression of mammalian olfactory receptor proteins. Chem. Senses 31 (5): 445-452.
doi: 10.1093/chemse/bjjo49 PMID: 16565291

Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, et al. (2009) Gene expression in
the mouse eye: an online resource for genetics using 103 strains of mice. Mol. Vis. 15: 1730-1763.
PMID: 19727342

Ango F, Pin JP, Tu JC, Xiao B, Worley PF, et al. (2000) Dendritic and axonal targeting of type 5 metabo-
tropic glutamate receptor is regulated by homer1 proteins and neuronal excitation. J. Neurosci. 20
(23): 8710-8716. PMID: 11102477

Ango F, Prézeau L, Muller T, Tu JC, Xiao B, et al. (2001) Agonist-independent activation of metabotro-
pic glutamate receptors by the intracellular protein Homer. Nature 411 (6840): 962—965. doi: 10.1038/
35082096 PMID: 11418862

Mast TG, Brann JH, Fadool DA (2010) The TRPC2 channel forms protein-protein interactions with
Homer and RTP in the rat vomeronasal organ. BMC Neurosci 11: 61. doi: 10.1186/1471-2202-11-61
PMID: 20492691

Magalhaes AC, Dunn H, Ferguson, Stephen S G (2012) Regulation of GPCR activity, trafficking and
localization by GPCR-interacting proteins. Br. J. Pharmacol. 165 (6): 1717—-1736. doi: 10.1111/j.
1476-5381.2011.01552.x PMID: 21699508

Nisar SP, Cunningham M, Saxena K, Pope RJ, Kelly E, et al. (2012) Arrestin scaffolds NHERF1 to the
P2Y12 receptor to regulate receptor internalization. J. Biol. Chem. 287 (29): 24505-24515. doi: 10.
1074/jbc.M112.347104 PMID: 22610101

Hall RA, Premont RT, Chow CW, Blitzer JT, Pitcher JA, et al. (1998) The beta2-adrenergic receptor in-
teracts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature 392 (6676):
626—630. doi: 10.1038/33458 PMID: 9560162

Cao TT, Deacon HW, Reczek D, Bretscher A, Zastrow M von (1999) A kinase-regulated PDZ-domain
interaction controls endocytic sorting of the beta2-adrenergic receptor. Nature 401 (6750): 286—290.
doi: 10.1038/45816 PMID: 10499588

LiJ, Chen C, Liu-Chen L (2002) Ezrin-radixin-moesin-binding phosphoprotein-50/Na+/H+ exchanger
regulatory factor (EBP50/NHERF) blocks U50,488H-induced down-regulation of the human kappa
opioid receptor by enhancing its recycling rate. J. Biol. Chem. 277 (30): 27545-27552. doi: 10.1074/
jbc.M200058200 PMID: 12004055

Hwang JI, Heo K, Shin KJ, Kim E, Yun C, et al. (2000) Regulation of phospholipase C-beta 3 activity
by Na+/H+ exchanger regulatory factor 2. J. Biol. Chem. 275 (22): 16632—16637. doi: 10.1074/jbc.
M001410200 PMID: 10748023

Wheeler D, Garrido JL, Bisello A, Kim YK, Friedman PA, et al. (2008) Regulation of parathyroid hor-
mone type 1 receptor dynamics, traffic, and signaling by the Na+/H+ exchanger regulatory factor-1in
rat osteosarcoma ROS 17/2.8 cells. Mol. Endocrinol. 22 (5): 1163-1170. doi: 10.1210/me.2007-0461
PMID: 18202147

Mahon MJ, Donowitz M, Yun CC, Segre GV (2002) Na(+)/H(+) exchanger regulatory factor 2 directs
parathyroid hormone 1 receptor signalling. Nature 417 (6891): 858—-861. doi: 10.1038/nature00816
PMID: 12075354

Bassani S, Cingolani LA, Valnegri P, Folci A, Zapata J, et al. (2012) The X-linked intellectual disability
protein TSPAN7 regulates excitatory synapse development and AMPAR trafficking. Neuron 73 (6):
1143-1158. doi: 10.1016/j.neuron.2012.01.021 PMID: 22445342

Cao S, lyer JK, Lin V (2006) Identification of tetratricopeptide repeat domain 9, a hormonally regulated
protein. Biochem. Biophys. Res. Commun. 345 (1): 310-317. doi: 10.1016/j.bbrc.2006.04.091 PMID:
16678794

Van der Leij |, Franse MM, Elgersma Y, Distel B, Tabak HF (1993) PAS10 is a tetratricopeptide-repeat
protein that is essential for the import of most matrix proteins into peroxisomes of Saccharomyces

PLOS ONE | DOI:10.1371/journal.pone.0113170 January 15,2015 46 /47


http://www.ncbi.nlm.nih.gov/pubmed/18776950
http://dx.doi.org/10.1016/0301-4622(94)00153-B
http://www.ncbi.nlm.nih.gov/pubmed/7542935
http://dx.doi.org/10.1007/s00018-010-0430-7
http://www.ncbi.nlm.nih.gov/pubmed/20556630
http://dx.doi.org/10.1074/jbc.M605417200
http://www.ncbi.nlm.nih.gov/pubmed/16854979
http://dx.doi.org/10.1093/chemse/bjj049
http://www.ncbi.nlm.nih.gov/pubmed/16565291
http://www.ncbi.nlm.nih.gov/pubmed/19727342
http://www.ncbi.nlm.nih.gov/pubmed/11102477
http://dx.doi.org/10.1038/35082096
http://dx.doi.org/10.1038/35082096
http://www.ncbi.nlm.nih.gov/pubmed/11418862
http://dx.doi.org/10.1186/1471-2202-11-61
http://www.ncbi.nlm.nih.gov/pubmed/20492691
http://dx.doi.org/10.1111/j.1476-5381.2011.01552.x
http://dx.doi.org/10.1111/j.1476-5381.2011.01552.x
http://www.ncbi.nlm.nih.gov/pubmed/21699508
http://dx.doi.org/10.1074/jbc.M112.347104
http://dx.doi.org/10.1074/jbc.M112.347104
http://www.ncbi.nlm.nih.gov/pubmed/22610101
http://dx.doi.org/10.1038/33458
http://www.ncbi.nlm.nih.gov/pubmed/9560162
http://dx.doi.org/10.1038/45816
http://www.ncbi.nlm.nih.gov/pubmed/10499588
http://dx.doi.org/10.1074/jbc.M200058200
http://dx.doi.org/10.1074/jbc.M200058200
http://www.ncbi.nlm.nih.gov/pubmed/12004055
http://dx.doi.org/10.1074/jbc.M001410200
http://dx.doi.org/10.1074/jbc.M001410200
http://www.ncbi.nlm.nih.gov/pubmed/10748023
http://dx.doi.org/10.1210/me.2007-0461
http://www.ncbi.nlm.nih.gov/pubmed/18202147
http://dx.doi.org/10.1038/nature00816
http://www.ncbi.nlm.nih.gov/pubmed/12075354
http://dx.doi.org/10.1016/j.neuron.2012.01.021
http://www.ncbi.nlm.nih.gov/pubmed/22445342
http://dx.doi.org/10.1016/j.bbrc.2006.04.091
http://www.ncbi.nlm.nih.gov/pubmed/16678794

@ PLOS | one

Murine Olfactory Receptor Neuron Transcriptome

196.

197.

198.

199.

200.

201.

202.

cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 90 (24): 11782-11786. doi: 10.1073/pnas.90.24.11782
PMID: 8265627

Irmer H, Hoéhfeld J (1997) Characterization of functional domains of the eukaryotic co-chaperone Hip.
J. Biol. Chem. 272 (4): 2230-2235. doi: 10.1074/jbc.272.4.2230 PMID: 8999928

Sikorski RS, Michaud WA, Wootton JC, Boguski MS, Connelly C, et al. (1991) TPR proteins as essen-
tial components of the yeast cell cycle. Cold Spring Harb. Symp. Quant. Biol. 56: 663—673. doi: 10.
1101/SQB.1991.056.01.075 PMID: 1819514

Schultz J, Marshall-Carlson L, Carlson M (1990) The N-terminal TPR region is the functional domain
of SSNB, a nuclear phosphoprotein of Saccharomyces cerevisiae. Mol. Cell. Biol. 10 (9): 4744—4756.
PMID: 2201901

Sugasawa T, Lenzen G, Simon S, Hidaka J, Cahen A, et al. (2001) The iodocyanopindolol and SM-
11044 binding protein belongs to the TM9SF multispanning membrane protein superfamily. Gene
273 (2): 227-237. doi: 10.1016/S0378-1119(01)00587-X PMID: 11595169

Liu L, Srikakulam R, Winkelmann DA (2008) Unc45 activates Hsp90-dependent folding of the myosin
motor domain. J. Biol. Chem. 283 (19): 13185—-13193. doi: 10.1074/jbc.M800757200 PMID:
18326487

Chadli A, Graham JD, Abel MG, Jackson TA, Gordon DF, et al. (2006) GCUNC-45 is a novel regulator
for the progesterone receptor/hsp90 chaperoning pathway. Mol. Cell. Biol. 26 (5): 1722—1730. doi:
10.1128/MCB.26.5.1722-1730.2006 PMID: 16478993

Oort PJ, Warden CH, Baumann TK, Knotts TA, Adams SH (2007) Characterization of Tusc5, an adi-

pocyte gene co-expressed in peripheral neurons. Mol. Cell. Endocrinol. 276 (1-2:): 24-35. doi: 10.
1016/j.mce.2007.06.005 PMID: 17689857

PLOS ONE | DOI:10.1371/journal.pone.0113170 January 15,2015 47 /47


http://dx.doi.org/10.1073/pnas.90.24.11782
http://www.ncbi.nlm.nih.gov/pubmed/8265627
http://dx.doi.org/10.1074/jbc.272.4.2230
http://www.ncbi.nlm.nih.gov/pubmed/8999928
http://dx.doi.org/10.1101/SQB.1991.056.01.075
http://dx.doi.org/10.1101/SQB.1991.056.01.075
http://www.ncbi.nlm.nih.gov/pubmed/1819514
http://www.ncbi.nlm.nih.gov/pubmed/2201901
http://dx.doi.org/10.1016/S0378-1119(01)00587-X
http://www.ncbi.nlm.nih.gov/pubmed/11595169
http://dx.doi.org/10.1074/jbc.M800757200
http://www.ncbi.nlm.nih.gov/pubmed/18326487
http://dx.doi.org/10.1128/MCB.26.5.1722-1730.2006
http://www.ncbi.nlm.nih.gov/pubmed/16478993
http://dx.doi.org/10.1016/j.mce.2007.06.005
http://dx.doi.org/10.1016/j.mce.2007.06.005
http://www.ncbi.nlm.nih.gov/pubmed/17689857

